Types for Information Flow

Armando Solar-Lezama

Computer Science and Artificial Intelligence Laboratory

MIT

Based on the paper by Myers, A. C. “JFlow: practical mostly-static
information flow control”. In POPL '99

October 14, 2015

October 14, 2015

Recap

Set of possible programs }

Set of programs with
well defined semantics

Well Typed Programs]

Functional World:
- evaluation proceeds through reduction rules
- types impose constraints on the shape of the program

- a program with a legal shape (according to the type system)
e always has an available reduction rule (unless it has terminated)
e the reduction rule will produce a new program with a legal shape

2

Recap

Set of possible programs }

Set of programs with
well defined semantics

Well Typed Programs]

Imperative World:
- evaluation involves updating a store

- types place restrictions on the program store

e this allows static reasoning about legal operations on the objects in
the store

g el — | Grandma

void hug()
P — phUEE
n 25 \‘ .

Potato —Arhug—

void slice()
void fry()

Imperative World:
- evaluation involves updating a store

- types place restrictions on the program store

e this allows static reasoning about legal operations on the objects in
the store

Enforcing Security Properties

Private

Rx

Confidentiality

Rx myrx = getMyRx();

— — >

Wikipedia w = getWPEntry(“Armando”);

w.addEntry(myrx.toString());

w.write(“YES”);

Public

Wikipedia

Enforcing Security Properties

Private Public

Confidentialit
HASNtatity Twikipedia

RX \ "

Rx myrx = getMyRx();
Wikipedia w = getWPEntry(“Armando”);

w.write(“Hemorrhoids :”);
p.val = myrx.contains(“Preparation H”);

if(qg.val){
w.wr‘ite(“YES”); Even if p!=q, information can
still leak if p!=qg was caused by
} some information about myrx.

If p==q information clearly leaks }

Enforcing Security Properties

Private Public

Integrity

Wikipedia

Rx

class Doctor{
Rx cureFlu(){
Rx myrx = new Rx();
Wikipedia w = getWPEntry(“Flu”);
myrx.set(w.getSubEntry(“Treatment”));
return myrx;

What is information flow?

If there is no information flow from private to public, then
a change in a private input can not affect a public output
- you can’t determine this from a single execution

H .

1

For all L;, H

i’

Public Private Public Private
L. H. L. H’

1 1 1

} l } l

Program % Program

! ! ! !

L, H L H’
Public Private Public Private

i

o o o

Solution Strategy

We proceed through the following two steps

- Define a dynamic labeling scheme so that at any given time, the
labels in a piece of data tell us whether it’s OK to leak it or not.
e Labels turn a global property about all executions into a local
property in a conservative way
e This will be the dynamic semantics against which we can prove type
safety.
- Define a type system that allows us to approximate the set of
labels that the data pointed at by a variable can have.

e If an action is ok according to the conservative approximation, we
know it would be ok according to the dynamic scheme.

Labeling Data With Security Policies

Policies for information flow

Owner: readerl, reader2, reader3

- “according to owner, this data can only be read by readerl,
reader2, or reader3”

Label { policyl, policy2, policy3 }

- If an owner is not mentioned, it is assumed she has no privacy
concerns

Why do we need an owner?

Revocation
10

Principals

Owners and readers are principals
- user, group or role

act_for relationship
- allows principals to act for other principals

Armando act_for Faculty

1"

Labels form a lattice

L1 <= L2

L1 can be relabeled to L2

- means that L2 is more restrictive (fewer readers)

- Warning: this is counterintuitive
e L2 actually has fewer readers.

Partial Order defines a lattice
- Least upper bound U

- Least fixed point

- bottom

If a variable is certified to handle data with L2 labels
correctly, we can trust that variable to hold a value with

label L1
- Just like subtyping!

12

Labels form a lattice

Question
{Joe: Ann, Jill} <= {Joe:Ann}

{Joe: (Ann, Jill), Tim:Ann} <= {Joe:(Ann), Tim:Ann}

{Joe: (Ann), Tim:Ann} ??? {Joe:(Ann)}

13

Assignment

x{L2} := v{L1};

L1 <= L2

Can only assign to a variable to a more restrictive label

14

Binary Operations

a{L1} + b{L2};

Trick question:
- What should be the label for a+b?

int{Joe:everyone} a, b, c;

int{Joe:Joe} p;
cC = 0;
if(p){

C =a + b;
}

- What information would be leaked if this code were to execute?

15

Information flow through control

Information flow through the PC

- We need to keep track of the information that is leaked just from
knowing that the computation reached a particular point.

int{Joe:everyone} a, b, c; PC Label
e {1}
int{Joe:Joe} p; {Joe: Joe}
—) C = 0;
if(p){
) c =a + b;
}
—

Simple scheme except for non-structured control

- return, continue, throw, break

16

Formalizing the type system

Basic judgments
AFE:X

Type Environment

Expression

Set of relevant labels.
X is a map with several values
« X[nv] = label of the expression if it terminates normally
« X[n] = label that would be leaked if execution terminated
after evaluating this expression

17

Rules

rie

A+ literal : Xp|n := Alpc|,nv := A|pc]|]

If evaluating a literal somehow The value of the literal also
caused the program to carries information about the
terminate, I would leak the pc PC label.
label. if(p){
x = literal
h

This is what prevents the code
above from leaking
information; the assignment
only type checks if x is
compatible with the PC label

18

Rules

Alv] = (var |final| T{L} uid)
X = Xg[n := Alpc|,nv := LU Alpc]|
AFv: X

Least upper bound. The return
value must carry the labels of
both the variable and the pc.

19

Rules

AFFE: X
Alv| = (var T{L} uid)
AR X CL
AFvX E: X

This is the label of expression E.
It has to be less restrictive than L

Rules

AFFE: Xg
Alpc := Xg|nv|]| F S, : X,
Alpc := Xg|nv|| F S5 : X5
X=Xgh=06X X,

/Zl —if (F) S;else S : X

This computes the join of XE,
X1, X2, except we don’t care

about XE[n] so we set it to

1}

Rules

extend the environment to add update PC in the new
any new variable declarations environment

/AI—SI:XI/

extend(A, S1)|pc := Xi[n]| F 55 : X5
X = Xi[n:= 0] X,

A"SIQSEIX

22

Example

x {Joe: Erika} = {Joe: Erika, Peter}
if(x){

p{Tim:Erika, Joe:Erika} = {Tim: Everyone}
)

23

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

