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Review of Temporal Logic

:

Engine starts and stops with button push

- If engine is off, it stays off until I push
e If I never push it stays on forever

- If engine is on, it stays on until I push
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on, off, push, id

Goff = off Upush
G (of f = (of f UpushV G of )
G (on = (on U push Vv G on))
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The problem with Explicit State MC

There are too many states
- way, way too many states

explicit state MC can only scale to about 10720 states
- that’s not enough for many systems



Symbolic Model Checking

Don’t store the state graph

- keep instead a symbolic representation of the state transition
system

This was a big idea
- Ken McMillan



Key Idea 1: Sets and boolean algebra

There is a close connection between set theory and logic

Set Theory First Order Logic

- set S={x,, ..., X} - predicate Pgs.t.
P(x;):= true

- set union SUE disjunction (Pg or Pg)

- set intersection S N E conjunction (Pg and Py)

- empty set 9 Py = false

- subset SCE implication Pg = Py



Key Idea 2: Predicates as boolean circuits

Predicate P, is defined on a finite universe of symbols X

We can represent each element of X with a bit-vector
- we need only log | X| bits per element

With this representation, P, can be defined as a circuit

Ex.

- Let X be the set of integers between 0 and 232-1

B Peven(X) = (nOt Xlsb)



Key Idea 3: Automata and Sets

Automata are defined in terms of sets
- Kripke Structure = (S, Sy, R, L)

- S : Universe of possible states
* One bit-vector per element of S.

- SO defined by a predicate Pg,

- R:is a relation, i.e. a set of pairs (s;, S;;{)
* Pr(S), Si41)



Key Idea 4: Decision Procedures

We have really good procedures for boolean logic
- BDDs were state of the art in 1990
- SAT is more common today
 BDDs still good for niche applications
- SMT is rapidly becoming the norm

o Satisfiability Modulo Theories

 combines SAT with decision procedures for:
— integers, arrays, uninterpreted functions, ...



BDDs

Compact representation of a binary tree
- Remove redundancies
- Share nodes

Easy to run certain kinds of queries
- Emptyness, boolean operations

They can blow up!



Checking Safety Properties

Suppose we want to check the property G p

Strategy:

- compute the set of reachable states S,

- check if an element of S, satisfies (not p)

How do we compute S___ 7
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Checking Safety Properties

Let S, be the set of states reachable after i steps
- What’s the relationship between S; and S, ;?

We can define Pg.,, as
- Pgi.i(v) = Pg; (v) or 3 x { P(x) and R(x, v)}
- This is a recursive definition

- We can find Pg, by iteratively computing P until we find a fixed
point
* Pg;(x) = Pgo(x) or (Pgo(xo) and R(xy, x))
* Pg,(x) = Pg;(x) or (Pgo(%o) and R(xy, x;) and R(x;, x))
* Pgs(x) = Pgy(x) or (Pgo(xo) and R(xy, x;) and R(x,, X,) and R(x,, x))
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Checking Safety Properties

Two big questions
- How do we know if we have reached a state where (not p)?

e that’s easy

* we can assume a predicate P,(x) that is true for any state where p
holds

* X is a reachable bad state if (not P,(x) ) and Pg;(x)

- How do we know when we have explored all reachable states?
e when P =P,
e i.e. not P (x) and (Pg.,,(x)) becomes unsatisfiable

The challenge

- Can we generalize this to work for arbitrary formulas?
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Checking General CTL Formulas

Why CTL

- it’s “easy”

We’ll consider only the following formulas:
- p=EXp|EGp | E(pUq)| pbinopq



Basic Intuitions

We can map CTL formulas to the states where the
formula holds




Basic Intuitions

We can map CTL formulas to the set of states where the
formula holds

Sets of states == Boolean formula
- We can recursively map CTL formulas to boolean formulas
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Model Checking CTL properties

We will do it with a recursive CHECK procedure
- Input: A CTL property P
- Output: A boolean formula representing the states that satisfy P

Cases

- P is a boolean formula: Check(P) =P

- P = EX p, then Check(P) = CheckEX(Check(p))

- P=E p U q, then Check(P) = CheckEU(Check(p), Check(q))
- P=E G p, then Check(P) = CheckEG(Check(p))
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CheckEX

CheckEX(p) returns a set of states such that p is true in
their next states
- So if CheckEX(p) = Q then Q(x) = 3x' s.t.R(x,x") Ap(x")

17



CheckEU

CheckEU(p, q) returns a set of states such that

- Either q is true in that state or

- p is true in that state and you can get from it to a state in which
E(p U q) is true

- Zx(w) = (@) vV [p(w) AV R(W,v") A Z 1 (v')]

- Zy(v) = false

- CheckEU(p,q) = Z
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CheckEG

What about CheckEG(p)

p is true in the current state and you can get from this state to
another state where EG(p) is true

- Zxy (W) =pW) AIV'RW, v ) AN Zy_1 (V")
- Zo(v) = true
- CheckEG(p) = Z4

How do we know these formulas are well defined?
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Fixpoints

Let ¥ be aset with ¥’ C X
Let 7: P(X) > P(Z)
Some properties:
2’ is a fixpoint if 7(2’) = ¥’
7 is monotonic iff P € Q = t(P) € 7(Q)
7 is U-continuous iff P, € P, € P, € ... 2 (U P, = U 7(P)
T is N-continuous iff P, € P, € P, ... 2 (N P) = N t(P)
Main theorem
- A monotonic t always has a least fixed point:
uZ.t(Z)=nN{Z | ©(Z2) € Z}
= N 7(¥) when 7 is N-continuous

- A monotonic T always has a greatest fixed point:
vZ.1(2)=U{Z | ©1(Z2) 2 Z}
= U 7Y(@) when 1 is U-continuous
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Fixpoints

If ¥ is finite, and 7 is monotonic,
then it is 7 is N-continuous and U-continuous
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CTL in terms of fixpoints

Given a CTL formula, we want to characterize the set of
states that satisfy the formula

AGp=vZ t(Z) wheret(Z)=pand AXZ
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