
December 08, 2011

Software Model Checking with
Abstraction Refinement

Computer Science and Artificial Intelligence Laboratory

MIT
Armando Solar-Lezama

With slides from Thomas Henzinger, Ranjit Jhala and Rupak Majumdar.
Used with permission.

Dec 08, 2011

1

Model checking so far

o The promise of model checking

- Exhaustive exploration of the state space of a program

- Push-button verification of arbitrary temporal logic formulas

- Dramatic performance improvements from

• State reduction techniques

• Symbolic representations

o But

- It only works for programs with bounded state space

2

Abstraction to the rescue

o We can abstract the infinite state space into a finite one

- Every abstract state corresponds to an infinite set of states

- Is this the same thing as abstract interpretation?

void main(){
 int x = *;
 while(*){
 if(x>0)
 x = 2*x;
 else
 x = x-1;

 x = abs(*)/x;
 }
}

1:

2:
3:

4:

5:

(2,+) (2,z) (2,-)

(4,z) (4,-)

(5,-)

(3,+)

(5,+)

(1,+) (1,z) (1,-)

3

The problem with abstraction

o Abstractions usually have to be tailored to the program

and property of interest

- Imprecision on the abstraction can lead to spurious paths

void main(){
 int x = *;
 while(*){
 if(x>1)
 x = 2*x;
 else
 x = x-2;

 x = abs(*)/x;
 }
}

1:

2:
3:

4:

5:

(2,+) (2,z) (2,-)

(4,z) (4,-)

(5,-)

(3,+)

(5,+)

(1,+) (1,z) (1,-)

(4,+)

(5,0)

x x

4

Spurious path under the microscope

(2,+)

(5,-) (5,+)

(1,+)

(4,+)

(5,0)

x x

void main(){
 int x = *;
 while(*){
 if(x>1)
 x = 2*x;
 else
 x = x-2;

 x = abs(*)/x;
 }
}

1:

2:
3:

4:

5:

x=1

x=2

x>2

(2,+)

(5,-) (5,0)

(5,0)

5

2 Key ingredients for software MC

o We need a simple way to come up with abstractions

o Our abstractions must be flexible

- We need to be able to refine them on demand

- This is how we identify spurious paths and eliminate them

6

Predicate Abstraction

o Abstract state defined by a set of predicates

- Ex: x>0, p.next != null, p.next.val > 0

o Transition function can be computed by a theorem prover

o Big idea:

- We can refine the abstraction by introducing more predicates!

x>0 x>0

x = x-1

not(x>0)

7

Example

Example () {
1: do{

 lock();
 old = new;

q = q->next;
2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;

 }
4: } while(new != old);
5: unlock ();
 return;
}

lock

lock

unlock

unlock

© Henzinger, Jhala,Majumdar 8

What a program really is…

State
Transition

3: unlock();
 new++;
4:} …

pc

lock

old

new

q

 3



 5

 5

 0x133a

pc

lock

old

new

q

 4



 5

 6

 0x133a

Example () {
1: do{

lock();
old = new;

q = q->next;
2: if (q != NULL){
3: q->data = new;

 unlock();
new ++;

}
4: } while(new != old);
5: unlock ();
 return;}

© Henzinger, Jhala,Majumdar 9

The Safety Verification Problem

Initial

Error

Is there a path from an initial to an error state ?

Problem: Infinite state graph

Solution : Set of states = logical formula

Safe

© Henzinger, Jhala,Majumdar 10

Idea 1: Predicate Abstraction

• Predicates on program state:

lock

old = new

• States satisfying same predicates

are equivalent

– Merged into one abstract state

• #abstract states is finite

© Henzinger, Jhala,Majumdar 11

Abstract States and Transitions

State

3: unlock();
 new++;
4:} …

pc

lock

old

new

q

 3



 5

 5

 0x133a

pc

lock

old

new

q

 4



 5

 6

 0x133a

 lock

 old=new

!lock

! old=new

Theorem Prover

© Henzinger, Jhala,Majumdar 12

Abstraction

State

3: unlock();
 new++;
4:} …

pc

lock

old

new

q

 3



 5

 5

 0x133a

pc

lock

old

new

q

 4



 5

 6

 0x133a

 lock

 old=new

! lock

! old=new

Theorem Prover

Existential Lifting

© Henzinger, Jhala,Majumdar 13

Abstraction

State

3: unlock();
 new++;
4:} …

pc

lock

old

new

q

 3



 5

 5

 0x133a

pc

lock

old

new

q

 4



 5

 6

 0x133a

 lock

 old=new

! lock

! old=new

© Henzinger, Jhala,Majumdar 14

Analyze Abstraction

Analyze finite graph

No false negatives

Problem

Spurious counterexamples

© Henzinger, Jhala,Majumdar 15

Idea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples

to refine abstraction !

