Abstract Interpretation
and the Heap

Computer Science and Artificial Intelligence Laboratory
MIT

Nov 16, 2015

November 16, 2015

Recap

An abstract domain is a lattice

*Some analysis relax this restriction.

- Elements in the lattice are called Abstract Values

Need to relate elements in the lattice with states in the
program
- Abstraction Function: a: P(V) — Abs
e Maps a value in the program to the “best” abstract value

- Concretization Function: y:Abs - P(V)
e Maps an abstract value to a set of values in the program

Modeling the Heap

Giant Array vs. Collection of Objects (C vs Java view)

Giant array view

- SES:Id - Int

- h€H:Nat - Int

- [C]:SxH->SxHU{Ll}

- [E]:S - Int

- [x =lell sh = s{x - h(le])} h
- [le] =x]sh=sh{le]s > s(x)}

- [[x =cons(eg ...ep)|sh=s{x - jIh{j - [eol s, ...,] + k = [lex] s}
where j = (maxdom h) + 1

Modeling the Heap

Giant Array vs. Collection of Objects (C vs Java view)

Collection of Objects View
s€E€S:Ild - Addr

h € H: Addr x Id — Addr

- [C]:SxH->SxHU{Ll}

- [E] : S - Addr

- [x=e.flsh=s{x—> h([e]s f)}h
- [e.f =x] s h=sh{(le]s, f) - s(x)}

- [lx = cons(eg ...ex)] s h = six = j} hi(, fo) = leol s, -, G, fx) = lexl s}
where j = fresh address

This is the view we will focus on today

The pset provides a third alternative
- Each object is indexed by integer offsets rather than fields
- Not significantly different from this alternative

The state as a graph

The state as a graph

h(L1,head)=N1
h(L1,tail)=N4
h(N1,next)=N2
h(N2, next)=N3
X h(N3,next)=N4
h(N4,next)=null

S(X)

Try 1: A simple abstraction

Have a single node for all objects of the same type

X Concrete

@ Nodes are
abstract heap
locations
representing
multiple concrete
heap nodes.

Known as summary
nodes .

Formal definition

Let t(addr) be the summary node representing an
address (we have one for each type)
- We can define a special node null = t(null)
Abstraction function
e a(h,S) = (hYS)
e h(t,f) ={t'|3ae€Addr, 1(a) =tAh(a,f)=a At(a") =t}
e S(x) = {r(S())}

Partial order
o (h1,51) E(hy, S) iff Vet f hy(t, f) S hy(t, f) AVx S1(x) S S,(x)
Concretization
e (h,S) €y(h,S) iff
(@ f) = b= 1(b) € A(z(a), /) A (S(x) = a > 1(a) € 5(x))

Update

[e.f = x](h,S) = (R,S)

) [h(tf) iftélelhS)
Where h'(t, f) = <

Rt P USK) iftelelhS)

The problem of destructive updates

QN AL

x=newT();

= x.f = null;

x.f =newP();

The problem of destructive updates

x=newT(); J

x. [= null;

= x.f =new P();
The abstraction cannot tell that x.f is no longer null

Why not?

The problem of destructive updates

» f @ Why is this the

best we can do?

x.f =newP();

G f @ Abstraction X /®
X
C)

cannot
distinguish these
x.f =newP() 5

S ’ two concrete G @
cases
/ X
X 12

The problem

All abstract heap nodes represented multiple concrete
heap nodes
- This makes it impossible to do destructive updates

The abstract domain in the pset is more refined but it
suffers from the same problem

Try 2: Abstract based on Variables

“Solving Shape-Analysis Problems in Languages with
Destructive Updating” Sagiv, Reps & Wilhelm
- We'll simplify a little relative to this paper

Idea

- Objects pointed to by variables should be concretized

Example

x =newT(); X G 4 @
x.f = null; f
x.f =newT();

X always points to a concrete location

This allows a destructive update to x.f

Example

x =newT(); X G
x. f = null; p
x.f =newT();

xX=x.f
x. [=null

Note that t1 is “the location pointed to by x” and not a
specific concrete node

Formalization

Let PVar be the set of variables. Then the locations in the
abstract state will be {n, | Z € PVar}

Not all n, will be present in a given abstract state
- In particular, different n, cannot share variables.
Abstraction
e a;(a) =n, whereZ ={x|S(x) = a}
e a(h,S) = (h>S)
e h(ng, f) ={ny|3a€Addr, a;(a) =n, Ah(a,f) =a Aas,(a’) =n,}
¢« S() = {as(S()}
Partial order
o (h1,51) E(hy,S) iff Yt f hy(t, f) S hy(t, f) AVx S1(x) € S,(x)

Update

[e.f = x](h,S) = (R,S)

fﬁ(nZ'f) l.f nz e [[e]](i_l'*s_')
Where h'(ng, f) =14 S(x) ifz+ @A n, € [e](h>S)
h(n,)US(x) ifz=0A n, € [e](h,S)

[x =el(h,S) = (h',S) (Note var update also affects heap)
- Let [e](h,S) = {nz0, -, Ny}

- S (X) = {nZOU{x}' L nzOU{x}}
- Fory #x, §'(y) = replace(n,, nyyx, S(x))
- How do we update h ?

Updating the heap

Nodes Ny and Ny

disappear (become

unreachable)

New node ng, 3 now pointed
by both x and y.

The old ng,; is now
represented by ng which
acquires a self loop

Updating the heap

Let E;(ny, f,ny) © ny € h(ny, f) (resp. for E')
Then after x = e with [e] (l_l, 5) = {Nz0s - » Nzk}

ES (nW' fl nzi) = E.é (nW' fl nZiU{x})

— And if W+ 0 ES’(nW, f, nzi) should now be false. Why?
ES(nZi' f’ nW) = ES"(nZiU{x}' f’ nW)

— AndifZ; # 0 E;(nzi,f, nW) should now be false. Why?

The old n,; turned into n, ¢ so things that used to point to n, now
point to n, -

* Do we need to do something special when x € Z;?

20

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

