6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

2000 Final Examination and Solutions

1. Final Examination

There are four problems on this examination. Make sure you don’t skip over any of a problem’s parts! They
are followed by an appendix that contains reference material from the course notes. The appendix contains
no problem:s; it is just a handy reference.

You will have ninety minutes in which to work the problems. Some problems are easier than others: read all
problems before beginning to work, and use your time wisely!

This examination is open-book: you may use whatever reference books or papers you have brought to the
exam. The number of points awarded for each problem is placed in brackets next to the problem number.
There are 100 points total on the exam.

Do all written work in your examination booklet — we will not collect the examination handout itself; you
will only be graded for what appears in your examination booklet. It will be to your advantage to show
your work — we will award partial credit for incorrect solutions that make use of the right techniques.

If you feel rushed, be sure to write a brief statement indicating the key idea you expect to use in your
solutions. We understand time pressure, but we can’t read your mind.

This examination has text printed on only one side of each page. Rather than flipping back and forth be-
tween pages, you may find it helpful to rip pages out of the exam so that you can look at more than one
page at the same time.

Contents

Problem 1: Parameter Passing [21 points] . . . . . ... ... ... .. ... . ... .. . 2
Problem 2: Explicit Types [24 points] . . . . . ... .. ... .. .. 3
Problem 3: Type Reconstruction [30 points] . . . . ... ... ... ... ... ... .. ... .. ... 5
Problem 4: Pragmatics [25 points] . . . . . .. ... ... 6

Appendix A: Standard Semantics of FLK! . . . . . ... ... .. .. o oo oo 7
Appendix B: Parameter Passing Semantics for FLAVAR! . . . . ... .................. 10
Appendix C: Typing Rules for SCHEME/XSP . . . . . ... ... ... ... . ... .. ... ..... 12
Appendix D: Typing Rules for SCHEME/R . . . . . ... .. .. ... ... . ... ... . ... .. 14
Appendix E: Type Reconstruction Algorithm for SCHEME/R . . . . ... .. ... .......... 15
Appendix F: Simple-CPS ConversionRules . . . . .. ... ... .. ... ............ 16
Appendix G: Meta-CPS ConversionRules . . . . . ... ... ... ... ... ... ..... 17

The figures in the Appendix are very similar to the ones in the course notes. Some bugs have been fixed,
and some figures have been simplified to remove parts inessential for this exam. You will not be marked
down if you use the corresponding figures in the course notes instead of the appendices.



Problem 1: Parameter Passing [21 points]

Give the meaning of the following FLAVAR! expression under each parameter passing scheme. Hint: try to
figure out the values of (begin (f a) a) and (f (begin (set! b (+ b 2)) b)) separately, then find the
sum.

(let ((a 4) (b 0))
(let ((f (lambda (x)
(begin (set! x (* x x))
(/ x 2)))))
(+ (begin (f a) a)
(f (begin (set! b (+ b 2)) b)))))

a. [7 points] call-by-value
b. [7 points] call-by-name

c. [7 points] call-by-reference



Problem 2: Explicit Types [24 points]

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON THE SCHEME /XSP TYPING
RULES GIVEN IN APPENDIX C.

Louis Reasoner likes both dynamic scoping and explicit types, and thus decides to create a new language,
Scheme /DX, that includes both! However, certain problems arise and you are called into rescue Louis” at-
tempt.

Louis revised a procedure definition to be:

E := ... | (Qambda (((I; TV) ... I, T,)) Uy T{)) ... U}, T;))) Ep)
with the new type:

T:=... | (> T ... T (U T ... U, T;))) Tp)

The first list of identifiers {I;} and types {T;} in LAMBDA specifies the formal parameters to LAMBDA,
and the second list of identifiers {I/} and types {7} } specifies all of the dynamically bound identifiers used
by E and their types. Thus when a procedure is called, the types of BOTH the actual parameters and the
dynamically bound variables must match.

