
a2ps -A fill -o x --line-numbers=1 events.c webclient.c
webclient_libasync.c

Office hours
Discussion mailing list
(Wiki?)

Recall simple web-like server?
 Now we'll look at a client for the server
 Show how to write some asynchronous code
 Build up to libasync which you will and have been using for labs

 [webclient.c]

Where does this block?
 connect: makes a tcp connection
 write(s): is remote side willing to take data?
 read(s): has data come back from the remote side?
 write(1): is terminal ready for output?

How to program in event style?
 Identify events and appropriate responses: state machine
 programmer has to know when something might block!
 Write a loop that handles incoming events (I/O events)
 [events.c Example 1]

select()
 Need a way to multiplex sockets
 Program must then interleave operations

 [write prototype on the board: nfds, reads, writes, excepts, time]
 Condition is actually "read() would not block"; might be EOF.
 select() blocks (if timeout > 0) to avoid wasteful polling.
 this is important; you *do* want to block in select().

Translate low-level system events into application level events
 Buffer net I/O, maintain individual application state
 Writing this event loop for each program is tedious
 [sketch implementation on the board]
 What if your program does the one thing in parallel?
 Have to partition up state for each client
 Need to maintain sets of file descriptors
 What if your program does many things?
 e.g. let's add DNS resolution
 Hard to be modular if event loop knows about all activities.
 And knows how to consult all state.

We would prefer abstraction...
 Use a library to provide main loop (e.g. libasync)
 Programmer provides "callbacks" to handle events
 [events.c: Example 2]

Break up code into functions with non-blocking ops
 let the library handle the boring async stuff
 [prototypes in webclient_libasync.c]

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

It's unfortunately hard for async programs to maintain state
 [draw logical diagram of select loop and function calls]
 Ordinary programs, and threads, use variables.
 Which persist across function calls, and blocking operations.
 Since they are stored on the stack.
 Async programs can't keep state on the stack.
 Since each callback must return immediately.

How can they maintain state across calls?
 Use global variables
 Use the heap:
 Programmers package up state in a struct, malloc struct
 Each callback could take a void * (libevent)
 (In C++, can do this somewhat implicitly using an object.)
 This turns out to be hard to program
 No type safety
 Must declare structs for every set of state transfer
 User has to manage memory in potentially tricky cases
 libasync provides a form of closures

cb = wrap(fn, a, b) generates a closure.
 That is, a function pointer plus an environment of saved values.
 cb() calls fn(a, b)
 Also provides something like function currying.
 useful later on when callbacks do different things based on input
 Given a function with signature "R fn (A, B)":
 cb = wrap (fn) -> callback<R, A, B>::ref
 use it like this:
 cb (a, b)
 Or:
 wrap (fn, a) -> callback<R, B>::ref

Limited compared to Scheme closures:
 You must explicitly indicate what variables to keep around.
 Can only pass a certain number of arguments

How are callbacks implemented?
 See callback.h: one of the few commented files in libasync.
 templates to generate dynamic structs holding values
 templates provide type safety:
 R fn (A, B);
 cb = wrap (fn) -> callback<R, A, B>::ref cb (a, b)
 cb = wrap (fn, a) -> callback<R, B>::ref cb (b);
 cb = wrap (fn, a, b) -> callback<R>::ref cb ();

 callbacks are reference counted to simplify mem mgmt
 normally, arguments in the wrap would have been on stack
 now, values are stored in closures created by wrap().
 How do we know when we've used a callback the last time?
 That's why they're reference counted.

What is the result?
 [webclient_libasync.c]
 what's the difference between filename and buf?

This is still somewhat tedious...
 Must handle memory allocation for strings

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 Must manually buffer data to and from client
 Have to translate network read/writes into application level events

libasync provides some solutions:
 suio and aios handle raw and line-oriented i/o
 reference counted data (strings and general dynamic structs)
 asynchronous RPC library
 but you still have to do work like splitting your code up into
functions
 loops can still be a pain

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

