Introduction to Abstract
Interpretation

Armando Solar-Lezama

Computer Science and Artificial Intelligence Laboratory
MIT

With some slides from Saman Amarasinghe. Used with permission.

November 4, 2015

Course Recap

What you have learned so far

Operational Semantics

* How will a given program behave on a given input?

*This is the ground truth for any analysis

Types Program Logics

* Annotations describe properties of * Annotations describe properties of
the data that can be refered by a the state at a given point in the
variable. program.

* Easy to describe properties that * Easy to describe complex
are global to the execution, properties of the overall program
but only one variable at a time state, but messy to describe
(at least with the machinery we properties that hold over time
have seen here) * Logic provides a rich language for

* Properties are fixed a priori by the properties

type system designer * Actual analysis can be expensive

*Actual analysis is cheap * Annotations are hard to infer

* Annotations can often be inferred S
[]

Some motivation

{true}
y=0;
while(x<10){ - (A Ab}c {A)
; : §3: - {A}while b do c {A A not b}
}
{even(y)}

What is the loop invariant?

Intuition:

- The loop invariant is a set of states AN-Db
- C transforms elements in A A b to

other elements in A.

Simplifying the problem

{true}
y=0;
while(x<10){ - {A A b}c {A}

§ §:;’ - {A}while b do ¢ {A A not b}
}

{even(y)}

This rule is strictly weaker
- Many correct programs can’t be proved
with it

Simpler Intuition:

- The loop invariant is a set of states
- C transforms elements in A to

other elements in A.

Discovering the invariant

There may be many candidates for A
- True is always an invariant

A2

Postcondition Big <=> Weak

Discovering the invariant

We want a set A such that 4 {A}c {4}

- It should be small enough to prove the postcondition (strong)
- But big enough to prove the precondition (weak)

Let F(P) = wpc(c,P) A Post

- Then what we want is a greatest fixpoint solution of A=F(A)

Convergence properties
- Can we always find such solutions?

Forward vs. Backward
- When is it better to use wpc vs. spc?

Precision

- How do we minimize the loss of precision?

Partial Orders

Set P
Partial order < such that Vx,y,zeP

- xX<X (reflexive)

- x<yand y<ximpliesx =y (asymmetric)

- x<yand y<zimpliesx<z (transitive)
Can use partial order to define

- Upper and lower bounds

- Least upper bound

- Greatest lower bound

Saman Amarasinghe
6.035
OMIT Fall 1998

Upper Bounds

If S c P then
xeP is an upper bound of S if VyeS. y < x

xeP is the least upper bound of S if
* X is an upper bound of S, and
e x <y for all upper bounds y of S

v - join, least upper bound, lub, supremum, sup
v Sis the least upper bound of S
e x vyis the least upper bound of {x,y}

Often written as U as well

Saman Amarasinghe
6.035
OMIT Fall 1998

Lower Bounds

If S < P then

— XePis a lower bound of S if VyeS. x<y
— XeP is the greatest lower bound of S if
e X is a lower bound of S, and
o y <X for all lower bounds y of S

— A - meet, greatest lower bound, glb, infimum, inf
e A Sis the greatest lower bound of S
e X A Y is the greatest lower bound of {x,y}

e Often written as n as well

Saman Amarasinghe

6.035
OMIT Fall 1998

Covering

x< y if x <y and xzy
X is covered by y (y covers x) if
- X<y, and
- X<z <yimplies X =z
Conceptually,

- y covers x if there are no elements between x and y

Saman Amarasinghe
6.035
OMIT Fall 1998

Lattices

If x A yand x vy exist for all x,yeP
then P is a lattice

If AS and vS existforall Sc P
then P is a complete lattice

All finite lattices are complete

Example of a lattice that is not complete
- Integers I
- For any x, yel, x vy = max(x,y), X A y = min(x,y)
- But v Iand A Ido not exist
- T U {+w0,—0 } is a complete lattice

Saman Amarasinghe
6.035
O©MIT Fall 1998

Example

P = {000, 001, 010, 011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)
x <y if (x bitwise and y) = X

111

101
<>

00 100

Saman Amarasinghe OOO
6.035
OMIT Fall 1998

Hasse Diagram
If y covers x
e Line from y to x
e y above x in diagram

Top and Bottom

Greatest element of P (if it exists) is top (T)
Least element of P (if it exists) is bottom (1)

