
--------- 

--------- 

Problem 1 

Assume that the sum of an empty sequence is zero. 

Problem 2 

You should NOT try to write to memory with something like: 

DO ~(LMemory.Read(a)=c(a)) => 
LMemory.Write(a,c(a)) 

OD 

The idea is that, when writing back you write to memory 
once. 

Remember, you cannot decide in the implementation whether 
the write to memory will succeed or not. Hint: You may want 
to write back more often. But try not to write back more 
often than you need to. 

Traces of the implementation must be a subset of the traces 
of the specificatioin. You should carefully prove that this 
is true for your implementation by referring to the actions 
that your implementation performs. 

It is likely that you will need to introduce some 
intermediate automaton C between implementation and 
specification. If you do that, you should prove that the 
implementation implements C and that C implements the 
specification. 

Here is the definition of a backward simulation relation BR 
in case you need to use it in some proof that traces of 
automaton T are a subset of the traces of automaton S: 

1. BR is a total relation, that is: 

FORALL t in states(T) 
EXISTS s in states(S) such that BR(t,s) 

2. All states related to initial states of T 
are initial states in S: 



 FORALL t in initial(T) 
FORALL s in states(S) such that BR(t,s) 

s in initial(S) 

3. It is always possible to extend BR along every transition 
in the backwards direction: 

FORALL t in states(T) 
FORALL t' in states(T) 
FORALL (t',pi,t) in steps(T) 
FORALL s in states(S) such that BR(t,s) 
EXISTS s' in states(S) such that 
(s',pi,s) in steps(S) 

In showing some of the trace inclusions you may want to use 
use invariants. If you use any invariants you must prove 
that every step preserves them. 


