
Modeling the Heap:
Arrays and Separation Logic

Computer Science and Artificial Intelligence Laboratory

MIT
With content from the paper “Local Reasoning about Programs that Alter

Data Structures” by O’Hearn, Reynolds and Yang.
© Springer-Verlag Berlin Heidelberg 2001. All rights reserved.
This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/help/faq-fair-use/.

November 2, 2015

Approach 1: Heap as Array

o Consider a c-style language

- New expressions: 𝑒 ≔ 𝑚𝑎𝑙𝑙𝑜𝑐 𝑛 | ∗ 𝑒

- Statements: 𝑐 ≔ ∗ 𝑒 ≔ 𝑒

o In C, the heap is essentially one big array:

x = malloc(2);
*x = 4;
*(x+1) = z;
y = *(x) + *(x+1);
{y == 4 + z }

x = HEAP_PTR;
HEAP_PTR = HEAP_PTR + 2;
HEAP[x] = 4;
HEAP[x+1] = z;
y = HEAP[x] + HEAP[x+1];
{y == 4 + z}

2

Heap as Array

- Treat the heap as a giant array

- Use special values/ghost arrays to distinguish un-allocated

memory from un-initialized memory

- Use simple counters to model the allocator

- Model using the theory of arrays

o Advantages

- No new machinery required

- Very general

- Many opportunities for refinement and optimization

3

Heap as Array

o Can even model deallocation

x = malloc(2);
*x = 4;
*(x+1) = z;
y = *(x) + *(x+1);
free(x);
{y == 4 + z }

x = HEAP_PTR;
LIVE[x] = true;
LIVE[x+1] = true;
SIZE[x] = 2;
HEAP_PTR = HEAP_PTR + 2;
HEAP[x] = 4;
Assert LIVE[x];
HEAP[x+1] = z;
Assert LIVE[x+1];
y = HEAP[x] + HEAP[x+1];
Assert LIVE[x] && LIVE[x+1];
Assert LIVE[x];
for(i=0; i<size[x]; ++i){
 Assert LIVE[x+i];
 LIVE[x+i] = false;
}
{y == 4 + z}

Works really well as long as
you don’t need to interact
with the user.

4

Heap as Array

o What about loops?

- x points to a list of the form

List{ val:int, List:next}

- At the end of the loop, t = sum(x)

the sum of all elements in the list.

- How do we even express this?

• Maybe?

- What about the invariant?

t = 0;
while(x != null){
 t = t + *x;
 x = *(x+1);
}

∃𝑔. 𝑔 𝑥 ∧ ∀𝑖, 𝑗. 𝑔 𝑖 ∧ 𝐻 𝑖 + 1 = 𝑗 ⇔ 𝑔 𝑗 ∧ 𝑡 = 𝐻[𝑘]

𝑘∈{𝑘|𝑔 𝑘 }

5

Heap as Array

o The approach is not entirely useless

- Unrolling loops can eliminates

the need for invariants

- But it sacrifices soundness

t = 0;
while(x != null){
 t = t + *x;
 x = *(x+1);
}

t = 0;
if(x != null){
 t = t + *x;
 x = *(x+1);
 if(x != null){
 t = t + *x;
 x = *(x+1);

 if(x != null){
 t = t + *x;
 x = *(x+1);
 if(x != null){
 Assume false;

} } }}

6

Heap as an Array approach

o Widely used in practical tools

- One of the main drivers for scalable TOA in SMT solvers

o Writing invariants can be a challenge

- Most tools that use this approach don’t bother with invariants

- Problem is that the structure of any data-structure in the

program gets lost in the low-level representation

7

Approach 2: Separation logic

- See: “Local Reasoning about Programs that Alter Data Structures”

• By O’Hearn, Reynolds and Yang

o Key idea:

- Break the heap into disjoint pieces

- Focus on a few small pieces at a time

- Statements affect one piece at a time

8

The language

o Imp + extensions

- Stmt : 𝑥 = 𝑒 𝑒 = 𝑥 𝑥 = 𝑐𝑜𝑛𝑠(𝑒1,… , 𝑒𝑘) | 𝑑𝑖𝑠𝑝𝑜𝑠𝑒(𝑒)

o Very similar in spirit to what we saw before with Op Sem

- 𝑠 ∈ 𝑆 ∶ 𝐼𝑑 → 𝐼𝑛𝑡

- ℎ ∈ 𝐻 ∶ 𝑁𝑎𝑡 → 𝐼𝑛𝑡

- 𝐶 : 𝑆 × 𝐻 → 𝑆 × 𝐻 ∪ ⊥

- 𝐸 ∶ 𝑆 → 𝐼𝑛𝑡

- 𝑥 = 𝑒 𝑠 ℎ = 𝑠 𝑥 → 𝑒 𝑠 ℎ

- 𝑥 = 𝑒 𝑠 ℎ = 𝑠 𝑥 → ℎ 𝑒 𝑠 ℎ

- 𝑒 = 𝑥 𝑠 ℎ = 𝑠 ℎ 𝑒 𝑠 → s x

- 𝑥 = 𝑐𝑜𝑛𝑠(𝑒0…𝑒𝑘) 𝑠 ℎ = 𝑠 𝑥 → 𝑗 ℎ 𝑗 → 𝑒0 𝑠, … , 𝑗 + 𝑘 → 𝑒𝑘 𝑠
𝑤ℎ𝑒𝑟𝑒 𝑗 = (max𝑑𝑜𝑚 ℎ) + 1

- 𝑑𝑖𝑠𝑝𝑜𝑠𝑒(𝑒) 𝑠ℎ = 𝑠 ℎ{ 𝑒 𝑠 → }

 9

Separation Logic: Notation

o Heaps are described by predicates in the following

language:

o emp := The heap is empty

- There are no cells in this heap

o 𝑥 ⟼ 𝑦 := The heap has exactly one cell.

- This cell is at location x

- This cell stores the value y

o A * B := Heap can be partitioned into two disjoint

regions,

- one region where A is true,

- one region where B is true
10

Formalizing the notation

ℎ0#ℎ1 ≡ Domains of ℎ0 and ℎ1 are disjoint

ℎ0 ∗ ℎ1 ≡ Union of disjoint heaps

Copied from the paper by O’Hearn, Reynolds and
Yang

11

Some additional shorthand

o An interesting property

Copied from the paper by O’Hearn, Reynolds and
Yang

12

Algebra of heap predicates

o Which assertions are valid?

Copied from the paper by O’Hearn, Reynolds and
Yang

 13

Algebra of heap predicates

o Which assertions are valid?

14

Describing data-structures

o What does this heap describe?

- 𝑥 ⟼ 𝑎, 𝑜 ∗ (𝑥 + 𝑜 ⟼ 𝑏,−𝑜)

a o b -o

x x+1

...

x+o x+o+1

15

Proofs Rules for Separation Logic

o Small Axioms
Copied from the paper by O’Hearn, Reynolds and
Yang

16

Proof Rules for Separation Logic

𝑃 𝐶 𝑄

 ∃𝑥. 𝑃 𝐶{∃𝑥. 𝑄}
 𝑥 ∉ 𝐹𝑟𝑒𝑒(𝐶)

Copied from the paper by O’Hearn, Reynolds and
Yang

17

More Cycle Free Data-structures

Copied from the paper by O’Hearn, Reynolds and
Yang

18

Examples

19

Examples

20

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

