
 L10-1

Armando Solar-Lezama

Computer Science and Artificial Intelligence Laboratory

MIT

Derived from slides by George Necula

October 13, 2015

October 13, 2015

Types for Imperative Programs

 L10-2

Big Step OS for 𝜆 calculus

• Configuration is simply a lambda
expression
– there is no state

• Result is a different lambda expression

• Inductive definition: Base case

• Inductive definition: recursive cases

??

 L10-3

Big Step OS for Imperative Programs

• The same techniques apply to programs with state
– The big difference is that the configuration now includes state

• Example: IMP

 e:= n | x | e1 + e2 | e1 == e2 | True | False

 c:= x := e | c1 ; c2 | if e then c1 else c2 | while e do c | skip

• Now we need two types of judgments
expressions result in values commands change the state

 L10-4

Big Step OS for Imperative
Programs

• Rules for expressions are very similar to what
we had before

• We need a rule to read values from variables

𝑒1, 𝜎 → 𝑛1 𝑒2, 𝜎 → 𝑛2 𝑛 = 𝑛1 + 𝑛2

𝑒1 + 𝑒2, 𝜎 → 𝑛

 L10-5

Big Step OS for Imperative
Programs

• Commands mutate the state

• What about loops?

 L10-6

Big Step OS for Imperative Programs

• The definition for loops must be
recursive

 L10-7

Small Step Semantics

• Many design decisions
– How small is a step?

– How do we select the next step?

• These decisions need to be defined
formally

 L10-8

Redex

• A redex is an expression that can be
reduced in one atomic step.

• The first step in defining a small step
semantics is to define the redexes.

• Ex.
– In IMP: n1 + n2 | x := n | skip; c | if true then c1

else c2 | if false then c1 else c2 | while b do c

– In 𝜆-calculus : (𝜆 x. v) e2 , (𝜆 x. e1) e2

 L10-9

Local reduction rules

• One for each redex
– show how to advance one step of the execution

– 𝑥, 𝜎[𝑥 = 𝑛] → 𝑛, 𝜎

– 𝑛1 + 𝑛2, 𝜎 → 𝑛, 𝜎 where 𝑛 = 𝑛1 + 𝑛2

– 𝑥 ∶= 𝑛, 𝜎 → 𝑠𝑘𝑖𝑝, 𝜎[𝑥 → 𝑛]

– 𝑠𝑘𝑖𝑝; 𝑐, 𝜎 → 𝑐, 𝜎

– 𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑐1 𝑒𝑙𝑠𝑒 𝑐2, 𝜎 → 𝑐1, 𝜎

– 𝑖𝑓 𝑓𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 𝑐1 𝑒𝑙𝑠𝑒 𝑐2, 𝜎 → 𝑐2, 𝜎

– 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑐, 𝜎 → 𝑖𝑓 𝑏 𝑡ℎ𝑒𝑛 (𝑐; 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑐) 𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝, 𝜎

 L10-10

Global reduction rules

• A simple algorithm
– start with a program

– identify a redex

– reduce according to local reduction rules

– repeat until you can’t reduce anymore

• We need rules to define the next redex

 L10-11

Contexts

• We use H to refer to a context.

• H[r] is a program fragment consisting of
redex r in context H

• Global reduction rules can be defined
from local reduction rules as flows

• if <r, 𝜎>  <e, 𝜎’> then <H[r] ,𝜎>  <H[e], 𝜎’>

• How we define the set of contexts will
determine the order in which local

reductions are applied.

 L10-12

Example

Configuration Context Redex

<x := (x + 1) + 2, [x=2]> x = (o + 1) + 2 x

<x := (2 + 1) + 2, [x=2]> x = o + 2 2 + 1

<x := 3 + 2, [x=2]> x = o; 3 + 2

<x := 5, [x=2]> o x:=5

<skip, [x=5]>

The context is a program with a hole

 L10-13

Contexts

• Contexts are defined by a grammar

• H ::= o | n + H | H + e | x:= H

 | if H then c1 else c2 | H; c

• The grammar defines the evaluation
order
– Note in a + b, a is evaluated before b.

• We can define redexes and contexts to
– define the order of evaluation

– define short circuit behavior

 L10-14

Contexts

• How do we know if our contexts and redexes are
well defined?

• Decomposition theorem:
If c is not “skip”, then there exist unique H and r such that c is H[r]

– Exist guarantees progress

– Unique guarantees determinism

 L10-15

ML Style References

• Adding references

 𝜏 ::= … | 𝜏 𝑟𝑒𝑓

 e ::= … 𝑟𝑒𝑓 𝑒 𝑒1 ≔ 𝑒2 𝑒1; 𝑒2 ! 𝑒

• Example:
 𝜆𝑓: 𝑖𝑛𝑡 → 𝑖𝑛𝑡 𝑟𝑒𝑓 . ! 𝑓 5 (𝜆𝑥: 𝑖𝑛𝑡. 𝑟𝑒𝑓 𝑥)

𝜆𝑥: 𝑖𝑛𝑡 𝑟𝑒𝑓 . 𝑥 ≔ 7; ! 𝑥 𝑟𝑒𝑓 𝑥

• Equational reasoning is gone!

October 13, 2015

 L10-16

Modeling the Heap

• Heap is a map from addresses to values
– ℎ ∶≔ ∅ | ℎ, 𝑎 → 𝑣𝑎𝑙: 𝜏

• A Program is an expression + a heap
– 𝑝 ≔ ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝑒

– Heap addresses act as bound variables in expression

October 13, 2015

 L10-17

Small Step Semantics with Heap

• New contexts (in addition to the ones before)

– H := ref H | H:=e | addrs:= H | !H

• No new local reduction rules

• New global reduction rules
– ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 𝑟𝑒𝑓 𝑣: 𝜏 → ℎ𝑒𝑎𝑝 ℎ, 𝑎 → 𝑣 : 𝜏𝑖𝑛 𝐻 𝑎

– ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 ! 𝑎 → ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 𝑣

• As long as 𝑎 → 𝑣 ∈ ℎ

– ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 𝑎 ≔ 𝑣 → ℎ𝑒𝑎𝑝 ℎ[𝑎 → 𝑣]: 𝜏𝑖𝑛 𝐻 ∗

October 13, 2015

 L10-18

Additional typing rules for references

October 13, 2015

Γ ⊢ 𝑒 ∶ 𝜏

Γ ⊢ 𝑟𝑒𝑓 𝑒: 𝜏 : 𝜏 𝑟𝑒𝑓

Γ ⊢ 𝑒 ∶ 𝜏 𝑟𝑒𝑓

Γ ⊢ ! 𝑒 ∶ 𝜏

Γ ⊢ 𝑒1 ∶ 𝜏 𝑟𝑒𝑓Γ ⊢ 𝑒2: 𝜏

Γ ⊢ 𝑒1 ≔ 𝑒2: 𝑢𝑛𝑖𝑡

 L10-19

References and polymorphism

• This is a big problem

• Solution: Disallow side effects in let.

October 13, 2015

𝑙𝑒𝑡 𝑥: ∀𝑡. 𝑡 → 𝑡 𝑟𝑒𝑓 = Λ𝑡. 𝑟𝑒𝑓 𝜆𝑥: 𝑡. 𝑥

 𝑖𝑛 𝑥 𝑏𝑜𝑜𝑙 : = 𝜆𝑥: 𝑏𝑜𝑜𝑙. 𝑛𝑜𝑡 𝑥 ;
 ! 𝑥 𝑖𝑛𝑡 5

MIT OpenCourseWare

http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