For example:

(let ((x 1))
(let ((p (lambda (((y int)) ((x bool))) (if x y 0))))
(let ((x #t))
(@ 1)N
= 1

(et ((x #t))
(let ((p (lambda (((y int)) ((x bool))) (if x y 0))))
(et ((x 1))

(P 1)
= NOT WELL TYPED

For an expression E, let S be the set of dynamically bound identifiers in E. We can extend our typing frame-
work to be

AFE:TQSs
In this framework, “@” means “E uses dynamic variables” just like “:” means “has type”.
Our new combined typing and dynamic variable rule for identifiers is:

All: T\FI:T@Q{I}
Here are two examples to give you an idea of what we mean:

Alz :int]F (+ 1 x) : int @ {z}

Alz :int]F (let ((x 1)) (+ 1 x)) : int @ {}

In this framework:



e} o o

Q.

. [6 points] Give a combined typing and dynamic variable rule for LET.
. [6 points] Give a combined typing and dynamic variable rule for LAMBDA.
. [6 points] Give a combined typing and dynamic variable rule for application.

. [6 points] Briefly argue that your rules always guarantee that in well-typed programs references to
dynamic variables are bound.



Problem 3: Type Reconstruction [30 points]

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON THE SCHEME/R TYPING
RULES AND TYPE RECONSTRUCTION ALGORITHM GIVEN IN THE APPENDIX.

Ben Bitdiddle is at it again, further enhancing Scheme/R. In this new and improved version he has added
a new construct called go that executes all of its constituent expressions E1...En in parallel:

E:=...| (go (1 ... I)) Ey ... Ey) | (talk! I E) | (listen I)
go terminates when all of E; ... E,, terminate, and it returns the value of E;. go includes the ability to use
communication variables I; ... I, in a parallel computation. A communication variable can be assigned

a value by talk!. An expression in go can wait for a communication variable to be given a value with
listen. listen returns the value of the variable once it is set with talk!. For a program to be well typed,
all By ... E, in go must be well typed.

Communication variables will have the unique type (commof T) where T is the type of value they hold.
This will ensure that only communication variables can be used with talk! and listen, and that commu-

nication variables can not be used in any other expression.

Ben has given you the Scheme/R typing rules for talk! and listen:

AFE:T
A+ T: (commof T) . [talk!]
Al (talk! I E) :unit
AF1I: (commof T) .
(listen]

AF (listen I): T

oV

. [8 points] Give the Scheme/R typing rule for go.

on

. [7 points] Give the Scheme/R reconstruction algorithm for talk!.

. [7 points] Give the Scheme/R reconstruction algorithm for listen.

0

Q.

. [8 points] Give the Scheme/R reconstruction algorithm for go.



Problem 4: Pragmatics [25 points]

ANSWERS FOR THE FOLLOWING QUESTIONS SHOULD BE BASED ON THE META CPS CONVER-
SION ALGORITHM GIVEN IN APPENDIX G.

This problem contains two independent parts:

a. Ben Bitdiddle, the engineer in charge of the MCPS phase in the Tortoise compiler, looked over the
book and the previous years’ finals and couldn’t find the meta-cps rule for 1abel and jump. As Ben is
very rushed — the new Tortoise compiler should hit the market in the middle of the holiday season —
he’s asking for your help.

Here is a quick reminder of the semantics of 1abel and jump:

(label I E) evaluates E; inside E, I is bound to the continuation of (1abel I E). The labels are statically
scoped (as the normal Scheme variables are).

(jump Eq E3) calls the continuation resulted from evaluating E;, passing to it the result of evaluating
E,. E; should evaluate to a label (i.e. a continuation introduced by 1abel). The behavior of (jump
E, E,) is unspecified if E; doesn’t evaluate to a label (this is considered to be a programming
error).

E.g.: The expression (label foo (+ 1 (jump foo (+ 2 (jump foo 3))))) should evaluate to 3.

