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Recap 

o Last time we developed from first principles an algorithm 

to derive invariants. 

o Key idea: 

- Define a lattice of possible invariants 

- Define a fixpoint equation whose solution will give you the 

invariants 

 

o Today we follow a more historical development and will 

present a formalization that will allow us to better reason 

about this kind of analysis algorithms 
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Dataflow Analysis 

o First developed by Gary Kildall in 1973 

- This was 4 years after Hoare presented axiomatic semantics in 

1969, which itself was based on the work of Floyd in 1967 

- The two approaches were not seen as being connected to each 

other 

o Framework defined in terms of “pools” of facts 

- Observes that these pools of facts form a lattice, allowing for a 

simple fixpoint algorithm to find them. 

- General framework defined in terms of facts that are created and 

destroyed at every program point. 

- Meet operator is very natural as the intersection of facts coming 

from different edges. 
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Forward Dataflow Analysis 

o Simulates execution of program forward with flow of 
control 

o For each node n, have 
- inn – value at program point before n 

- outn – value at program point after n 

- fn – transfer function for n (given inn, computes outn) 

o Require that solution satisfy 
- n. outn = fn(inn) 

- n  n0. inn =  { outm . m in pred(n) } 

- inn0 = I 

- Where I summarizes information at start of program 
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Dataflow Equations 

o Compiler processes program to obtain a set of dataflow 

equations 

  outn := fn(inn) 

  inn :=  { outm . m in pred(n) } 

 

o Conceptually separates analysis problem from program 
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Worklist Algorithm for Solving 
Forward Dataflow Equations 

for each n do outn := fn() 

inn0 := I; outn0 := fn0(I) 

worklist := N - { n0 } //N is the set of all nodes 

while worklist   do 

 remove a node n from worklist 

 inn :=  { outm | m in pred(n) } 

 outn := fn(inn) 

 if outn changed then  

  worklist := worklist  succ(n) 
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Correctness Argument 

o Why result satisfies dataflow equations? 

 

o Whenever a node n is processed, outn := fn(inn)  

Algorithm ensures that outn = fn(inn)  

o Whenever outn changes, put succ(n) on worklist.  

Consider any node m  succ(n). When it comes off the worklist, the 

algorithm will set  

  inn :=  { outm . m in pred(n) }               

to ensure that inn =  { outm . m in pred(n) } 

 

o So final solution will satisfy dataflow equations   
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Termination Argument 

o Why does algorithm terminate? 

 

o Sequence of values taken on by inn or outn is a chain. If 

values stop increasing, worklist empties and algorithm 

terminates. 

 

o If lattice has finite chain property, algorithm terminates 

- Algorithm terminates for finite lattices 
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Abstract Interpretation 

15 



History 

o POPL 77 paper by Patrick Cousot and Radhia Cousot 

- Brings together ideas from the compiler optimization community 

with ideas in verification 

- Provides a clean and general recipe for building analyses and 

reasoning about their correctness 
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Collecting Semantics 

o We are interested in the states a program may have at a 

given program point 

- Can x ever be null at program point i 

- Can n be greater than 1000 at point j 

 

o Given a labeling of program points, we are interested in a 

function  

- 𝒞: 𝐿𝑎𝑏𝑒𝑙𝑠 →  𝒫 Σ  
- For each program label, we want to know the set of possible 

states the program may have at that point. 

o This is the collecting semantics 

- Instead of defining the state of the program at a given point, 

define the set of all states up to that given point. 
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Defining the Collecting Semantics 

x := n 

L1 

L2 

𝒞 𝐿2 = 𝜎 𝑥 → 𝑛 | 𝜎 ∈ 𝒞 𝐿1  

e 
t f 

Lt Lf 

L1 

𝒞 𝐿𝑡 = 𝜎 | 𝜎 ∈ 𝒞 𝐿1 , 𝑒 𝜎 = 𝑡𝑟𝑢𝑒  

𝒞 𝐿𝑓 = 𝜎 | 𝜎 ∈ 𝒞 𝐿1 , 𝑒 𝜎 = 𝑓𝑎𝑙𝑠𝑒  

L1 L2 

L3 

𝒞 𝐿3 = 𝒞 𝐿1  ∪  𝒞 𝐿2  
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Computing the collecting semantics 

o Computing the collecting semantics is undecidable 

- Just like computing weakest preconditions 

 

o However, we can compute an approximation 𝒜 

- Approximation is sound as long as 𝒞[𝐿𝑖] ⊂ 𝒜 𝐿𝑖 . 
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Abstract Domain 

o An abstract domain is a lattice 
*Some analysis relax this restriction. 

