Modeling the Heap:
Arrays and Separation Logic

Computer Science and Artificial Intelligence Laboratory
MIT

With content from the paper “Local Reasoning about Programs that Alter
Data Structures” by O’Hearn, Reynolds and Yang.
© Springer-Verlag Berlin Heidelberg 2001. All rights reserved.
This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/faq-fair-use/.

November 2, 2015

Approach 1: Heap as Array

Consider a c-style language
- New expressions: e = malloc(n)| *e
- Statements: c = *xe:i=e¢e

In C, the heap is essentially one big array:

. x = HEAP_PTR;
:fx'_mjilloc(z)’ > HEAP_PTR = HEAP_PTR + 2;
- J

*(x+1) = 7 HEAP[x] = 4;

HEAP[x+1] = z;
_ % * .
{y __(Z)++Z §X+1)’ y = HEAP[x] + HEAP[x+1];

{y =4+ 2}

Heap as Array

- Treat the heap as a giant array

- Use special values/ghost arrays to distinguish un-allocated
memory from un-initialized memory

- Use simple counters to model the allocator
- Model using the theory of arrays

Advantages
- No new machinery required
- Very general
- Many opportunities for refinement and optimization

Heap as Array

Can even model deallocation

x = malloc(2);

*X = 4;
*(x+1) = z;

y = 00+ * ()
free(x);
{y ==4+2}

Works really well as long as
you don’t need to interact
with the user.

x = HEAP_PTR;

LIVE[X] = true;

LIVE[x+1] = true;

SIZE[x] = 2;

HEAP_PTR = HEAP_PTR + 2;

HEAP[x] = 4;

Assert LIVE[X];

HEAP[x+1] = z;

Assert LIVE[x+1];

y = HEAP[x] + HEAP[x+1];

Assert LIVE[x] && LIVE[x+1];

Assert LIVE[X];

for(i=0; i<size[x]; ++1i){
Assert LIVE[x+i];
LIVE[x+1i] = false;

¥
{y == 4+ 2})

Heap as Array

What about loops?

x points to a list of the form t =0;

List{ val:int, List:next} Whiief fc(J!r=*)n({‘11){
At the end of the loop, t = sum(x) X = *(X+1);
the sum of all elements in the list. }

How do we even express this?

3g. gLl A Vi j. glil A Hli+1]=j e glj] A t= > HK]

ke{k|glk]}
e Maybe?

What about the invariant?

Heap as Array

The approach is not entirely useless

t = 03 t = 0;
while(x != null){ if(x !'= null){
t =t + *x; t =t + *x;
X = *(x+1); X = *(x+1);
} if(x !'= null){
t =1+ *X;
- Unrolling loops can eliminates X = *(x+1);
the need for invariants if(x != null){

t =1t + *X;

X = *(x+1);

if(x !'= null){
Assume false;

- But it sacrifices soundness

For b}

Heap as an Array approach

Widely used in practical tools
- One of the main drivers for scalable TOA in SMT solvers

Writing invariants can be a challenge
- Most tools that use this approach don’t bother with invariants

- Problem is that the structure of any data-structure in the
program gets lost in the low-level representation

Approach 2: Separation logic

- See: “Local Reasoning about Programs that Alter Data Structures”
« By O’'Hearn, Reynolds and Yang

Key idea:

- Break the heap into disjoint pieces

- Focus on a few small pieces at a time
- Statements affect one piece at a time

The language

Imp + extensions
- Stmt:x=1[e]| [e] = x | x = cons(el,...,ek) | dispose(e)
Very similar in spirit to what we saw before with Op Sem
- seS:Id - Int
- he€H:Nat - Int
- [C]:SxH->SxHU{Ll}
- [E]:S — Int
- [x=e]lsh=s{x—>[e]s}h
- [x =lell sh =s{x > h(le])} h
- [le] =xsh =shile]s - s(x)}

- [[x = cons(eq ...ex)] sh =s{x - j} h{j - [eol s, ...,J + k = [lex] s}
where j = (maxdom h) + 1