Ben even wrote the SCPS rules for 1abel and jump:

SCPS[(label I E)] = (lambda (k)
(let ((I k))
(call SCPS[E] k)))

SCPS[(jump E; E)] = (lambda (k1)
(call SCPS[E]
(lambda (k2)
(call SCPS[E:2] k2))))

(i) [10 points] What is MCPS[(LABEL I E)]? Be careful to avoid code bloat.
(ii) [10 points] What is MCPS[(JUMP E; E2)]?

b. [5 points] In class, we've mentioned a couple of times that type safety is impossible without automatic
memory management (i.e. garbage collection). Please explain why this is true.



Appendix A: Standard Semantics of FLK!

v € Value = Unit + Bool + Int + Sym + Pair + Procedure + Location

=~
m

Expcont = Value — Cmdcont
Cmdcont = Store — Expressible
Expressible = (Value + Error) |
Error = Sym

2
m

p € Procedure = Denotable — Expcont — Cmdcont
d € Denotable = Value
e € Environment = Identifier — Binding
B € Binding = (Denotable 4+ Unbound) |
Unbound = {unbound}
s € Store = Location — Assignment
l € Location = Nat
a € Assignment = (Storable + Unassigned) |
o € Storable = Value

Unassigned = {unassigned}

top-level-cont : Expcont

=Av. As. (Value —Expressible v)
error-cont : Error — Cmdcont

= Ay. As. (Error —Expressible y)

empty-env : Environment = AJ. (Unbound —Binding unbound)

test-boolean : (Bool — Cmdcont) — Expcont
= Af. (Av. matchingv
> (Bool —Value b) | (f b)
> else (error-cont non-boolean)
endmatching )
Similarly for:
test-procedure : (Procedure — Cmdcont) — Expcont
test-location : (Location — Cmdcont) — Expcont
etc.

ensure-bound : Binding — Expcont — Cmdcont
= AGk. matching g
> (Denotable —Binding v) | (k v)
> (Unbound —Binding unbound) | (error-cont unbound-variable)
endmatching
Similarly for:
ensure-assigned : Assignment — Expcont — Cmdcont

Figure 1: Semantic algebras for standard semantics of strict CBV FLK!.



same-location? : Location — Location — Bool = A1l . (h =Nat k)
next-location : Location — Location = Al. (I +Njat 1)

empty-store : Store = Al. (Unassigned — Assignment unassigned)
fetch : Location — Store — Assignment = Als. (s [)

assign : Location — Storable — Store — Store
=Aios. A . if (same-location? 1y Io)
then (Storable — Assignment o)
else (fetch I s)

fresh-loc : Store — Location = As. (first-fresh s 0)

first-fresh : Store — Location — Location
= Asl. matching (fetch [ s)
> (Unassigned — Assignment unassigned) | |
> else (first-fresh s (next-location 1))
endmatching

lookup : Environment — Identifier — Binding = Xel . (e I)

Figure 2: Store helper functions for standard semantics of strict CBV FLK!.



TL : Exp — Expressible
& : Exp — Environment — Expcont — Cmdcont
L : Lit — Value ; Defined as usual

TLIE] = E[E] empty-env top-level-cont empty-store

E[L] =Xek. k L[L]

EM = Xek . ensure-bound (lookup e I) k

E[(proc I E)] = Xek. k (Procedure —Value (A\dk’'.E[E] [I: dle k"))
El(call Ey E2)] = Xek. E[E1] e (test-procedure (A\p.E[E2] e (Av.p v k)))

E[GEE Ev Ep E3)] =
ek . E[E1] e (test-boolean (Ab.if b then E[E2] e k else E[E3] e k))

E[(pair E1 E2)] = Xek. E[E1] e (Av1.E[E2] e (Ave . k (Pair —Value (v, w))))

El(cell E)] = Xek. E[E] e (Mvs. k (Location —Value (fresh-loc s))
(assign (fresh-loc s) v s))

E[(begin Ei1 E2)] = Xek. E[E1] e (Avignore - E[E2] € k)
E[(primop cell-ref E)| = Aek. E[E] e (test-location (Als . ensure-assigned (fetch 1 s) k s))