© Henzinger, Jhala,Majumdar 16

1. Add predicates to distinguish

states across cut

2. Build refined abstraction

Solution

Use spurious counterexamples

to refine abstraction

Idea 2: Counterex.-Guided Refinement

Imprecision due to merge

© Henzinger, Jhala,Majumdar 17

Iterative Abstraction-Refinement

1. Add predicates to distinguish

states across cut

2. Build refined abstraction
-eliminates counterexample

3. Repeat search

Till real counterexample

or system proved safe

Solution

Use spurious counterexamples

to refine abstraction

[Kurshan et al 93] [Clarke et al 00]

[Ball-Rajamani 01]

© Henzinger, Jhala,Majumdar 18

Lazy Abstraction

Abstract

Refine

 C Program Safe

Trace

Yes

No
Property

BLAST

© Henzinger, Jhala,Majumdar 19

Lazy Abstraction

 C Program Safe

Trace

Yes

No Property

BLAST spec.opt

Instrumented

C file

With ERROR

label

© Henzinger, Jhala,Majumdar 20

Problem: Abstraction is Expensive

Reachable

Problem

#abstract states = 2#predicates

Exponential Thm. Prover queries

Observe
Fraction of state space reachable

#Preds ~ 100’s, #States ~ 2100 ,

#Reach ~ 1000’s

© Henzinger, Jhala,Majumdar 21

Safe

Solution
Build abstraction during search

Problem

#abstract states = 2#predicates

Exponential Thm. Prover queries

Solution1: Only Abstract Reachable States

© Henzinger, Jhala,Majumdar 22

Solution
Don’t refine error-free regions

Problem

#abstract states = 2#predicates

Exponential Thm. Prover queries

Solution2: Don’t Refine Error-Free Regions

Error
Free

© Henzinger, Jhala,Majumdar 23

Key Idea: Reachability Tree

5

1

2

3

4

3

Unroll Abstraction
1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates

- Rebuild subtree with new preds.

Initial

© Henzinger, Jhala,Majumdar 24

Key Idea: Reachability Tree

3

1

2

3

4 5

3

7

6

Error Free

Unroll Abstraction
1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates

- Rebuild subtree with new preds.

Initial

© Henzinger, Jhala,Majumdar 25

Key Idea: Reachability Tree

3

1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAFE

Unroll
1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

Find min spurious suffix
- Learn new predicates

- Rebuild subtree with new preds.

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Initial

© Henzinger, Jhala,Majumdar 26

Build-and-Search

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

Reachability Tree
© Henzinger, Jhala,Majumdar 27

Build-and-Search

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

lock()
old = new
q=q->next

LOCK 2

2

Reachability Tree
© Henzinger, Jhala,Majumdar 28

Build-and-Search

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK 2

2

LOCK

[q!=NULL]

3

3

Reachability Tree
© Henzinger, Jhala,Majumdar 29

Build-and-Search

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK 2

2

LOCK 3

3

q->data = new
unlock()
new++

4

4

! LOCK

Reachability Tree
© Henzinger, Jhala,Majumdar 30

Build-and-Search

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK 2

2

LOCK 3

3

4

4

! LOCK

! LOCK

[new==old]

5
5

Reachability Tree
© Henzinger, Jhala,Majumdar 31

Build-and-Search

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK 2

2

LOCK 3

3

4

4

! LOCK

! LOCK5
5

unlock()

! LOCK

Reachability Tree
© Henzinger, Jhala,Majumdar 32

Analyze Counterexample

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK 2

2

LOCK 3

3

4

4

! LOCK

! LOCK5
5

! LOCK

Reachability Tree

lock()
old = new
q=q->next

[q!=NULL]

q->data = new
unlock()
new++

[new==old]

unlock()

© Henzinger, Jhala,Majumdar 33

Analyze Counterexample

Predicates: LOCK

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK 2

2

LOCK 3

3

4

4

! LOCK

! LOCK5
5

! LOCK

[new==old]

new++

old = new

Inconsistent

new == old

Reachability Tree
© Henzinger, Jhala,Majumdar 34

Repeat Build-and-Search

Predicates: LOCK, new==old

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

Reachability Tree
© Henzinger, Jhala,Majumdar 35

Repeat Build-and-Search

Predicates: LOCK, new==old

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

lock()
old = new
q=q->next

Reachability Tree
© Henzinger, Jhala,Majumdar 36

Repeat Build-and-Search

Predicates: LOCK, new==old

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

q->data = new
unlock()
new++

! LOCK , ! new = old

Reachability Tree
© Henzinger, Jhala,Majumdar 37

Repeat Build-and-Search

Predicates: LOCK, new==old

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

! LOCK , ! new = old

[new==old]

Reachability Tree
© Henzinger, Jhala,Majumdar 38

Repeat Build-and-Search

Predicates: LOCK, new==old

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

! LOCK , ! new = old

! LOCK,
! new == old

1

[new!=old]

4

Reachability Tree
© Henzinger, Jhala,Majumdar 39

Repeat Build-and-Search

Predicates: LOCK, new==old

! LOCK

Example () {
1: do{

 lock();
 old = new;
 q = q->next;

2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }

4:}while(new != old);
5: unlock ();
}

1

1

2

2

3

3

4

4

1

4

LOCK , new=old 4

4

! LOCK , new==old

5
5

SAFE

Reachability Tree

LOCK , new==old

LOCK , new==old

! LOCK , ! new = old

! LOCK,
! new == old

© Henzinger, Jhala,Majumdar 40

Key Idea: Reachability Tree

3

1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAFE

Unroll
1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

Find min spurious suffix
- Learn new predicates

- Rebuild subtree with new preds.

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Initial

© Henzinger, Jhala,Majumdar 41

Lazy Abstraction

Abstract

Refine

 C Program Safe

Trace

Yes

No
Property

Key Idea: Reachability Tree

Solution: 1. Abstract reachable states,
2. Avoid refining error-free regions

Problem: Abstraction is Expensive

© Henzinger, Jhala,Majumdar 42

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