- [dispose(e)] sh = s h{[e]s —}

Separation Logic: Notation

Heaps are described by predicates in the following
language:

emp := The heap is empty

- There are no cells in this heap

x — y := The heap has exactly one cell.
- This cell is at location x
- This cell stores the value y

A * B := Heap can be partitioned into two disjoint
regions,

- one region where A is true,

- one region where B is true

10

Formalizing the notation

Copied from the paper by O0’Hearn, Reynolds and
Yang

s,h =B iff [B]s = true

s,h =Ew— F iff {[E]s} = dom(h) and h([E]s) = [F']s

s.h = false never

sshi=P=Q iff ifs,h =P then s,h =Q

s,h =vVz.P iff VoelInts.[s|z—v],h =P

s, h = emp iff h =[] is the empty heap
S, h IZ P % Q 1t Elh-{j., h-l. h-{j#h-l, h[] * 311 — h_._ 5, h[] IZ P and L hl — Q

ho#h, = Domains of hy and h; are disjoint

ho * hy = Union of disjoint heaps H

Some additional shorthand

Copied from the paper by 0’Hearn, Reynolds and
Yang

EHFD.....Fné (B +— Fy) - x (E+nw— Fy,)
E=F 2 (E=F) N emp
E — S 3YE~y

An interesting property
(E=F)xP & (E=F)NP

12

Algebra of heap predicates

Which assertions are valid?

F=FKxFE

FxF = F

10— 3 =10+ 3 %10+~ 3
10— 3 =10— 342 +— 5
F—3=0<FE
F— —% F+— —

F—s —%F+——=FE=%F
F—s —AF+—s —=F=F
F—3«F—3=F%*F

13
Copied from the paper by O’Hearn, Reynolds and
Yang

Algebra of heap predicates

Which assertions are valid?

E=ExE X

ExF=EX

10—~ 3=10—~3%x10~— 3 X
10— 3= 10— 3%42+— 5X
E—3=0<E

(E—)xE — _> X

E—s —xFis —"=E#F
E—ns —-AF—»—-—=>E=F
E—s3xF—3=>E#*F

14

Describing data-structures

What does this heap describe?

- (x+—a,0)*(x+0+— b,—0)

L)

d -0

X X+1 X+0 x+o+1

15

Proofs Rules for Separation Logic

Copied from the paper by O0’Hearn, Reynolds and

Small Axioms vang

(£ — —} [E] == F{L — F]

(E + —} dispose(F) {emp}

{x =m}x = cons(E1, ..., Bx){z — Ei[m/z], ..., Ex[m/z]}
{z =n}z:=FE{z = (E[n/z])}

IE—nANz=m}x:=El{r=n AN Elm/z|— n}

@C’:WD/\QWW

16

Proof Rules for Separation Logic

Copied from the paper by O0’Hearn, Reynolds and
Yang

{P jgigig}, Ry where Mod(C) N Free(R) =0

- ﬁ{giﬁg}ﬁ gy Where Mod(C) N Free(R) =

note: Mod(z =¢) = {z},Mod([e] =z) =0

{P}C{Q}
{Ix. P}C{3x.Q}

x & Free(C)

Free(P) is the set of variables occﬁrring freely in P

17

More Cycle Free Data-structures

Copied from the paper by O0’Hearn, Reynolds and
Yang

Linked lists.
Ised(e, f) < if e = f then emp else
dy.e — —. y*1sed(y. f)

list(e) < Ised(e, nil)

Iseg(z,y) * Ised(y, x)
Iseg(x.t) *t — —, y = list(y)

18

Examples

Proof of {list(x)}y = cons(b, z){list(y)}

{list(x)}y = cons(b, z){list(y)}

19

Examples

Proof of {list(z) Az # nil}t = [z]{z — t x list(¢)}

{list(z) Az % nil}t = [z]{z — ¢ * list(t)}

20

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