E[(primop cell-set! Ei E2)]
= Xek. E[E1] e (test-location (Al.E[E2] e (Avs.k (Unit—Value unit) (assign I v s))))

El(xec I E)] = Xeks. let f = fiXgypressible (Aa . E[E] [I : (extract-value a)] e top-level-cont s)
matching f
> (Value —Expressible v) | E[E] [I:v]eks
> else f
endmatching

extract-value : Expressible — Binding

= Aa . matching a
> (Value —Expressible v) | (Denotable —Binding v)
> else LBinding
endmatching

Figure 3: Valuation clauses for standard semantics of strict CBV FLK!.




Appendix B: Parameter Passing Semantics for FLAVAR!

o € Storable = Value
val-to-storable = \v . v
E[(call E; E3)] = Xe. (with-procedure (E[E1] e)
(Ap . (with-value (E[E2] e)
(Av. (allocating v p)))))
EMl] = Xe. (with-denotable (lookup e I) (Al . (fetching 1 val-to-comp)))

Call-by-Value

o € Storable = Computation

val-to-storable = val-to-comp

E[(call Ei E2)] = Ae. (with-procedure (E[E1] e)
(Ap . (allocating (E[E2] e) p)))

EN = Ae. (with-denotable (lookup e I) (Ml. (fetching | (Ac. c))))

Call-by-Name

Figure 4: Parameter passing mechanisms in FLAVAR!, part I.

10



o € Storable = Memo
m € Memo = Computation + Value

val-to-storable = \v . (Value —Memo v)

E[(call Ei E2)] = Ae. (with-procedure (E[E1] e)
(Ap . (allocating (Computation —Memo (£[E2] €)) p)))

EN] = Xe. (with-denotable (lookup e I)
(AL. (fetching 1
(Am . matching m
> (Computation —Memo c)
| (with-value c
(Av . (sequence (update | (Value —Memo v))
(val-to-comp v))))
> (Value —Memo v) | (val-to-comp v)
endmatching ))))

Call-by-Need (Lazy Evaluation)

o €  Storable = Value

& : Exp — Environment — Computation
LY : Exp — Environment — Computation

val-to-storable = \v . v

E[(call Ei E2)] = Xe. (with-procedure (E[E1] e)
(Ap . (with-location (LV[E2] €) p)))

EMl] = Xe. (with-denotable (lookup e I) (Al. (fetching 1 val-to-comp)))
LV[I] = Xe. (with-denotable (lookup e I) (Al. (val-to-comp (Location — Value [))))
LV[Eother] ; where Eother is not 1
= Xe. (with-value (E[Eother] €)
(Av. (allocating v (Al . (val-to-comp (Location — Value 1)))))

Call-by-Reference

Figure 5: Parameter passing mechanisms in FLAVAR!, part II.

11




Appendix C: Typing Rules for SCHEME / XSP

SCHEME/X Rules

FN:int [int]
F B : bool [bool]
F S :string [string]
F (symbol I) : sym [sym]
AL:T|FI: T [var]
Vi (AFE;: T;) .
[begin]
Al (vegin Ey ... Ep) : T,
AFE:T
[the]
AF (the T E): T
AFE;:bool ; AFEs:T ; AREs: T i
i
At (if Ey Es E3): T
A[I1ZT1, ceey In:Tn]l—EBZTB [}\}
AF (lambda ((I1 T1) ... Uy Tp)) E) : (=> (Ty1 ... Tn) Tg)
AFEp:(-> (Ty ... Ty) Tg)
Vi(AFE;: T;)
[call]
AR (Ep E1 ... Ep) : Tp
All1:T1, ..., In:T,)|FEg: Ts let]
AF (Qet (Uy Ev) ... Un EX)) EB) : T
A'=AlL:T1, ..., L,:Ty)
Vi (A'FE;: T:)
4 .
AFEp:Ts [letrec]
AF (letrec (U1 Ty E1) ... U, Ty En)) E) : Ts
Al (VZ [Ti/fi])Ebody : Tbody [i’let}
Al (tlet (Uy T1) ... Un Tn)) Evody) : Trody
Vi(AFE;: T)
[record)
At (record (I Ei) ... U, En)) : (recordof (Iy T1) ... n Tn))
AFE: (recordof ... U T) ...)
[select]
Alb (select I E): T
AFE:Tg ; T= (oneof ... U Tg) ...)
[one]
Ak (one TI1 E): T
AF Egise : (oneof (I3 T1) ... Up Tr))
Vi. 35 . ((Ii = Lag;) N (Allvar, 2 Ti] = Ej 2 T))
: [tagcasel]
Ak (tagcase Edisc (Itagl Ivall El) (Itagn I'ual.,L En)) : T
At Egise : (oneof (It T1) ... (n Tw))
Vi | (37 . (L = lag;)) - Allvar; :Ts) R E; : T
AF Bacsauir : T [tagcase?)]

