
Introduction to Abstract
Interpretation

Armando Solar-Lezama

Computer Science and Artificial Intelligence Laboratory

MIT
With some slides from Saman Amarasinghe. Used with permission.

November 4, 2015

1

Course Recap

o What you have learned so far

Operational Semantics
• How will a given program behave on a given input?

• This is the ground truth for any analysis

Types
• Annotations describe properties of

the data that can be refered by a

variable.

• Easy to describe properties that

are global to the execution,

but only one variable at a time

(at least with the machinery we

have seen here)

Program Logics
• Annotations describe properties of

the state at a given point in the

program.

• Easy to describe complex

properties of the overall program

state, but messy to describe

properties that hold over time

• Properties are fixed a priori by the

type system designer

• Actual analysis is cheap

• Annotations can often be inferred

• Logic provides a rich language for

properties

• Actual analysis can be expensive

• Annotations are hard to infer

?
2

Some motivation

o What is the loop invariant?

o Intuition:

- The loop invariant is a set of states

- C transforms elements in 𝐴 ∧ 𝑏 to

other elements in 𝐴.

{true}
y=0;
while(x<10){
 x = x+1;
 y = y+2;
}
{even(y)}

A

𝑨 ∧ 𝒃

𝑨 ∧ ¬𝒃

3

Simplifying the problem

o This rule is strictly weaker
- Many correct programs can’t be proved

with it

o Simpler Intuition:

- The loop invariant is a set of states

- C transforms elements in A to

other elements in A.

{true}
y=0;
while(x<10){
 x = x+1;
 y = y+2;
}
{even(y)}

A

4

Discovering the invariant

o There may be many candidates for A

- True is always an invariant

A1

A0

A2

Postcondition Big <=> Weak

Precondition

5

Discovering the invariant

o We want a set 𝐴 such that ⊣ 𝐴 𝑐 {𝐴}
- It should be small enough to prove the postcondition (strong)

- But big enough to prove the precondition (weak)

o Let 𝐹 𝑃 = 𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡
- Then what we want is a greatest fixpoint solution of A=F(A)

o Convergence properties

- Can we always find such solutions?

o Forward vs. Backward

- When is it better to use wpc vs. spc?

o Precision

- How do we minimize the loss of precision?

6

Saman Amarasinghe
 6.035
©MIT Fall 1998

Partial Orders

o Set P

o Partial order  such that x,y,zP

- x  x (reflexive)

- x  y and y  x implies x  y (asymmetric)

- x  y and y  z implies x  z (transitive)

o Can use partial order to define

- Upper and lower bounds

- Least upper bound

- Greatest lower bound

7

Upper Bounds

o If S  P then

- xP is an upper bound of S if yS. y  x

- xP is the least upper bound of S if

• x is an upper bound of S, and

• x  y for all upper bounds y of S

-  - join, least upper bound, lub, supremum, sup

•  S is the least upper bound of S

• x  y is the least upper bound of {x,y}

- Often written as ⊔ as well

8

Saman Amarasinghe
 6.035
©MIT Fall 1998

Lower Bounds

• If S  P then
– xP is a lower bound of S if yS. x  y

– xP is the greatest lower bound of S if

• x is a lower bound of S, and

• y  x for all lower bounds y of S

–  - meet, greatest lower bound, glb, infimum, inf

•  S is the greatest lower bound of S

• x  y is the greatest lower bound of {x,y}

• Often written as ⊓ as well

9

Saman Amarasinghe
 6.035
©MIT Fall 1998

Covering

o x y if x  y and xy

o x is covered by y (y covers x) if

- x  y, and

- x  z  y implies x  z

o Conceptually,

- y covers x if there are no elements between x and y

10

Saman Amarasinghe
 6.035
©MIT Fall 1998

Lattices

o If x  y and x  y exist for all x,yP

o then P is a lattice

o If S and S exist for all S  P

o then P is a complete lattice

o All finite lattices are complete

o Example of a lattice that is not complete

- Integers I

- For any x, yI, x  y = max(x,y), x  y = min(x,y)

