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Type Inference

e Consider the following expression
- (Af:int=> int. £ 5) (Ax:int. x + 1)
e Is it well typed in F;?

x:t€Tl Ixity FeT, . ) . )
Fe:T =T e, T
FFx:7 I -(Axitye):ty = 1 L Z
[ Fee:t
[ Fel:int [ FeZ:int
[ WN:int [ Fel+e2:int
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Type Inference

e There wasn’t a single point in the derivation
where we had to look at the type labels in
order to know what rule to apply!

- we could have written the derivation without the labels

e The labels helped us determine the actual
types for all the ts in the typing rules.

— we could have figured these out even without the labels
— this is the key idea behind type inference!
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Type Inference Strategy 1

e 1. Use the typing rules to define
constraints on the possible types of

expressions

e 2. Solve the resulting constraint system
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Deducing Types

twice £ x = £ (f x)
What is the most "general type" for twice?

1. Assign types to every subexpression

x :: to0 f :: tl
f x :: t2 f (£ x) :: t3
= twice :: €1 -> t0 -> t3 ?
2. Set up the constraints
tl = t0 -> t2 because of (f x)
tl = €2 -> t3 because of £ (f x)

3. Resolve the constraints
t0 -> t2 = t2 -> t3
= t0 = t2 and t2 = t3 = t0 = t2
= twice :: (t0 -> t0) ->t0 -> t0
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The language of Equality Constraints

e Consider the following Language of
Constraints

Ci=1,=17| CAC|3T.C

e Constraints in this language have a lot of
good properties
— Nice and compositional
— Linear time solution algorithm
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Building Constraints from Typing
Rules

e Notation
[Judgment] = Constraints

— The constraints on the right ensure that the
judgment on the left holds

— This mapping is defined recursively.

e Base cases
CTFx:t] =Tx) =1 [THN:7] = int=1

e Inductive Cases

[T'+ee:t] =3a([T+ep:a=t]A[l+e,:a])

[l Ax.e:t] =3aja,.([[[x:a; Fe:a,JAT=a; 2 a,)

[T'Fe +et]=[TrFegint| AT Feint] AT =int
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Back to our example

(Af. f 5) (Ax. X + 1)

[T-x1] =T(x) =71 [THee:t] =3a([T+epa=t]Al-e,:a])

[[-N:7] = int=1 [T+ Ax.e:7] =3a,a,.([[;xa; Fera,JAT= a; = a,)

[TFe,+e:t] = [TFep:int]AlC Feyint] AT =int
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Equality and Unification

e What does it mean for two types 1, and 1, to

be equal?
— Structural Equality
Suppose T, =T1-> 1Ty
Tp =13 "> T4 :
Ist,=1, ? iff iy =t3and 1, =14

e Can two types be made equal by choosing
appropriate substitutions for their type

variables?
— Robinson’s unification algorithm
Suppose 1, =t; -> Bool
Tp = Int -> tz

Are 1, and t, unifiable ? if t;= Int and t,= Bool
Suppose 1, =t,-> Bool

1, = Int -> Int
Are 1, and t, unifiable ? No
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Simple Type Substitutions

needed to define type unification

Types
Tii=1 base types (Int, Bool ..)
| t type variables
| ©,-> 1, Function types

A substitution is a map

S : Type Variables — Types

S =1[rty/ty,..., 7,/ t,]

1T=S1 T is a Substitution Instance of t
Example:

S = [(t-> Bool) / t,]

S(t;->ty) =|(t->Bool) -> (t-> Bool) ?
Substitutions can be composed, i.e., S5 S,
Example:

S, =[(t->Bool) /t;]; S, =[Int/ t]

S; S (t->t) =S,((t->Bool) -> (t-> Bool)) [?
= ( Int-> Bool) -> ( Int-> Bool)

September 27, 2011 LO6-10




Unification
An essential subroutine for type inference

Unify(t,, 1,) tries to unify t, and 1, and returns a
substitution if successful

def Unify(ty, 15) =
case (tq, t,) Of
(ty, ) = [t,/ 5] provided t, ¢ FV(1,)
(ty, v5) = [t/ t;] provided t; ¢ FV(r,)
(11, 1) = if (€9? y 1) then [ ]
else fail
(T117>T12s To1 =>72)

= | let S;=Unify(ty1, 121)

S,=Unify(S;(t15), S1(723))
in S, Sy

otherwise = fail

Does the order matter? No
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Type inference strategy 2

o Like strategy 1, but we solve the

constraints as we see them
— Build the substitution map incrementally

September 29, 2011 L06-12



Simple Inference Algorithm

W(TE, e) returns (S,t) such that S (TE) | e: ¢
This is just T' (it's hard to write I' in code) |

The type environment TE records the most

general type of each identifier while the

substitution S records the changes in the type

variables

Def W(TE, e) =
Case e of
X
n
AX.e

(e; &)
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Simple Inference Algorithm (cont-1)

Def W(TE, e)