Al (tagcase Egisc (Itagl Ival1 Ev) ... (Itagn I'Ualn En) (else Edefault)) :T

12



Rules Introduced by SCHEME/XS to Handle Subtyping

TCT

T1 ;TQ 3 T2 ;Td
T:CTs
(T1 C Ta)
(Te C Th)
T1 = T2

Vi35 (L = J;) A (S; ETy))

(recordof (J1 S1) ...(Jm Sm)) C (recordof (I1 T1) ..., Tyn))

Vi3 ((J; = L) A (S5 ESi))

(oneof (J1 S1) ...(Jm Swm)) E (oneof (I1 T1) ...Un Tw))
Vi (Ti ESi) ;5 Sbody E Thody
(=> (81 ...50) Sbody) E (=> (T1 ... Tn) Trody)
VT ([T/L]T1 C[T/L]T2)
(recof I; T1) C (recof Iy T3)

At Erator : (=> (T1 ... Ty) Tbody)
Vi((AFE;:S)A(S;CTy)
AbF (Erator El .. En) . Tbody
AFE:S
SCT
AF (the T E): T

Rules Introduced by SCHEME/XSP to Handle Polymorphism

AFE:T;
Vi (I & (FTV (Free-Ids[E])A))

At (plambda (I; ... Iy) E) : (poly (I ... I,) T)
AFE:(poly (1 ... I,) Tg)

(Vi [L/Js]) SCT, Vi(l; & Free-1ds[S])
(poly (J1 ... Ju) SYE (poly Uy ... I,) T)

recof Equivalence
(recof I T)={[(recof I T)/I|T

13

[reflexive-C]

[transitive-C]

[recordof-C|

[oneof-C]

[->-C]

[recof-C]

[call-inclusion]

[the-inclusion]

[pA]

[project]

[poly-C]



Appendix D: Typing Rules for SCHEME/R

F #u : unit
F B : bool
FN:int
F (symbol I) : sym
[..,[:T,..]JFI:T
[...,I:(generic Iy ... In) Trody),.-|F1: (Vi [Ti/L])Trody

A'_Etest : bool 3 A}_Econ:T 5 A'_Ealt:T
Ak (if Etest Econ Ealt) : T

A[Il :Tl, ey IntTn} = Ebody : Tbody
AF (lambda (I, ... 1) Epogy) : (=> (T1 ... Tp) Tooay)
A F Erator . (_> (Tl e Tn) Tbody)
Al (Erator E1 ... Ep) : Thoay
Vi (AFE;:T;)
A[Il ZGETI(Tl s A), ceey In:GETl(Tn, A)] H Ebody : Tbody
Al_ (let ((11 E1) (In En)) Ebody) lTbody
Vi . (A[IliTl, ey InTn] = Ez : Tz)
A[Il :GETZ(Tl, A), In:Gé’I’l(Tn, A)} I Ebody : Tbody
At (Letrec (U7 E1) ... Iy Ep)) Epody) : Thody

Al (record (I Ey) ... (I, E,)) : (recordof (I; T1) ... (I, T,,))