- But  I and  I do not exist

- I  {, } is a complete lattice

11

Saman Amarasinghe
 6.035
©MIT Fall 1998

Example

o P = { 000, 001, 010, 011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)

o x  y if (x bitwise and y) = x

111

011

101

110

010

001

000

100

Hasse Diagram
• If y covers x

• Line from y to x

• y above x in diagram

12

Saman Amarasinghe
 6.035
©MIT Fall 1998

Top and Bottom

o Greatest element of P (if it exists) is top (T)

o Least element of P (if it exists) is bottom ()

13

Saman Amarasinghe
 6.035
©MIT Fall 1998

Connection Between , , and 

o The following 3 properties are equivalent:

- x  y

- x  y  y

- x  y  x

14

Saman Amarasinghe
 6.035
©MIT Fall 1998

Chains

o A set S is a chain if x,yS. y  x or x  y

o P has no infinite chains if every chain in P is finite

15

Saman Amarasinghe
 6.035
©MIT Fall 1998

Product Latices

o Given two latices L and Q, the product can easily be

made a latice

𝑙1, 𝑞1 ⊑ 𝑙2, 𝑞2 ⇔ 𝑙1 ⊑ 𝑙2 𝑎𝑛𝑑 𝑞1 ⊑ 𝑞2

o For vectors of L, defining a latice is also easy

 𝑙1, 𝑙2, … , 𝑙𝑘 ⊑ 𝑡1, 𝑡2, … , 𝑡𝑘 ⇔ ∀𝑖∈ 1,𝑘 𝑙𝑖 ⊑ 𝑡𝑖

16

Back to our problem

o A latice of predicates:
- <(x = ⊥, 𝑒𝑣𝑒𝑛, 𝑜𝑑𝑑, ⊤)>

• Ex: 𝑥 = 𝑒𝑣𝑒𝑛, 𝑦 = 𝑜𝑑𝑑 ⊑ 𝑥 = ⊤, 𝑦 = 𝑜𝑑𝑑

o What does this have to do with our problem?

{true}
y=0;
while(x<10){
 x = x+1;
 y = y+2;
}
{even(y)}

𝑥 =

⊤ Could be odd or even
𝑜𝑑𝑑 definitely odd
𝑒𝑣𝑒𝑛
⊥

definitely even
who cares

⊤

𝑜𝑑𝑑 𝑒𝑣𝑒𝑛

⊥

17

Latices and fixpoints

o Order Preserving (Monotonic) Function:

𝑥 ⊑ 𝑦 ⇒ 𝑓 𝑥 ⊑ 𝑓(𝑦)

o Now, let 𝑥⊥ be the least fixed point of 𝑓: 𝐿 → 𝐿
- so 𝑓 𝑥⊥ = 𝑥⊥

o Now, let 𝑥0 = ⊥ and 𝑥𝑖 = 𝑓 𝑥𝑖−1

- By induction, 𝑥𝑖 ⊑ 𝑥⊥

- Also, the chain 𝑥𝑖 is an ascending chain

- If L has no infinite ascending chains, sooner or later 𝑥𝑖 = 𝑥𝑖+1 = 𝑥⊥

o Same trick works for greatest fixed point!

- But then you have to start with 𝑥0 = ⊤ 18

Back to our problem

- <(x = ⊥, 𝑒𝑣𝑒𝑛, 𝑜𝑑𝑑, ⊤)>

• Ex: 𝑥 = 𝑒𝑣𝑒𝑛, 𝑦 = 𝑜𝑑𝑑 ⊑ 𝑥 = ⊤, 𝑦 = 𝑜𝑑𝑑

o We now have a recipe to find a greatest fixpoint solution

- As long as 𝐹 𝑃 = 𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡 is monotonic in our latice

{true}
y=0; 𝑥 =
while(x<10){ 𝑒
 x = x+1;
 y = y+2;
}
{even(y)}

o A latice of predicates:

⊤ Could be odd or even
𝑜𝑑𝑑 definitely odd

𝑣𝑒𝑛 definitely even
⊥ who cares

⊤

𝑜𝑑𝑑 𝑒𝑣𝑒𝑛

⊥

19

Finding a fixpoint

o 𝐹 𝑃 = 𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡
- 𝑃0 = {𝑥 = ⊤, 𝑦 = ⊤}

- 𝑃1 = {𝑥 = ⊤, 𝑦 = 𝑒𝑣𝑒𝑛}

- 𝑃2 = {𝑥 = ⊤, 𝑦 = 𝑒𝑣𝑒𝑛}

- Success!