- Elements in the lattice are called Abstract Values 

 

o Need to relate elements in the lattice with states in the 

program 

- Abstraction Function: 𝛼: 𝒫(𝒱) → 𝐴𝑏𝑠 

• Maps a value in the program to the “best” abstract value 

- Concretization Function: 𝛾: 𝐴𝑏𝑠 →  𝒫(𝒱)  

• Maps an abstract value to a set of values in the program 

 

o Example:  

- Parity Lattice 
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Galois Connections 

o Defines the relationship between 𝒫 𝒱  and 𝐴𝑏𝑠 

- In general define relationship between two complete lattices 

 

o Galois Connection: A pair of functions  

o (Abstraction) 𝛼:  𝒫 𝒱 → 𝐴𝑏𝑠  

o and  

o (Concretization) 𝛾: 𝐴𝑏𝑠 →  𝒫(𝒱)  

o such that  

o ∀𝑎 ∈ 𝐴𝑏𝑠, ∀ 𝑉 ∈ 𝑃 𝒱 .  

o                         𝑉 ⊆ 𝛾 𝑎  ⇔  𝛼(𝑉) ⊆ 𝑎 
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Galois Connections 

o 𝒫(𝒱)  𝐴𝑏𝑠 

𝛾 

𝛼 

𝑉 

o 𝑎 

23 



Galois Connections: Properties 

 

o Both abstraction and concretization functions are 

monotonic.   

o  𝑉 ⊆ 𝑉′ ⟹  𝛼(𝑉) ⊆ 𝛼(𝑉′) 

o 𝑎 ⊆ 𝑎′ ⟹  𝛾(𝑎) ⊆ 𝛾(𝑎′) 

 

o Lemma: 

𝛼(𝛾 𝑎 ) ⊆ 𝑎  
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Correctness Conditions 

o What is the relationship between  

𝛾 𝑎1 𝑜𝑝 𝑎2                             𝛾 𝑎1 𝑜𝑝 𝛾 𝑎2  

 

o Abstraction Function:  

- 𝛼:  𝒫 𝒱 → 𝐴𝑏𝑠, 𝛼(𝑆) = ⊔𝑠∈𝑆 𝛽(𝑠) 

 

o We can define  
- 𝑎1 𝑜𝑝 𝑎2  = 𝛼(𝛾 𝑎1 𝑜𝑝 𝛾 𝑎2 ) 

⊇ 
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Abstract Domains: Examples 

 

- Constant domain 

 

- Sign domain 

 

- Interval domain 
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Abstract Interpretation 

o Simple recipe for arguing correctness of an analysis 

 

- Define an abstract domain Abs 

 

- Define 𝛼 and 𝛾 and show they form a Gallois 

Connection 

 

- Define the semantics of program constructs for the 

abstract domain and show that they are correct 
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Some useful domains 

o Ranges 

- Useful for detecting out-of-bounds errors, potential overflows 

 

o Linear relationships between variables 

- 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑘𝑥𝑘 ≥ 𝑐 

 

o Problem: Both of these domains have infinite chains! 
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Widening 

o Key idea:  

- You have been running your analysis for a while 

- A value keeps getting “bigger” and “bigger” but refuses to 

converge 

- Just declare it to be ⊤ (or some other big value) 

o This loses precision 

- but it’s always sound 

o Widening operator: 𝛻: 𝐴𝑏𝑠 × 𝐴𝑏𝑠 → 𝐴𝑏𝑠 

- 𝑎1 𝛻 𝑎2 ⊒ 𝑎1, 𝑎2 
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