AF E, : (recordof (I} Ty) ... (I, T,,))
Al :Ty, ..., I,:T,)F Ey: T

Ak (with (I; ... I,,) E, Ey):T

Al (Qetrec ((; Ei) ... U, En)) Epoay) : T

At (program (define I; E;) ... (define I, E;) Epoqy) : T

Gen(T,A) = (generic (I ... I,) T),where{;} =FTV (T)—FTE(A)

14

[unit]
[bool]
[int]

[symbol)]

[var]

[genvar]

lapply]

[let]

[letrec]

[record]

[with)

[program]



Appendix E: Type Reconstruction Algorithm for SCHEME/R

R[#u] A S = (unit, S)

R[B] A S = (bool, S)

R[N] A S = (int, S)
R[(symbol )] A S = (sym, S)

RN A[I:T]5=(T,S)
R[I] A : (generic (I ... In) T)]S = (T[?v;/L;],S) (?v; are new)
R[I] A S = fail (when I is unbound)

R[[(if Et EC Ea)ﬂ AS = let <Tt,St> = R[[Ed]A S
in let S; = U(Ti,bool, S;)
in let(T¢,S.) = R[E.]A S;
in let(T,,S.) = R[E.]JA S
in let S, =U(T., T, Sa)
in (T,, S;)

R[[(lambda ([, ... I,) Eb)ﬂ AS = let <Tb,Sb> = R[[Eb}]A[LL’ :?Ui] S
in((-> (Qui ... Tvn) Tp),Ss) (?v; are new)

R[{(Eo E1 . En)]] A S = let <T0,S()> = RﬂEoﬂA S
in ...
let (T, S,) = R[E.]A Sn_s
in letSy =U(To, (-> (T1 ... To) ?v5),Sn)
in <?Uf7 Sf> (?vf is new)

R[[(let ((Il E1) - (In En)) Eb)]] AS = let <T1,S1> = RIIEl]]AS
in ...
let (Ty, Sn) = R[En]A Sus
in R[Ey]A[I; : Rgen(Ti, A, Sn)]Sn

R[[(letrec ((Il El) e (In En)) Eb)]] A S = let Al = A[IZ Z?’Ui} (7’U2 are new)
in let <T17 S1> = RHE1HA1 S
in ...
let (T, ) = R[En]A1 S
in let Sb = Uv(?’l}q;7 Ti, Sn)
in R[Ey]A[I; : Rgen(T;, A, Sp)] Sp

R[(record (I, By) ... (I, E.)D]AS = let(T1,S1) = R[E:JA S
in ...
let (T\, Sn) = R[En]A Sn—1
in ((recordof (I1 Ti) ... (Un Tw)),Sn)

R[(with (I1 ... I,) E, E)]AS = let(T,S;) = R[E/]JAS
in letS, = U(T,, (recordof (I 7vi) ... (In ?v,)),Sy) (?v; are new)
in R[[Eb]]A[IZ Z?’l}i] Sb

Rgen(T, A, S) = Gen((S T'), (subst-in-type-env S A))

15



Appendix F: Simple-CPS Conversion Rules

SCPS[I]
SCPS[L]

SCPS[(lambda (I) E)]

SCPS[(call E; E3)]

SCPS[(et ((I; B ... (I, Ey)) B)]

SCPS[(label I E)]

SCPS[(jump E; E5)]

16

(lambda (k) (call k I))
(lambda (k) (call k L))

(lambda (k)
(call k
(lambda (I k-call)
(call SCPS[E] k-call))))

(lambda (k)
(call SCPS[EA]
(lambda (v1)
(call SCPS[E-]
(lambda (v2)
(call v1 v2 k))))))

(lambda (k)
(call SCPS[E]
(lambda (I7)

(call SCPS[E,]
(lambda ([I,)
(call SCPS[E] k)))..)N

(lambda (k)
(let ((I k))
(call SCPS[E] k)))

(lambda (k1)
(call SCPS[E]
(lambda (k2)
(call SCPS[E:] k2))))



Appendix G: Meta-CPS Conversion Rules

In the following rules, are used for
“meta-application”, which is evaluated as part of meta-CPS conversion. Code in BLACK TYPEWRITER FONT is
part of the output program; meta-CPS conversion does not evaluate any of this code. Therefore, you can
think of meta-CPS-converting an expression E as rewriting MCPS[E] until no grey is left.