Saman Amarasinghe
6.035
OMIT Fall 1998

Connection Between <, A, and v

The following 3 properties are equivalent:
- X<y

- XVy=y
- XAY=X

Saman Amarasinghe
6.035
OMIT Fall 1998

Chains

A set Sis achain if Vx,yeS. y<xorx<y

P has no infinite chains if every chain in P is finite

Saman Amarasinghe
6.035
OMIT Fall 1998

Product Latices

Given two latices L and Q, the product can easily be
made a latice

(l1,q1) E(lp,q2) © 3 El, and q; E g

For vectors of L, defining a latice is also easy

(ll, lz, T lk) ; (tl, tz,) tk> — viE[l,k] ll ; tl

Back to our problem

{true}
y=0;
while(x<10){
X = X+1;
y = y+2;
}
{even(y)}

A latice of predicates:

- <(x=1l,even,odd, T)>

X

y

(T
odd
even

. 1

e Ex: (x =even,y =odd) E (x =T,y = odd)

Could be odd or even
definitely odd
definitely even

who cares

T
— T~

odd even

~

1

What does this have to do with our problem?

Latices and fixpoints

Order Preserving (Monotonic) Function:
x Ty =>fX)EfQ)

Now, let x;, be the least fixed point of f:L — L

- so f(x) =x,

Now, let x, = L and x; = f(x;_1)
- By induction, x; C x
- Also, the chain x; is an ascending chain
- If L has no infinite ascending chains, sooner or later x; = x;,1 = x

Same trick works for greatest fixed point!
- But then you have to start with xo =T 18

Back to our problem

(T Could be odd or even

truel _) odd definitely odd
miie(xae){ * 7 Jeven definitely even
X = x+1; L who cares
y = y+2;
}
{even(y)}
-
A latice of predicates: LT
- <(x = 1,even,odd, T)> odd even
e« Ex: (x =even,y =odd) E (x =T,y = odd) \/
1

We now have a recipe to find a greatest fixpoint solution
- As long as F(P) = wpc(c, P) A Post is monotonic in our latice

— I

Finding a fixpoint

(T Could be odd or even

e~ Ty=1 . = 4 odd definitely odd
vyuhiie(x<1e){ even definitely even
X = X+1; T who cares
y = y+2;
}

{x =T,y = even}

F(P) = wpc(c,P) A Post
- Pp={x=T,y=T}
- Pp={x=T,y =even}
- Pob={x=T,y =even}
- Success!

Complicating things a bit

X=T,y=T;
y=0; t=1; }ce
while(x<10){
X = x+1;
y=y+2; }Cl
if(x=5){
t=t+2;]'CZ
telsed
y = t+1;]-c3
h
h

Ix =T,y = even}

F{AAb}c; {B} F+{AAnotbjc,{B}
- {A}if b then c,else c, {B}

Relaxed Rule

F{AAb}c, {B} F+{AAnotb}c, {B}
- {A}if b thenc,else c, {B}

F(P) = wpc(c,P) A Post
= Wpc(cl, wpc(c2, P) Awpc(c3, P)) A Post

21

Dataflow equations

Big <=> Weak
So A=1B
is equivalent to

Ix=T,y=T} <-P1
y=0; t=1; }ce
while(x<10){ <-p>

X = x+1; }
C1
y = y+2;

if(x=5){ <-P3
t=t+2;]' C2
telsed
y = t+1;]- C3
J <-P2

h

Ix =T,y = even}

AEB

F(P) = wpc(c,P) A Post
= Wpc(cl, wpc(c2, P) Awpc(c3, P)) A Post

pl E wpc(c0,p2)

p2 © wpc(cl,p3)

p3 E wpc(c2,p2) Awpc(c3,p2)

p2 E p5

p2 E wpc(cl,p3) A p5

<-P5

22

Dataflow equations

Ix=T,y=T} <-P1
y=0; t=1; }ce
while(x<10){ <-p>

X = x+1; }
C1
y = y+2;

if(x=5){ <-P3
t=t+2;]' C2
telsed
y = t+1;]- C3
J <-P2

h

Ix =T,y = even}

<

-P5

pl E wpc(c0,p2)
p2 E wpc(cl,p3) A p5
p3 E wpc(c2,p2) Awpc(c3,p2)

23

Dataflow Analysis

General Analysis Framework
- Developed by Kildall in 1973
- Traditionally used for compiler optimization

