

Computer Science and Artificial Intelligence Laboratory

MIT
Armando Solar-Lezama

Dec 06, 2011

December 06, 2011

Symbolic Model Checking

1

Review of Temporal Logic

o Engine starts and stops with button push

- If engine is off, it stays off until I push

• If I never push it stays on forever

- If engine is on, it stays on until I push

• If I never push it stays off forever

𝐺 𝑜𝑓𝑓 ⇒ 𝑜𝑓𝑓 𝑈 𝑝𝑢𝑠ℎ

𝐺 (𝑜𝑓𝑓 ⇒ 𝑜𝑓𝑓 𝑈 𝑝𝑢𝑠ℎ ∨ 𝐺 𝑜𝑓𝑓)

𝐺 (𝑜𝑛 ⇒ 𝑜𝑛 𝑈 𝑝𝑢𝑠ℎ ∨ 𝐺 𝑜𝑛)

on, off, push, id

© MotorTrend Magazine TEN: The Enthusiast Network.
All rights reserved. This content is excluded from our
Creative Commons license. For more information,see
http://ocw.mit.edu/help/faq-fair-use/.

2

http://ocw.mit.edu/help/faq-fair-use/

The problem with Explicit State MC

o There are too many states

- way, way too many states

o explicit state MC can only scale to about 10^20 states

- that’s not enough for many systems

3

Symbolic Model Checking

o Don’t store the state graph

- keep instead a symbolic representation of the state transition

system

o This was a big idea

- Ken McMillan

4

Key Idea 1: Sets and boolean algebra

o Set Theory

- set S={x1, …, xn}

- set union S U E

- set intersection S ∩ E

- empty set Ø

- subset S ⊆ E

o First Order Logic

- predicate PS s.t.

 PS(xi):= true

- disjunction (PS or PE)

- conjunction (PS and PE)

- PØ = false

- implication PS  PE

o There is a close connection between set theory and logic

5

Key Idea 2: Predicates as boolean circuits

o Predicate Ps is defined on a finite universe of symbols X

o We can represent each element of X with a bit-vector

- we need only log |X| bits per element

o With this representation, Ps can be defined as a circuit

o Ex.

- Let X be the set of integers between 0 and 232-1

- Peven(x) = (not xlsb)

6

Key Idea 3: Automata and Sets

o Automata are defined in terms of sets

- Kripke Structure = (S, S0, R, L)

- S : Universe of possible states

• One bit-vector per element of S.

- S0 defined by a predicate PS0

- R: is a relation, i.e. a set of pairs (si, si+1)

• PR (si, si+1)

7

Key Idea 4: Decision Procedures

o We have really good procedures for boolean logic

- BDDs were state of the art in 1990

- SAT is more common today

• BDDs still good for niche applications

- SMT is rapidly becoming the norm

• Satisfiability Modulo Theories

• combines SAT with decision procedures for:

– integers, arrays, uninterpreted functions, …

8

BDDs

o Compact representation of a binary tree

- Remove redundancies

- Share nodes

o Easy to run certain kinds of queries

- Emptyness, boolean operations

o They can blow up!

9

Checking Safety Properties

o Suppose we want to check the property G p

o Strategy:

- compute the set of reachable states Sreach

- check if an element of Sreach satisfies (not p)

o How do we compute Sreach?

10

Checking Safety Properties

o Let Si be the set of states reachable after i steps

- What’s the relationship between Si and Si-1?

o We can define PSi+1 as

- PSi+1(v) = PSi (v) or ∃ x { Psi(x) and R(x, v)}

- This is a recursive definition

- We can find PS∞ by iteratively computing Psi until we find a fixed

point

• PS1(x) = PS0(x) or (PS0(x0) and R(x0, x))

• PS2(x) = PS1(x) or (PS0(x0) and R(x0, x1) and R(x1, x))

• PS3(x) = PS2(x) or (PS0(x0) and R(x0, x1) and R(x1, x2) and R(x2, x))

11

Checking Safety Properties

o Two big questions

- How do we know if we have reached a state where (not p)?

• that’s easy

• we can assume a predicate Pp(x) that is true for any state where p

holds

• x is a reachable bad state if (not Pp(x)) and PSi(x)

- How do we know when we have explored all reachable states?