= u’s
Case e of represent
[T-N:t] = int=1 N = ({}, TypeOf(N)) new type
[[Fx7] =T =7 X = if (x ¢ Dom(TE)) then Falil variables
else let © = TE(X);
in ({} 1)
[T - Ax.e: 7] =3aja,.([[;x:a; Fe:aJ]AT=a; =2 a,)
AX.€e = let (Sq, 1)=W(TE+ {Xx:u}, e)
in ( )
[T+ee:t] =3a([T+epa-t]Al+ey:a])
(e; )  =let (S, 1,) = W(TE, e,);

(S,, 1) = W(S4(TE), &,);
S; = Unify(S,(ty), 1, -> U);
in (535,54, S3(u))
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Simple Inference Algorithm (cont-1)

Def W(TE, e) = u’s
Case e of represent
C = ({}, Typeof(c)) new type
X = jf (x ¢ Dom(TE)) then Fail variables
else let 1 = TE(X);
in ({}, )
AX.e =let (Sy, ty) =W(TE+ {x:u}, e)
In (Sll Sl(U) '> Tl)
(e; &) = let (S, 71) = W(TE, e;);

(Sy, 12) = W(_S1(TE), e,);
_ S; = Unify(Sy(ty), 1 -> u);
in (S35;5S;, S3(u))
let x =e;in e,
= let (S¢, t1) = W(TE + {x : u}, eq);
S; = Unify(S,(u), ,);
(S3, 12) = W(S,S5,(TE) + {x : 1,}, €);
in (535,54, 1)
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Def W(TE, e)

Case e of
Example
rax.e = let (Sq, 1) =W(TE+ {x:u}, e)
in (Sy, S1(u) -> 1)
(e, &) = let (Sy, t1) = W(TE, e,);
(Sz, 12) = W(S,(TE), e5);
S; = Unify(Sy(ty), 1, -> u);
in (535, Sy, S3(u))
W {f:uok f) = (@ uo) W({f:ue},5) = (9,Int)

Unify(ug, Int - uq) =

W({f:uO};f 5) =

w(o,f.f 5)) =
W (@, (Af . f 5)(Ax. x))



def Unify(zy, 1,) =

case (ty, 15) Of
Example (ot = e/ ] provided ty & F(ey)
(ty, 1) = [t,/ t;] provided t; ¢ FV(r,)
(1, ) =if(ed? 1y 1) then [ ]
else fail

(T11'>T121 121 _>T22)
= let S;=Unify(ty4, 151)

S,=Unify(S;(t15), S1(122))
in S,S,

W{f:uoh f) = (D,up) W({f:up},5) = (@,Int)
Unify(ug, Int - uy) = [(Int - uqy)/ug]
W({f:uO};f 5) —

w(o,f.f 5)) =
W (@, (Af . f 5)(Ax. x))



Def W(TE, e)

Case e of
Example
Ax.e = let (Sy, 1) =W(TE+ {x:u}, e)
in (Sy, S1(u) -> 1y)
(e, &) = let (Sy, t1) = W(TE, e,);
(Sz, 12) = W(S,(TE), e5);
S; = Unify(Sy(ty), 1, -> u);
in (535, Sy, S3(u))
W {f:uok f) = (@ uo) W({f:ue},5) = (9,Int)

Unify(ug, Int - uy) = [(Int - uqy)/ug]

W{f:up}, f5) = ([Int - uqg/ugl, uq)

W(Q; Af.f 5)) =([(Int - uy)/uel, Int - uy) - uy)
W (@, (Af.f 5)(Ax.x))



Def W(TE, e)
Case e of

Example

Ax.e = let (Sy, 1) =W(TE+ {x:u}, e)
in (Sy, S1(u) -> 1y)

(e, &) = let (Sy, 1) = W(TE, e;),;
(S, 12) = W(S(TE), &,);
S; = Unify(Sy(ty), 1, -> u);
in (535,5;, S3(u))

W (2, Of.f 5)) =([Int > u)/uol, Unt - u;) = u;)
W((Z), (Ax. x)) = (@,u; — us)

Unify((Int - uy) = uy, (uz > uz) = uy) =

W (@, (Af.f 5)(Ax.x))



def Unify(zy, 1,) =
case (ty, 15) Of

Exam P le (1, t,) =[1,/t,] providedt, ¢ FV(z,)

(tll Tz) - [Tz/ tl] prOV|ded tl & FV(Tz)
(v, ) =if(eqd? y ) then [ ]
else fail

(T11'>T121 121 _>T22)
= let S;=Unify(ty4, 151)

S,=Unify(S;(t15), S1(122))
in S,S,

Unify((]nt - uq), (uz - u3)): [Int/us; Int/u4]

Unify(Int,u,) = [Int/u,]

Unify((lnt - uUq) o uq, (Uz > uz) - u4) = [Int/us;Int/uy;Int/u,]

W (@, (Af.f 5)(Ax.x))



Def W(TE, e)
Case e of

Example

Ax.e = let (Sy, 1) =W(TE+ {x:u}, e)
in (Sy, S1(u) -> 1y)

