Beyond Verification

Software Synthesis

What do we mean by synthesis

We want to get code from high-level specs
- Python and VB are pretty high level, why is that not synthesis?

Support compositional and incremental specs

- Python and VB don’t have this property

e IfI don’t like the way the python compiler/runtime is implementing
my program, [am out of luck.

- Logical specifications do

e | can always add additional properties that my system can satisfy
- Specs are not only functional

e Structural specifications play a big role in synthesis

e How is my algorithm going to look like.

The fundamental challenge

The fundamental challenge of synthesis is dealing with
an uncooperative environment

- For reactive systems, people model this as a game
* For every move of the adversary (ever action of the environment),

the synthesized program must make a counter-move that keeps the
system working correctly.

 The game can be modeled with an automata

The fundamental challenge

The fundamental challenge of synthesis is dealing with
an uncooperative environment

- If we are synthesizing functions, the environment provides the
inputs
* i.e. whatever we synthesize must work correctly for all inputs

- This is modeled with a doubly quantified constraint
 E.g. if the spec is given as pre and post conditions, we have

o (0 F{pre}) = (o = WP(P, {post}))

- What does it mean to quantify over the space of programs?

Quantifying over programs

Synthesis in the functional setting can be seen as

curve fitting
- i.e. we want to find a curve that satisfies some properties

It’s very hard to do curve fitting when you have to
consider arbitrary curves
- Instead, people use parameterized families of curves

- This means you quantify over parameters instead of over
functions

This is the first fundamental idea in software synthesis
- People call these Sketches, scaffolds, templates, ...
- They are all the same thing

The Sketch Language

Define parameterized programs explicitly
- Think of the parameterized programs as “programs with

holes”
Example: Hello World of Sketching

spec: sketch:
int foo (int x) int bar (int x) implements foo
{ {
return x + X; return x *|??
} }

Integer Hole

Integer Holes - Sets of Expressions

Expressions with ?? == sets of expressions
- linear expressions X*¥?? + y*??
- polynomials X¥X*¥?? + x*?? + ??

- sets of variables 2?2 P X 1y

Integer Holes &> Sets of Expressions

Example: Least Significant Zero Bit
- 00100101 - 0000 0010

int W = 32;

bit[W] isolate® (bit[W] x) { // W: word size
bit[W] ret = 0;
for (int 1 = 0; i < W; i++)
if (!x[1i]) { ret[i] = 1; return ret; }

Trick:

- Adding 1 to a string of ones turns the next zero to a 1
- 1i.e. 000111 + 1 =001000

I(x + 1) & (x + 0) I(x + 1) & (x + OXFFFF)
I(x + ??) & (x + ??) >

I(x + 0) & (x + 1) I(x + OXFFFF) & (x + 1)

Integer Holes - Sets of Expressions

Example: Least Significant Zero Bit
- 00100101 - 0000 0010

int W = 32;

bit[W] isolate@ (bit[W] x) { // W: word size
bit[W] ret = 0;
for (int 1 = 0; i < W; i++)
if (!'x[i]) { ret[i] = 1; return ret; }
}

bit[W] isolateSk (bit[W] x) implements isolate@ {

return !(x + ??) & (x + ??) ;

Integer Holes - Sets of Expressions

Expressions with ?? == sets of expressions

- linear expressions X*¥?? + y*??

- polynomials X¥x*?? 4+ x*?? + ?°?
- sets of variables 2?2 P X 1y

Semantically powerful but syntactically clunky
- Regular Expressions are a more convenient way of defining sets

Regular Expression Generators

{| RegExp |}

RegExp supports choice ‘|’ and optional ?’

- can be used arbitrarily within an expression

* to select operands {] (x|y]| z)+1]|}
* to select operators {] x| -)y |}

* to select fields {] n(.prev | .next)? |}
e to select arguments {|] foo(x | vy, z) |}

Set must respect the type system

- all expressions in the set must type-check
- all must be of the same type

Least Significant One revisited

How did I know the solution would take the form
I(x + ?2?) & (x + ?2?) .

What if all you know is that the solution involves x,
+, & and !.

bit[W] tmp=0;

{| x| tmp |} D2((x | tmp) (& | +) (x | tmp [??)) [};

{] (
{I ()2((x | tmp) (& | +) (x | tmp | 2?)) [};

{I x | tmp |}

return tmp;

This is now a set of statements
(and a really big one too)

Sets of statements

Statements with holes = sets of statements

Higher level constructs for Statements too
- repeat

bit[W] tmp=0;
repeat(3){

{l x [tmp |} ={] (D2((x | tmp) (& | +) (x| tmp | 22)) [};
}

return tmp;

repeat

Avoid copying and pasting

- repeat(n){ s} = s;s;..5;
H_/
n

- each of the n copies may resolve to a distinct stmt
- n can be a hole too.

bit[W] tmp=0;
repeat(??){
{l x| tmp [} ={] ()2((x | tmp) (& | +) (x| tmp | 22)) [};
}
return tmp;
Keep in mind:

- the synthesizer won'’t try to minimize n

Solving for a parameterized program

At a high level, two fundamental approaches:
- Search and Test

- Derive in one shot
e Usually by means of abstraction.

The CEGIS approach

Synthesis reduces to constraint satisfaction

Jdo. V x. QK)

Constraints are too hard for standard techniques
- Universal quantification over inputs
- Too many inputs
- Too many constraints
- Too many holes

Insight

Sketches are not arbitrary constraint systems
- They express the high level structure of a program

A small number of inputs can be enough
- focus on corner cases

34 ¢. Vxin E.Q(X, ¢)

where E = {X;, Xy, ..., X}

This is an inductive synthesis problem !

CEGIS Synthesis algorithm

Synthesize

Jc s.t. Correct(P,, in;)

CEGIS

Check
| -Q (c,ing)

A sketch as a constraint system

int lin(int x){

}

if(x > ??,)
*k .
return ?2,*x + ??;;
else
return ??,*x;

void main(int x){

}

int t1
int t2

lin(x);
lin(x+1);

if(x<4) assert tl >= x*x;

if(x>=3) assert t2-tl1 == 1;

s

Bz

*
PRLEX + P2,

*
??,*x

X+l > 2?2,

22,%(x+1)

+ ?2,

??,*(x+1)

X<3

20

Ex : Population count. 0010 0110 = 3

X count [efefe]e] one [e]efe]1]

int pop (bit[W] x) f
{
inseount = 0; count LT TT]
fonXinti =0 i <W; i++){
ﬁ>(x[i]) count++; ‘
}
revdrn count; count =
| el
count [T [T]

F(X) = |count [T [T

int popSketched (bit[W] x)

~VVVV

implements pop {
repeat(??) {
X=(X&7??

+ (X >>22) &?7);

}

return x;

x [LTT]

LTI

22

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