Frame analysis question as a set of equations on a CFG

24

Control Flow Graph

Ix=T,y=T} <-P1

y=0; t=1;

while(x<10){ <-p>
X = x+1;

y = y+2;

if(x=5){ <-P3
t=t+2;

telsed
y = t+1;

J <-p2

h

Ix =T,y = even}

<

-P5

®

W
P ®

oo

oo

end

25

Control Flow Graph

Very general program representation
- Easy to represent unstructured control flow

- Widely used by most program analysis tools for imperative
languages

26

Solution strategy

For every basic block we have an
equation of the form

- Out E F(in)

- Use meet (A) when many
edges meet together

We can solve through
“Chaotic Iteration”

- Keep a list of nodes to update
- Pick one CFG node at a time
- Update out from new in

- If out changed, add its
children to the list

®

+ <

ko

oo

oo

27

Computing transfer function

So far we defined it in terms of weakest precondition.
- Or alternatively, strongest postcondition
- Too general and expensive!

We can hard-code a transfer function specific to the
lattice

- For finite lattices they can be implemented cheaply in terms of
bitvector operations

We can build lattices for arbitrary facts about the

program

- Need to make sure our transfer functions are monotonic

28

Example: Reaching Definitions

Concept of definition and use
- a=Xxty

- is a definition of a

- isauseof xand y

A definition reaches a use if

- value written by definition
- may be read by use

Saman Amarasinghe
6.035
OMIT Fall 1998

29

Reaching Definitions

s=@;\
__a=4;
i = 0;

PSS

b =1; b =

\ N

Example by

Saman Amarasinghe

N—

30

Reaching Definitions and Constant Propagation

Is a use of a variable a constant?
- Check all reaching definitions
- If all assign variable to same constant
- Then use is in fact a constant

Can replace variable with constant

Saman Amarasinghe
6.035
OMIT Fall 1998

31

Is a Constantin s = s+a*b?

. Yes!

PR On all reaching

k=0 definitions
a=4

return s

Constant Propagation Transform

. Yes!

PR On all reaching

k=0 definitions
a=4

return s

Is b Constant in s = s+a*b?

No!

One reaching
definition with
b=1
One reaching
definition with

b=2

ST,
LT

IN
®9\.. \9

~ L
I
I

op
I
N

u// AN

return s

Computing Reaching Definitions

Compute with sets of definitions

- represent sets using bit vectors

- each definition has a position in bit vector
At each basic block, compute

- definitions that reach start of block
- definitions that reach end of block

Do computation by simulating execution of program until

reach fixed point

Saman Amarasinghe
6.035
OMIT Fall 1998

35

0000000

1:
2.
3:

k
]

= @;
= 4;
= @;

N om0

= 0
110000

1110000

4: b = 1,
1111000

1110000

5

C =

1110100

—'—lc
— A

D ek
—

[

-

i

=)

—

1111111

6: s = s + a*b;

7: 1 =1+ 1;
0101111

1111101

return s
Ll

36

Transfer functions

Each basic block has

- IN - set of definitions that reach beginning of block
- OUT - set of definitions that reach end of block

- GEN - set of definitions generated in block

- KILL - set of definitions killed in block

GEN[s=s+a*b;i=1+ 1;] = 0000011
KILL[s=s +a*b;i=1+ 1;] = 1010000
Analyzer scans each basic block to derive GEN
and KILL sets for each function

Saman Amarasinghe
6.035
OMIT Fall 1998

37

Dataflow Equations

IN[b] = OUT[b1] U ... U OUT|bn]

- where b1, ..., bn are predecessors of b in CFG
OUT][b| = (IN[b] - KILL[b]) U GEN|Db]
IN[entry|] = 0000000

Result: system of equations

Saman Amarasinghe
6.035
OMIT Fall 1998

Solving Equations

Use fixed point algorithm

Initialize with solution of OUT|[b] = 0000000
Repeatedly apply equations

- IN[b] = OUT[b1] U ... U OUT|bn]

- OUT[b] = (IN[b] - KILL[b]) U GEN[b]

Until reach fixed point

Until equation application has no further
effect

Use a worklist to track which equation
applications may have a further effect

Saman Amarasinghe
6.035
OMIT Fall 1998

Questions

Does the algorithm halt?

- yes, because transfer function is monotonic
- if increase IN, increase OUT
- in limit, all bits are 1

If bit is O, does the corresponding definition ever
reach basic block?

If bit is 1, is does the corresponding definition
always reach the basic block?

Saman Amarasinghe
6.035
OMIT Fall 1998

40

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