{𝒙 = ⊤, 𝒚 = ⊤}
y=0;
while(x<10){
 x = x+1;
 y = y+2;
}
{𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏}

𝑥 =

⊤ Could be odd or even
𝑜𝑑𝑑 definitely odd
𝑒𝑣𝑒𝑛
⊥

definitely even
who cares

20

Complicating things a bit

o {𝒙 = ⊤, 𝒚 = ⊤}

o y=0; t=1;

o while(x<10){

o x = x+1;

o y = y+2;

o if(x=5){

o t=t+2;

o }else{

o y = t+1;

o }

o }

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏}

Relaxed Rule

𝐹 𝑃 = 𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡

 = 𝑤𝑝𝑐 𝑐1, 𝑤𝑝𝑐 𝑐2, 𝑃 ∧ 𝑤𝑝𝑐 𝑐3, 𝑃 ∧ 𝑃𝑜𝑠𝑡

C1

C2

C3

C0

21

Dataflow equations

o {𝒙 = ⊤, 𝒚 = ⊤}

o y=0; t=1;

o while(x<10){

o x = x+1;

o y = y+2;

o if(x=5){

o t=t+2;

o }else{

o y = t+1;

o }

o }

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏}

𝐹 𝑃 = 𝑤𝑝𝑐 𝑐, 𝑃 ∧ 𝑃𝑜𝑠𝑡

 = 𝑤𝑝𝑐 𝑐1, 𝑤𝑝𝑐 𝑐2, 𝑃 ∧ 𝑤𝑝𝑐 𝑐3, 𝑃 ∧ 𝑃𝑜𝑠𝑡

C1

C2

C3

C0

<-P1

<-P2

<-P3

<-P2

<-P5

𝑝1 ⊑ 𝑤𝑝𝑐(𝑐0, 𝑝2)

𝑝2 ⊑ 𝑤𝑝𝑐(𝑐1, 𝑝3)

𝑝3 ⊑ 𝑤𝑝𝑐 𝑐2, 𝑝2 ∧ 𝑤𝑝𝑐(𝑐3, 𝑝2)

 𝑝2 ⊑ 𝑝5

𝑝2 ⊑ 𝑤𝑝𝑐 𝑐1, 𝑝3 ∧ 𝑝5

Big <=> Weak
So 𝐴 ⇒ 𝐵
is equivalent to
 𝐴 ⊑ 𝐵

22

Dataflow equations

o {𝒙 = ⊤, 𝒚 = ⊤}

o y=0; t=1;

o while(x<10){

o x = x+1;

o y = y+2;

o if(x=5){

o t=t+2;

o }else{

o y = t+1;

o }

o }

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏}

C1

C2

C3

C0

<-P1

<-P2

<-P3

<-P2

<-P5

𝑝1 ⊑ 𝑤𝑝𝑐(𝑐0, 𝑝2)

𝑝2 ⊑ 𝑤𝑝𝑐 𝑐1, 𝑝3 ∧ 𝑝5

𝑝3 ⊑ 𝑤𝑝𝑐 𝑐2, 𝑝2 ∧ 𝑤𝑝𝑐(𝑐3, 𝑝2)

23

Dataflow Analysis

o General Analysis Framework

- Developed by Kildall in 1973

- Traditionally used for compiler optimization

o Frame analysis question as a set of equations on a CFG

24

Control Flow Graph

o {𝒙 = ⊤, 𝒚 = ⊤}

o y=0; t=1;

o while(x<10){

o x = x+1;

o y = y+2;

o if(x=5){

o t=t+2;

o }else{

o y = t+1;

o }

o }

o {𝒙 = ⊤, 𝒚 = 𝒆𝒗𝒆𝒏}

y=0;
t=1;

x=x+1;
y=y+2;

t=t+2; y=t-1;

end

<-P1

<-P2

<-P3

<-P2

<-P5

P2

P1

P3

P5

25

Control Flow Graph

o Very general program representation

- Easy to represent unstructured control flow

- Widely used by most program analysis tools for imperative

languages

26

Solution strategy

o For every basic block we have an

equation of the form

- 𝑂𝑢𝑡 ⊑ 𝐹 𝑖𝑛

- Use meet (∧) when many

edges meet together

o We can solve through

“Chaotic Iteration”

