
6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

Problem Set 2

Problem 1: Operational Semantics: Postfix + {sdup}

Alyssa P. Hacker extended the PostFix language with a new command called sdup: smart dup. This allows
us to compute square(x) = x2 without hurting the termination property of PostFix programs. The informal
semantics for sdup is as follows: duplicate the top of the stack if it is a number or a command sequence that
doesn’t contain sdup; otherwise, report an error.

Formally, the operational semantics has been extended with the following two transition rules:

�sdup. Qrest, N . S� ⇒ �Qrest, N . N . S� [sdup-numeral]

�sdup. Qrest, Q . S� ⇒ �Qrest, Q . Q . S� [sdup-sequence]where ¬(contains sdup Q)

contains sdup : Command ∗ → Bool is a helper function that takes a sequence of commands and checks
whether it contains sdup or not (yes, contains sdup handles even nested sequences of commands)

As a new graduate student in Alyssa’s AHRG (Advanced Hacking Research Group), you were assigned
to give a proof that all PostFix + {sdup} programs terminate. However, you are not alone! Alyssa already
took care of most of the mathematical weaponry:

Consider the product domain P = Nat × Nat (as usual, Nat is the set of natural numbers, starting with
0). On this domain, we define the relation <P as follows:

Definition 1 (lexicographic order) �a1, b1� <P �a2, b2� iff:

a. a1 < a2 or

b. a1 = a2 and b1 < b2.

E.g. �3, 10000� <P �4, 0�, �5, 2� <P �5, 3�.

Definition 2 A strictly decreasing chain in P is a finite or infinite sequence of elements p1, p2, . . . such that
pi ∈ P, ∀i and pi+1 <P pi, ∀i.

After a long struggle, Alyssa proved the following lemma for you:

Lemma 1 There is no infinite strictly decreasing chain in P .

Give a rigorous proof that each PostFix+ {sdup} program terminates by using a cleverly defined energy
function ESconfig . Hint: Each transition of Postfix reduces the energy function Econfig you saw in class. Try
to see what is reduced by the two new rules, and how you can combine these two things into a single energy
function.

Note: If you need to use some helper functions that are intuitively easy to describe but tedious to define
(e.g. contains sdup), just give an informal description of them.

[]

[]

Problem 2: Operational and Denotational Semantics

In this problem we ask you to develop both an operational and denotational semantics for the language EL.
The grammar for EL programs is given on page 24 of Course Notes 1.

a. Give a structured operational semantics for EL. Remember, there are five parts to an operational se­
mantics (see section 3.2 of Course Notes 1).

Your Program domain should be the set Num-Exp × Numeral, that is, an EL expression paired with
a value for the input variable. The Answer domain should be Numeral + Error (division by zero
should cause an error in EL). Technically, you will have to define two rewriting relations for your
semantics, one for Num-Exps and one for Bool-Exps.

You may take as given the functions

calculate : Arithmetic-operator → Numeral → Numeral → Numeral
logical : Logical-operator → Truth-Value → Truth-Value → Truth-Value
relational : Relational-operator → Numeral → Numeral → Truth-Value

which evaluate arithmetic, logical, and relational operators in the usual way, e.g.,

(calculate + 3.2 18.4) = 21.6,
(logical or true false) = true,
(relational < 26 4.1) = false,

etc.

b.	 Define a denotational semantics for EL. You should give three meaning functions, P for Programs,
NE for Num-Exps, and BE for Bool-Exps. The meaning of a Num-Exp, NE [N], should be a function
from the value of the input variable to the final answer, and similarly, the meaning of a Bool-Exp,
BE [B], should be a function from the value of the input variable to a boolean result.

You may take as given the meaning functions M, A, R, and L, for Numerals, Arithmetic-operators,
Relational-operators, and Logical-operators respectively, except that you must clearly specify any
error-related behavior. (A, R, and L correspond to the functions calculate, relational, and logical from
the operational semantics.)

You must provide the definition of all semantic domains, and the signatures of the meaning functions
P , NE , BE , M, A, R, and L.

Programming Exercises

Problem 3: Safe Transformations Lab

Do exercise 2.19 (a) and (b) from the Course Notes, Scheme Supplement, page 73. In addition, prove that
your rules are terminating. We require that your rules be safe; however you do not have to prove that your
rules are safe. For this exercise, we will not require that your rules be confluent.

The exercise states that your rules should be “local.” A rough guideline is that antecedents should match
sequences of no more than three or four commands to be considered local. Any rule matching the entire
test program,

((swap exec swap exec) (1 sub) swap (2 mul) swap 3 swap exec),

will be considered “non-local,” and therefore an incorrect answer.
We have provided some useful code in code/ps2/ in the course directory.

2

