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Big Step OS for 𝜆 calculus 

• Configuration is simply a lambda 
expression  
– there is no state 

• Result is a different lambda expression 

 

• Inductive definition: Base case 

 

 

• Inductive definition: recursive cases 

?? 
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Big Step OS for Imperative Programs 

• The same techniques apply to programs with state 
– The big difference is that the configuration now includes state 

 

• Example: IMP 

 e:= n | x | e1 + e2 | e1 == e2 | True | False 

    c:=  x := e | c1 ; c2 | if e then c1 else c2 | while e do c | skip 

 

• Now we need two types of judgments 
expressions result in values   commands change the state 
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Big Step OS for Imperative 
Programs 

• Rules for expressions are very similar to what 
we had before 

 

 

 

 

• We need a rule to read values from variables 

𝑒1, 𝜎 → 𝑛1    𝑒2, 𝜎 → 𝑛2   𝑛 = 𝑛1 + 𝑛2

𝑒1 + 𝑒2, 𝜎 → 𝑛
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Big Step OS for Imperative 
Programs 

• Commands mutate the state 

 

 

 

 

 

 

 

 

 

• What about loops? 
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Big Step OS for Imperative Programs 

• The definition for loops must be 
recursive 
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Small Step Semantics 

• Many design decisions 
– How small is a step? 

– How do we select the next step? 

 

• These decisions need to be defined 
formally 
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Redex 

• A redex is an expression that can be 
reduced in one atomic step. 

• The first step in defining a small step 
semantics is to define the redexes. 

 

• Ex. 
– In IMP: n1 + n2 | x := n | skip; c | if true then c1 

else c2 | if false then c1 else c2 | while b do c 

– In 𝜆-calculus : (𝜆 x. v) e2 , (𝜆 x. e1) e2 
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Local reduction rules 

• One for each redex 
– show how to advance one step of the execution 

 

– 𝑥, 𝜎[𝑥 = 𝑛]  → 𝑛, 𝜎  

– 𝑛1 + 𝑛2, 𝜎 →  𝑛, 𝜎   where 𝑛 = 𝑛1 + 𝑛2 

– 𝑥 ∶=  𝑛, 𝜎 →  𝑠𝑘𝑖𝑝, 𝜎[𝑥 →  𝑛]  

– 𝑠𝑘𝑖𝑝;  𝑐, 𝜎 →  𝑐, 𝜎  

– 𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑐1 𝑒𝑙𝑠𝑒 𝑐2, 𝜎  →  𝑐1, 𝜎   

– 𝑖𝑓 𝑓𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 𝑐1 𝑒𝑙𝑠𝑒 𝑐2, 𝜎 →   𝑐2, 𝜎  

– 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑐, 𝜎  →  𝑖𝑓 𝑏 𝑡ℎ𝑒𝑛 (𝑐;  𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑐) 𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝, 𝜎  
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Global reduction rules 

• A simple algorithm 
– start with a program 

– identify a redex  

– reduce according to local reduction rules 

– repeat until you can’t reduce anymore 

• We need rules to define the next redex 
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Contexts 

• We use H to refer to a context.  

• H[r] is a program fragment consisting of 
redex r in context H 

 

• Global reduction rules can be defined 
from local reduction rules as flows 

 

• if <r, 𝜎>  <e, 𝜎’> then <H[r] ,𝜎>  <H[e],  𝜎’> 

 

• How we define the set of contexts will 
determine the order in which local 

reductions are applied. 
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Example 

Configuration Context Redex 

<x := (x + 1) + 2, [x=2]> x = (o + 1) + 2 x 

<x := (2 + 1) + 2, [x=2]> x = o + 2 2 + 1 

<x := 3 + 2, [x=2]> x = o; 3 + 2 

<x := 5, [x=2]> o x:=5 

<skip, [x=5]> 

The context is a program with a hole 
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Contexts 

• Contexts are defined by a grammar 

 

• H ::=  o | n + H | H + e | x:= H  

      | if H then c1 else c2 | H; c 

• The grammar defines the evaluation 
order 
– Note in a + b, a is evaluated before b. 

