Types for Imperative Programs

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory
MIT

Derived from slides by George Necula

October 13, 2015

October 13, 2015 L10-1

Big Step OS for A calculus

e Configuration is simply a lambda
expression
- there is no state

e Result is a different lambda expression

e Inductive definition: Base case

X — X

e Inductive definition: recursive cases

e = e ?7?

Ax.e - Ax. €' e e, = ey

L10-2

Big Step OS for Imperative Programs

e The same techniques apply to programs with state
— The big difference is that the configuration now includes state

e Example: IMP
e:=n|x|e +e,| e ==e,| True | False
C:= X:=e|cy; Cc| ifethenc; elsec, | while e do c | skip

e Now we need two types of judgments
expressions result in values commands change the state

(e,0) o> n (c,0) > o'

L10-3

Big Step OS for Imperative
Programs

e Rules for expressions are very similar to what
we had before

(€1,0) >Ny (ez,0)—>n, n=ny +n,
(N,0) > n (e, +e,,0)—>n

e We need a rule to read values from variables

(x,0) = 0(x)

L10-4

Big Step OS for Imperative

Programs

e Commands mutate the state

(e,0) > €
(X:=e,0)>0[X - e]

(e;,0) - false (c;,0)— o'

(if ejthen c, elsecs,0) - o

e What about loops?

(Cll J) — J” <Cg, J”) — Jr

(C1;¢5,0) -0

(e,,0) = true {c,0)—> 0

(if e;then ¢, elsecs,0) - 0

L10-5

Big Step OS for Imperative Programs

e The definition for loops must be
recursive

(e;,0) = false
(while e;thenc ,0) =0

(e,,0) > true (c;whilee,thenc,c)—> o'

(while e,thenc ,0) — o'

(e,,0) > true (c,o)—- c" (whileejthenc,c"’) - o'

(while e;thenc ,0) = ¢’

L10-6

Small Step Semantics

e Many design decisions
- How small is a step?
— How do we select the next step?

e These decisions need to be defined
formally

L10-7

Redex

e A redex is an expression that can be
reduced in one atomic step.

e The first step in defining a small step
semantics is to define the redexes.

e EX.

- InIMP: n; + n, | x :=n | skip; c | if true then c1
else c2 | if false then c1 else c2 | while b do ¢

— In A-calculus : (A x.v)e2, (Ax.el)e2

L10-8

Local reduction rules

e One for each redex
- show how to advance one step of the execution

- (x,a[x =n]) - (n,0)

- (ny + n,,0) > (n,0) wheren =n; +n,

- (x:= n, g) - (skip,o[x - n])

- (skip; c,0) = (c,0)

— (if true then cq else c,,0) = (cq,0)

— (if false then cl else c2,0) —» {(c2,0)

- (while b do c,a) — (if b then (c; while b do c) else skip, o)

L10-9

Global reduction rules

e A simple algorithm
— start with a program
— identify a redex
— reduce according to local reduction rules
— repeat until you can’t reduce anymore

e We need rules to define the next redex

L10-10

Contexts

e We use H to refer to a context.

e H[r] is a program fragment consisting of
redex r in context H

e Global reduction rules can be defined
from local reduction rules as flows

o if <r, 0> <e, o’>then <H[r] , 0> > <H[e], o’>

e How we define the set of contexts will
determine the order in which local
reductions are applied.

L10-11

Example

Configuration Context | Redex _

<X:=(x+1)+2,[x=2]> x=(0+1)+2 X

<Xx:=(2+1)+ 2, [x=2]> xXx=0+2 2+1
<X :=3+ 2, [x=2]> X = 0; 3+ 2
<x :=5, [x=2]> o) X:=5

<skip, [x=5]>

The context 1s a program with a hole

L10-12

Contexts

e Contexts are defined by a grammar

e H::

oln+H|H+e]| x:=H
| if Hthen cl elsec2 | H; c

e The grammar defines the evaluation

order
- Note in a + b, a is evaluated before b.

e We can define redexes and contexts to
— define the order of evaluation
— define short circuit behavior

L10-13

Contexts

e How do we know if our contexts and redexes are
well defined?

e Decomposition theorem:
If c is not “skip”, then there exist unique H and r such that c is H[r]
— EXist guarantees progress
— Unique guarantees determinism

L10-14

ML Style References

e Adding references

Tu=..|tref
ex=..|refele;=e,|e;;e,|le
e Example:

(Af:int - (intref). ! (f 5)) (Ax: int. ref x)

(Ax:intref . x=7;'x) ref x

e Equational reasoning is gone!

October 13, 2015 L10-15

Modeling the Heap

e Heap is a map from addresses to values

- h:==0|ha-val:t

e A Program is an expression + a heap
- p =heaphine

- Heap addresses act as bound variables in expression

October 13, 2015 L10-16

Small Step Semantics with Heap

e New conteXxts (in addition to the ones before)
- H:=refH| H:=e | addrs:=H | IH

e No new local reduction rules

e New global reduction rules
-~ heap hin H[ref v:t] - heap h, (a » v):tin H|a]

- heap hin H['a] —» heap hin H[v]

e Aslongasa—-vEh
- heap hin H[a := v] - heap h[a — v]: tin H|*]

October 13, 2015 L10-17

Additional typing rules for references

Fe:t [Fe:tref
[+ (refe:t):tref F'Fle:T

' e :treflT FeptT
[' - eq = ey:unit

October 13, 2015 L10-18

References and polymorphism

let x:Vt.(t - t)ref = At.ref (Ax:t.x)
in x|bool]: = Ax: bool.not x ;
(! x[int]) 5

e This is a big problem

e Solution: Disallow side effects in let.

October 13, 2015 L10-19

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

