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Approach 1: Heap as Array 

o Consider a c-style language 

- New expressions:   𝑒 ≔  𝑚𝑎𝑙𝑙𝑜𝑐 𝑛  |  ∗ 𝑒 

- Statements:           𝑐 ≔    ∗ 𝑒 ≔ 𝑒 

 

o In C, the heap is essentially one big array: 

 

x = malloc(2); 
*x = 4; 
*(x+1) = z; 
y = *(x) + *(x+1); 
{y == 4 + z } 

x = HEAP_PTR;  
HEAP_PTR = HEAP_PTR + 2; 
HEAP[x] = 4; 
HEAP[x+1] = z; 
y = HEAP[x] + HEAP[x+1]; 
{y == 4 + z} 
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Heap as Array 

- Treat the heap as a giant array  

- Use special values/ghost arrays to distinguish un-allocated 

memory from un-initialized memory 

- Use simple counters to model the allocator 

- Model using the theory of arrays 

 

o Advantages 

- No new machinery required 

- Very general 

- Many opportunities for refinement and optimization 
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Heap as Array 

o Can even model deallocation 

x = malloc(2); 
*x = 4; 
*(x+1) = z; 
y = *(x) + *(x+1); 
free(x); 
{y == 4 + z } 

x = HEAP_PTR;  
LIVE[x] = true; 
LIVE[x+1] = true; 
SIZE[x] = 2; 
HEAP_PTR = HEAP_PTR + 2; 
HEAP[x] = 4;  
Assert LIVE[x]; 
HEAP[x+1] = z; 
Assert LIVE[x+1]; 
y = HEAP[x] + HEAP[x+1]; 
Assert LIVE[x] && LIVE[x+1]; 
Assert LIVE[x]; 
for(i=0; i<size[x]; ++i){ 
  Assert LIVE[x+i]; 
  LIVE[x+i] = false; 
} 
{y == 4 + z} 

Works really well as long as 
you don’t need to interact 
with the user. 
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Heap as Array 

o What about loops? 

- x points to a list of the form  

List{ val:int, List:next} 

- At the end of the loop, t = sum(x) 

the sum of all elements in the list. 

- How do we even express this? 

 

 

• Maybe? 

- What about the invariant? 

 

t = 0; 
while( x != null){ 
   t = t + *x;    
   x = *(x+1); 
} 

∃𝑔.  𝑔 𝑥 ∧ ∀𝑖, 𝑗.   𝑔 𝑖   ∧   𝐻 𝑖 + 1 = 𝑗 ⇔ 𝑔 𝑗    ∧    𝑡 =  𝐻[𝑘]

𝑘∈{𝑘|𝑔 𝑘 }
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Heap as Array 

o The approach is not entirely useless 

 

 

 

 

- Unrolling loops can eliminates 

the need for invariants 

- But it sacrifices soundness 

t = 0; 
while( x != null){ 
   t = t + *x;    
   x = *(x+1); 
} 

t = 0; 
if( x != null){ 
   t = t + *x;    
   x = *(x+1); 
   if( x != null){ 
     t = t + *x;    
     x = *(x+1); 

 if( x != null){ 
   t = t + *x;    
   x = *(x+1); 
   if( x != null){ 
 Assume false; 

}  } }} 
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Heap as an Array approach 

o Widely used in practical tools 

- One of the main drivers for scalable TOA in SMT solvers 

 

o Writing invariants can be a challenge 

- Most tools that use this approach don’t bother with invariants 

- Problem is that the structure of any data-structure in the 

program gets lost in the low-level representation 
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Approach 2: Separation logic 

- See: “Local Reasoning about Programs that Alter Data Structures” 

• By O’Hearn, Reynolds and Yang 

 

o Key idea:  

- Break the heap into disjoint pieces 

- Focus on a few small pieces at a time 

- Statements affect one piece at a time 
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The language 

o Imp + extensions 

- Stmt : 𝑥 = 𝑒    𝑒 =  𝑥    𝑥 =  𝑐𝑜𝑛𝑠(𝑒1,… , 𝑒𝑘)  |  𝑑𝑖𝑠𝑝𝑜𝑠𝑒(𝑒) 

o Very similar in spirit to what we saw before with Op Sem 

- 𝑠 ∈ 𝑆 ∶ 𝐼𝑑 → 𝐼𝑛𝑡 

- ℎ ∈ 𝐻 ∶ 𝑁𝑎𝑡 → 𝐼𝑛𝑡 

- 𝐶 : 𝑆 × 𝐻 → 𝑆 × 𝐻 ∪ ⊥  

- 𝐸 ∶ 𝑆 → 𝐼𝑛𝑡 

- 𝑥 = 𝑒  𝑠 ℎ = 𝑠 𝑥 → 𝑒  𝑠  ℎ 

- 𝑥 = 𝑒  𝑠 ℎ = 𝑠 𝑥 → ℎ 𝑒  𝑠  ℎ 

- 𝑒 = 𝑥  𝑠 ℎ = 𝑠 ℎ 𝑒  𝑠 → s x  

- 𝑥 = 𝑐𝑜𝑛𝑠(𝑒0…𝑒𝑘)  𝑠 ℎ = 𝑠 𝑥 → 𝑗  ℎ 𝑗 → 𝑒0  𝑠, … , 𝑗 + 𝑘 → 𝑒𝑘  𝑠  
𝑤ℎ𝑒𝑟𝑒 𝑗 = (max𝑑𝑜𝑚 ℎ) + 1 

- 𝑑𝑖𝑠𝑝𝑜𝑠𝑒(𝑒)  𝑠ℎ = 𝑠 ℎ{ 𝑒 𝑠 → } 
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Separation Logic: Notation 

o Heaps are described by predicates in the following 

language: 

 

o emp := The heap is empty 

- There are no cells in this heap 

 

o 𝑥 ⟼ 𝑦  := The heap has exactly one cell.  

- This cell is at location x 

- This cell stores the value y 

 

o A * B  := Heap can be partitioned into two disjoint 

regions,  

- one region where A is true,  

- one region where B is true 
10 



Formalizing the notation 

ℎ0#ℎ1 ≡ Domains of ℎ0 and ℎ1 are disjoint 

ℎ0 ∗ ℎ1 ≡ Union of disjoint heaps 

Copied from the paper by O’Hearn, Reynolds and 
Yang 
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Some additional shorthand 

o An interesting property 

Copied from the paper by O’Hearn, Reynolds and 
Yang 
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Algebra of heap predicates 

o Which assertions are valid? 

Copied from the paper by O’Hearn, Reynolds and 
Yang 
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Algebra of heap predicates 

o Which assertions are valid? 
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Describing data-structures 

o What does this heap describe? 

- 𝑥 ⟼ 𝑎, 𝑜 ∗ (𝑥 + 𝑜 ⟼ 𝑏,−𝑜) 

a o b -o 

x x+1 

... 

x+o x+o+1 
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Proofs Rules for Separation Logic 

o Small Axioms 
Copied from the paper by O’Hearn, Reynolds and 
Yang 
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Proof Rules for Separation Logic 

𝑃 𝐶 𝑄

 ∃𝑥. 𝑃 𝐶{∃𝑥. 𝑄}
  𝑥 ∉ 𝐹𝑟𝑒𝑒(𝐶) 

Copied from the paper by O’Hearn, Reynolds and 
Yang 
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More Cycle Free Data-structures 

 
Copied from the paper by O’Hearn, Reynolds and 
Yang 
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Examples 
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Examples 
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