- Keep a list of nodes to update

- Pick one CFG node at a time

- Update 𝑜𝑢𝑡 from new 𝑖𝑛

- If out changed, add its

children to the list

y=0;
t=1;

x=x+1;
y=y+2;

t=t+2; y=t-1;

end

P2

P1

P3

P5

27

Computing transfer function

o So far we defined it in terms of weakest precondition.

- Or alternatively, strongest postcondition

- Too general and expensive!

o We can hard-code a transfer function specific to the

lattice

- For finite lattices they can be implemented cheaply in terms of

bitvector operations

o We can build lattices for arbitrary facts about the

program

- Need to make sure our transfer functions are monotonic

28

Example: Reaching Definitions

o Concept of definition and use

- a = x+y

- is a definition of a

- is a use of x and y

o A definition reaches a use if

- value written by definition

- may be read by use

29

Saman Amarasinghe
 6.035
©MIT Fall 1998

Example by
Saman Amarasinghe

Reaching Definitions

 s = 0;
a = 4;
i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

30

Reaching Definitions and Constant Propagation

o Is a use of a variable a constant?

- Check all reaching definitions

- If all assign variable to same constant

- Then use is in fact a constant

o Can replace variable with constant

31

Saman Amarasinghe
 6.035
©MIT Fall 1998

Is a Constant in s = s+a*b?

 s = 0;
a = 4;
i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Yes!
On all reaching

definitions
a = 4

32

Constant Propagation Transform

 s = 0;
a = 4;
i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + 4*b;
i = i + 1; return s

Yes!
On all reaching

definitions
a = 4

33

Is b Constant in s = s+a*b?

 s = 0;
a = 4;
i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

No!
One reaching

definition with
b = 1

One reaching
definition with

b = 2

34

Computing Reaching Definitions

o Compute with sets of definitions

- represent sets using bit vectors

- each definition has a position in bit vector

o At each basic block, compute

- definitions that reach start of block

- definitions that reach end of block

o Do computation by simulating execution of program until

reach fixed point

35

Saman Amarasinghe
 6.035
©MIT Fall 1998

S aman Amarasinghe
 6.035
©MIT Fall 2006

36

Transfer functions

o Each basic block has

- IN - set of definitions that reach beginning of block

- OUT - set of definitions that reach end of block

- GEN - set of definitions generated in block

- KILL - set of definitions killed in block

o GEN[s = s + a*b; i = i + 1;] = 0000011

o KILL[s = s + a*b; i = i + 1;] = 1010000

o Analyzer scans each basic block to derive GEN

and KILL sets for each function

37

Saman Amarasinghe
 6.035
©MIT Fall 1998

Dataflow Equations

o IN[b] = OUT[b1] U ... U OUT[bn]

- where b1, ..., bn are predecessors of b in CFG

o OUT[b] = (IN[b] - KILL[b]) U GEN[b]

o IN[entry] = 0000000

o Result: system of equations

38

Saman Amarasinghe
 6.035
©MIT Fall 1998

Solving Equations
o Use fixed point algorithm

o Initialize with solution of OUT[b] = 0000000

o Repeatedly apply equations

- IN[b] = OUT[b1] U ... U OUT[bn]

- OUT[b] = (IN[b] - KILL[b]) U GEN[b]

o Until reach fixed point

o Until equation application has no further

effect

o Use a worklist to track which equation

applications may have a further effect

39

Saman Amarasinghe
 6.035
©MIT Fall 1998

Questions

o Does the algorithm halt?

- yes, because transfer function is monotonic

- if increase IN, increase OUT

- in limit, all bits are 1

o If bit is 0, does the corresponding definition ever

reach basic block?

o If bit is 1, is does the corresponding definition

always reach the basic block?

40

Saman Amarasinghe
 6.035
©MIT Fall 1998

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