E € Exp

m € Meta-Continuation = Exp — Exp
meta-cont — exp : (Exp — Exp) — Exp = (LAMBDA (t)[m t])
exp — meta-cont : Exp — (Exp — Exp) = (CALL )
meta-cont—exp (CALL K V)| =K

MCPS : Exp — Meta-Continuation — Exp

MCPS[I] = I
MCPS[L] = L
MCPS[(LAMBDA (I; ... I,) ED]
= (LAMBDA (I; ... I, .Ki.)
E Ki D

MCPS[(CALL E; E3)]

= FE;
Es
(CALL )
MCPS[(PRIMOP P E; E»)]
= E;
Es
(LET ((.T:. (PRIMOP P )))
LT )
MCPS[(IF E. E; Ef)]
= E,
(LET ((K )
(IF
E, K
Ey K[]))
MCPS[[(LET ((I Edef)) Ebody)]]
= Eqet
(LET ((I ) Ehody )

17



2. Final Examination Solutions

Problem 1: Parameter Passing

a. 6
b. 8

c. 18

Problem 2: Explicit Types

a.
A[IltTl, ey IntTn}FEBITB @ SB [let]
AF (Qlet ((11 El) (In En)) EB)ZTB Q@ 51U USnUSB—{[l In}
b.
AllL:Ty, ..., I,:T,, I{:1{, ..., I, :T)JFEg:Tg @S Sc{L ... L,, I ... I}
AF (lambda (((I T1) ... Uy To)) (I T ... (IL, T'))) Ep)
(> (Ty ... T) (I, T ... (I, T Tp) @ {}
(Al
C.
AFEp:(=> ((Ty ... T,) (I} T ... T, T,))) Tg) @ Sp
Vi (AFE T @ 8) A V. (A[L] =T)) all
ca

AF(Ep E; ...Ep):Tp @ S1U...US, USpU{Ll ... T'}

d. The [call] rule guarantees that all dynamic variables needed in the procedure are bound. The expres-
sion (A[I}] = T7) will produce a type error if any I} is not bound. In addition, the [A] rule guarantees
that every dynamic variable used in the body of a procedure is properly declared.

Problem 3: Type Reconstruction

a.
Vi . (A[l1: (commof TY7), ...I,:(commof T))|FE;:T;)

1

AF (go (L ... E1 ...En):Th 80}

b. R[(talk! [ E)]AS = let(T, S;)=R[I] AS
in let (T', S3) = R[E] A S
in letS; = U(T, (commof T'), S3)
in (unit, Ss)

c. R[(listen D] AS = let(T, S1)=R[I]AS
in let Sy = U((commof ?t), T, S1)
in (7t, So)

18



d. R[(go (I ... I,) Ey ... E,))] AS = let Ay = A[l1 : (commof 1) ... L, : (commof ?t,)]
in let (Tl, Sl> = R[[El]] AL S

in ...
let <Tm, Sm> = R[[Em]] Al Sm—l
in <T17 Sm>
where ?t; ... 7t, are fresh.
Problem 4: Pragmatics
a. (i) MCPS[(LABEL I E)]
= (LET (U ))
E (CALL T W)
I is lexically bound to . In the last line, we could have put /. instead of

(CALL I v) but this would lead to an exponential increase in the code size.

(i) MCPS[(JUMP E, Ep)]
= E,
E,
(CALL )

Very similar to the rule for CALL. However, this time we totally ignore /. as required by the
semantics of jump.

b. If we can explictly free memory, then it would be possible to free a block of memory orginally con-
taining data of type T, then allocating it to data containing T, thus resulting in a type error when an
expression gets a T’ instead of a T.

19