• when Psi = Psi+1

• i.e. not Psi (x) and (Psi+1(x)) becomes unsatisfiable

o The challenge

- Can we generalize this to work for arbitrary formulas?

12

Checking General CTL Formulas

o Why CTL

- it’s “easy”

o We’ll consider only the following formulas:

- p ::= E X p | E G p | E (p U q) | p binop q

13

Basic Intuitions

o We can map CTL formulas to the states where the

formula holds

14

Basic Intuitions

o We can map CTL formulas to the set of states where the

formula holds

o Sets of states == Boolean formula

- We can recursively map CTL formulas to boolean formulas

15

Model Checking CTL properties

o We will do it with a recursive CHECK procedure

- Input: A CTL property P

- Output: A boolean formula representing the states that satisfy P

o Cases

- P is a boolean formula: Check(P) = P

- P = EX p, then Check(P) = CheckEX(Check(p))

- P = E p U q, then Check(P) = CheckEU(Check(p), Check(q))

- P = E G p, then Check(P) = CheckEG(Check(p))

16

CheckEX

o CheckEX(p) returns a set of states such that p is true in

their next states

- So if 𝐶ℎ𝑒𝑐𝑘𝐸𝑋 𝑝 ≡ 𝑄 then 𝑄 𝑥 ≡ ∃𝑥′ 𝑠. 𝑡. 𝑅 𝑥, 𝑥′ ∧ 𝑝(𝑥′)

17

CheckEU

o CheckEU(p, q) returns a set of states such that

- Either q is true in that state or

- p is true in that state and you can get from it to a state in which

E(p U q) is true

- 𝑍𝑘 𝑣 = (𝑞 𝑣 ∨ [𝑝 𝑣 ∧ ∃𝑣′𝑅 𝑣, 𝑣′ ∧ 𝑍𝑘−1 𝑣′]

- 𝑍0 𝑣 = 𝑓𝑎𝑙𝑠𝑒

- CheckEU(p,q) ≡ 𝑍∞

18

CheckEG

o What about CheckEG(p)

- p is true in the current state and you can get from this state to

another state where EG(p) is true

- 𝑍𝑘 𝑣 = 𝑝 𝑣 ∧ ∃𝑣′𝑅 𝑣, 𝑣′ ∧ 𝑍𝑘−1(𝑣′)

- 𝑍0 𝑣 = 𝑡𝑟𝑢𝑒

- CheckEG(p) ≡ 𝑍∞

o How do we know these formulas are well defined?

19

Fixpoints

o Let 𝜮 be a set with 𝜮’ ⊆ 𝜮

o Let 𝜏: P(𝜮)  P(𝜮)

o Some properties:

- 𝜮’ is a fixpoint if 𝜏(𝜮’) = 𝜮’

- 𝜏 is monotonic iff P ⊆ Q  𝜏(P) ⊆ 𝜏(Q)

- 𝜏 is U-continuous iff P1 ⊆ P2 ⊆ P3 ⊆ …  𝜏(U Pi) = U 𝜏(Pi)

- 𝜏 is ∩-continuous iff P1 ⊆ P2 ⊆ P3 ⊆ …  𝜏(∩ Pi) = ∩ 𝜏(Pi)

o Main theorem

- A monotonic 𝜏 always has a least fixed point:

𝜇 Z. 𝜏(Z) = ∩{ Z | 𝜏(Z) ⊆ Z}

= ∩ 𝜏i(𝜮) when 𝜏 is ∩-continuous

- A monotonic 𝜏 always has a greatest fixed point:

𝜈 Z. 𝜏(Z)=U{ Z | 𝜏(Z) ⊇ Z}

 = U 𝜏i(Ø) when 𝜏 is U-continuous

20

Fixpoints

o If 𝜮 is finite, and 𝜏 is monotonic,

o then it is 𝜏 is ∩-continuous and U-continuous

21

CTL in terms of fixpoints

o Given a CTL formula, we want to characterize the set of

states that satisfy the formula

o A G p = 𝜈 Z. 𝜏(Z) where 𝜏(Z) = p and A X Z

22

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

