Axiomatic Semantics

Computer Science and Artificial Intelligence Laboratory
MIT

Nadia Polikarpova with slides by Armando Solar-Lezama

October 26, 2015

October 26, 2015
1 1L14-1

Example

F{AAb}c, {B} F+ {AAnotb}c,{B}

F{A[x — e]}x := e {4} - {A}if b then c,else c, {B}
FA > A+ {A}c{B}+B =B’
-{A}c {B}
- {A A bjc {4} - {A}c, {C} + {C}c, {B}
- {A}while b do ¢ {A A not b} - {A)c,; ¢, {B}

{ x=x0 and y=yo0 }

if(x > y){
t=Xx-y;
while(t > 0){

X - 1;

+ 1;

t - 1;

<
[I | I |
<

{ x0 > yo => y=x0 and x=y0 }

Example

{ x=x@ and y=ye } - {A]x - e]}x := e {4}
if (x >y) {
{ x>y and x=x@ and y=yo } = {A}e {C} + {C}c, (B}
{ x=y0+x-y and y=x0-(x-y) and x-y>=0 } - {A}cy; ¢y {B}
T=X-Y;
{ x=y0+t and y=x0-t and t>=0 } ={AAbjc; {B} F{AAnotbjc, {B}
while (t > 0) { - {A}if b thenc,else c, {B}
{ x=yo0+t and y=x0-t and t>=0 and t>0 }
{ x-1=y0+t-1 and y+1=x0-(t-1) and t-1>=0 }
X =X - 1;
{ x=y0+t-1 and y+1=x0-(t-1) and t-1>=0 }
y =y +1;
{ x=y0+t-1 and y=x0-(t-1) and t-1>=0 }
t =1t - 1; F{AADb}c{A}
{ x=y@+t and y=x0-t and t>=0 } - {A}while b do c {A A not b}
}
{ x=y@+t and y=x0-t and t>=0 and !(t>0) }
{ y=x@ and x=y@ } A =2 Ar{4})c{B}-B=>DB

¥

{ x0>y0 => y=x0 and x=y0 } - {A'}e (B} 3

From partial to total correctness

Total correctness judgment
-+ [4] c[B]
- Just like before, but must also prove termination

F|[AADb]c; [B] + [AAnotb]c, |B]

+ [A]if b then cyelse ¢, [B] F [A[x — e]]x := e |A]

- [Alc; [C] F[Clcy [B]
- [A]cy; ¢, [B]

What about loops

Rank function

Function F of the state that

- a) Maps state to an integer

- b) Decreases with every iteration of the loop
- ¢) Is guaranteed to stay greater than zero

- Also called variant function

FIAADAF =z|c|[ANF<z] FAAbD=>F=0
+ [A]while b do c |A A not b]

Example

Can we prove this?

[x=x0 and y=y0]
if(x > y){
t=X-Yy;
while(t > 0)
X =X - 1;
y =y +1;
t=1t - 1;

[X0 > yO => y=x0 and x=y0]

Example

=0 d =0
{ x=x@ and y=y@ } FIAADAF =z|c[ANF<z] FAAb=>F=0

if (x>y){ - [A]while b do ¢ [A A not b]
{ x>y and x=x0 and y=y0 }
{ x=y@+x-y and y=x0-(x-y) and x-y>=0 }
T=X-Y;
{ x=y0+t and y=x0-t and t>=0 }
while (t > 9) {

{ x=y0+t and y=x0-t and t>=0 and t»>0 and t=z }

{ x-1=y0+t-1 and y+1=x0-(t-1) and t-1>=0 and t-1<z }
X =X - 1;

{ x=y@+t-1 and y+1=x0-(t-1) and t-1>=0 and t-1<z }

y =y +1;

{ x=y@+t-1 and y=x0-(t-1) and t-1>=0 and t-1<z }

t t - 1;