• We can define redexes and contexts to  
– define the order of evaluation 

– define short circuit behavior 
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Contexts 

• How do we know if our contexts and redexes are 
well defined? 

 

• Decomposition theorem: 
If c is not “skip”, then there exist unique H and r such that c is H[r] 

– Exist guarantees progress 

– Unique guarantees determinism 
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ML Style References 

• Adding references 

 𝜏 ::= … | 𝜏 𝑟𝑒𝑓 

 e ::= …  𝑟𝑒𝑓 𝑒  𝑒1 ≔ 𝑒2  𝑒1; 𝑒2 ! 𝑒  

• Example: 
 𝜆𝑓: 𝑖𝑛𝑡 → 𝑖𝑛𝑡 𝑟𝑒𝑓 . ! 𝑓 5  (𝜆𝑥: 𝑖𝑛𝑡.  𝑟𝑒𝑓 𝑥) 

 
𝜆𝑥: 𝑖𝑛𝑡 𝑟𝑒𝑓 .  𝑥 ≔ 7; ! 𝑥  𝑟𝑒𝑓 𝑥 

 

• Equational reasoning is gone! 

October 13, 2015 



 L10-16 

Modeling the Heap 

• Heap is a map from addresses to values 
– ℎ ∶≔ ∅ | ℎ, 𝑎 → 𝑣𝑎𝑙: 𝜏 

 

 

• A Program is an expression + a heap 
– 𝑝 ≔ ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝑒 

 

– Heap addresses act as bound variables in expression 

October 13, 2015 
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Small Step Semantics with Heap 

• New contexts (in addition to the ones before) 

– H := ref H | H:=e | addrs:= H | !H 

 

• No new local reduction rules 

 

• New global reduction rules 
– ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 𝑟𝑒𝑓 𝑣: 𝜏 → ℎ𝑒𝑎𝑝 ℎ, 𝑎 → 𝑣 : 𝜏𝑖𝑛 𝐻 𝑎  

 

– ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 ! 𝑎 → ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 𝑣  

• As long as 𝑎 → 𝑣 ∈ ℎ 

– ℎ𝑒𝑎𝑝 ℎ 𝑖𝑛 𝐻 𝑎 ≔ 𝑣 → ℎ𝑒𝑎𝑝 ℎ[𝑎 → 𝑣]: 𝜏𝑖𝑛 𝐻 ∗  

 

October 13, 2015 
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Additional typing rules for references 

 

October 13, 2015 

Γ ⊢ 𝑒 ∶ 𝜏

Γ ⊢ 𝑟𝑒𝑓 𝑒: 𝜏 : 𝜏 𝑟𝑒𝑓
 

Γ ⊢ 𝑒 ∶ 𝜏 𝑟𝑒𝑓

Γ ⊢ ! 𝑒 ∶ 𝜏 
 

Γ ⊢ 𝑒1 ∶ 𝜏 𝑟𝑒𝑓Γ ⊢ 𝑒2: 𝜏 

Γ ⊢ 𝑒1 ≔ 𝑒2: 𝑢𝑛𝑖𝑡  
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References and polymorphism 

 

• This is a big problem 

 

• Solution: Disallow side effects in let. 

October 13, 2015 

𝑙𝑒𝑡 𝑥: ∀𝑡. 𝑡 → 𝑡 𝑟𝑒𝑓 = Λ𝑡. 𝑟𝑒𝑓 𝜆𝑥: 𝑡. 𝑥  

        𝑖𝑛  𝑥 𝑏𝑜𝑜𝑙 : = 𝜆𝑥: 𝑏𝑜𝑜𝑙. 𝑛𝑜𝑡 𝑥 ;  
     ! 𝑥 𝑖𝑛𝑡  5 
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