{

x=y0+t and y=x0-t and t>=0 and t<z }

}
[x=y0+t and y=x0-t and t>=0 and !(t>0)]
[y=x0 and x=y0]

}
[x0>y0 => y=x0 and x=y0] 7

Weakest Preconditions

P =wpc(c, A)

[Command % ¥[Pr‘edica‘ce }

Weakest predicate P such that & {P} c {4}
- Pweaker than Q iff Q = P
wpc(skip {Q}) = Q

wpc(z = e{Q}) = Qle/x]

wpe(C'1; C2{Q}) = wpc(C1{wpc(C2{Q]})

wpc(if B then C1 else C2{Q}) =
(B and wpc(C'1{Q})) or (not B and wpc(C2{Q}))

Weakest Precondition

While-loop is tricky
- Let W = wpc(while e do ¢, B)
- then,
W=e=wpc(c, W) AN me=>B

Verification Condition

Stronger than the weakest precondition
Can be computed by using an invariant

VC(while;edo c,B) =
IN Vxq,..x, I = (e=>VC(c,]) AN—e = B)

- Where x_1 are variables modified in c.

Example

[s this program correct?

i = 5;
while (i > 9)
invariant { i >= 0 }

1=1-1; VC(while; e do c,B) =
IN Vxq,..x, 1 = (e=>VC(c,I) AN—-e=B)

ve(i == 5;while(i >0)i:=i —1,i = 0)

ve(i == 5,vc(while(i > 0)i =i —1,i = 0))
ve(i==5i20AVi.i=0=>({(>0=2>i—-120)A(=(i>0)=>i=0))
5>0AVi.i=0=2({>0=2i—1=>20AGG>0=2i=0)

Assert and Assume

It is convenient to extend the language with statements
that prescribe which executions are correct / feasible:

assert e: e must hold in every correct execution
assume e: e must hold in every feasible execution

assume X == X0;
{ x=x0 and y=y0 } assume y == y0;
Z = X; Z = X;
X = Y; > X =Y;
y = 2, y = z;
{ y=x0 and x=yo0 } assert

< X
i
n

< X
(O RN

e wo

assert

Weakest Precondition

wpc(assert e, Q) = 7?
for Q to be true after, e must also be true before, because otherwise
we won’t get past the assert

wpc(assume e, Q) =77

if e is not true, we don’t care if Q is satisfied

Example

[s this program correct?

y = 5;
if (x > 90) {
assert x +y > 5;
} else {
assume x == 0;
y =Y+ What now? How
) assert x +y == 3; do we decide if
this formula is
valid?

wpc(y = 5;if .., T)
wpc(y == 5, wpc(if ..., T))
wpc(y ==5,(x > 0 Awpc(assertx +y > 5,T)) v

(x < 0Awpc(assume x = 0;y =y + x;asserth +y =5, T)))
wpc(y =5 x>0Ax+y>5) VX <0A(x=0=x+y+x=05))
x>0Ax+5>5)VX<0A(x=0=>x+5+x=05)

SMT-LIB

SMT-LIB is a language for specifying input to SMT
solvers

Basic instructions:

(declare-fun x () Int) declare an integer constant x
(assert (> x 9)) add x > 0 to known facts
(check-sat) check if there exist an assignment

that makes all known facts true
(get-model) print this assignment

15

SMT for verification

We need to decide if wpc(prog, true) is valid
- for all values of program variables on entry

How do we encode this as an SMT problem?
- ask if =wpc(prog, true) is satisfiable
- if the answer is UNSAT, the problem is correct

- if the answer is SAT, the model gives the input values that violate
correctness

Example

Is this formula valid?
x>0Ax+5>5) VX <0A(x=0=>x+x+5=05)

(declare-fun x () Int)
(assert (not (and (> x @) (> (+ x 5) 5))))
(assert (not

(and (<= x @) (or (not (= x0)) (= (+ x (+ x 5)) 5)))))

(check-sat)

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