(e, &) = let (Sy, 1) = W(TE, e;),;
(S, 12) = W(S(TE), &,);
S; = Unify(Sy(ty), 1, -> u);
in (535,5;, S3(u))

W (2, Of.f 5)) =([Int > u)/uol, Unt - u;) = u;)
W((Z), (Ax. x)) = (@,u; — us)

Unify((lnt - Uq) o uq, (U3 2 uz) = u4) = [Int/us;Int/uy; Int/u,|

W(, Af.f 5)Ax.x)) = ([Unt = ug)/ug; Int/usz; Int/uy; Int/u,], Int)



What about Let?

o letx=eyine, This is Hindley Milner

e Typing rule without polymorphism

Cx:t'te:t’  Tixit'reyt

['Hlet x=eqin e;:T
e Constraints

- [T Fletx =eqine, : 1] =
7/, [Cx:t' e T IAINx:T" F ey 7]

e Algorithm

Case Exp = let x = e in e,
=> let (S{, 11) = W(TE + {x : u}, e;);
S, = Unify(S;(u), t1);
(S3, 12) = W(S,S4(TE) + {Xx : 1.}, &);
in (S35,5;, 13)
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Polymorphism
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Some observations

e A type system restricts the class of
programs that are considered “legal”

e Jtis possible a term in the untyped A-
calculus may be reducible to a value but

may not be typeable in a particular type
system

let
id = AX. X
in
... (id True) ... (id 1) ...

This term is not typeable in the simple type
system we have discussed so far. However,
it is typeable in the Hindley-Milner system
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Explicit polymorphism

e You've seen this before

public interface List<E>{
void add(E x);
E get();

List<String> 1ls = ...
ls.add ("Hello") ;
String hello = 1ls.get (0);

e How do we formalize this?

FFe:T F'Fe:Vt.T
[ - At.e:Vt.T [ Fel[t]:T'[t /]
e Example
id=AT.Ax : T.x
id[int] 5
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Different Styles of
Polymorphism

e Impredicative Polymorphism
T::=b|T1_)T2|T|VT.T
enx=x|Ax:t.e | eje, | AT.e | e[T]

e Very powerful

— Although you still can’t express recursion

 Type inference is undecidable !
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Different Styles of
Polymorphism

e Predicative Polymorphism
Ti=b|ti->17,|T
o =1|VT.0| 0o, = oy
enx=x|Ax:0.e|eje, | AT.e | e[7]

o Still very powerful

— But you can no longer instantiate with a polymorphic type

e Type inference is still undecidable !
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Different Styles of
Polymorphism

e Prenex Predicative Polymorphism
Ti=b|ti->17,|T
o =1|VI.o
enx=x|Ax:t.e|eje, | AT.e | e[T]

e Now we have decidable type inference
e But polymorphism is now very limited

- We can’t pass polymorphic functions as arguments!!

- (As:VT .1 ..slint]x ..s[bool]x)(AT.code for sort)
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Let polymorphism

e Introduce let x = el in e2
— Just like saying (Ax.e2 )el
— Except x can be polymorphic

e Good engineering compromise
— Enhance expressiveness
— Preserve decidability

e This is the Hindley Milner type system
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Ty|3e inference with
polymorphism
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Polymorphic Types

let
id = AX. X
in

... (id True) ... (id 1) ...

Constraints:

|d . tl -—-> tl
id :: Int -->t, Does not unify!!
id :: Bool --> t;

Solution: Generalize the type variable

|d - th- tl -—-> tl

Different uses of a generalized type variable

may be instantiated differently b
id, : Bool --> Bool chcall we

id, : Int --> Int generalize?
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A mini Language
to study Hindley-Milner Types

Expressions
E:.:=cC constant
X variable
AX. E abstraction
(E; E,) application
let x = E{inE, let-block

e There are no types in the syntax of the language!

e The type of each subexpression is derived by the
Hindley-Milner type inference algorithm.
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A Formal Type System

Type Schemes
c ..= 71
| Vt. o

Type Environments
TE ::= Identifiers — Type Schemes

Types
T =1 base types
| t type variables
| T, -> 1, Function types

Note, all the V’'s occur in the beginning of a type scheme,

i.e., a type t cannot contain a type scheme ¢

September 29, 2011
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Instantiations

c=Vi...t,. 1

e Type scheme o can be instantiated into a type t by
substituting types for the bound variables of o, i.e.,

1T=S1 for some S s.t. Dom(S) < BV(c)
- 7' is said to be an instance of 6 (c > 1)

- 1 is said to be a generic instance of c when S
maps variables to new variables.

Example:
c =VL{.{-> L,
t;->t, IS @ generic instance of o
Int-> t, iS @ non generic instance of ¢
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Generalization aka ciosing

Gen(TE,r) = Vt;...t. 1
where { t;...t, } = FV(z) - FV(TE)

e Generalization introduces polymorphism

e Quantify type variables that are free in =
but not free in the type environment (TE)

e Captures the notion of new type variables
of t
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HM Type Inference Rules

['+e;:t—>1’ They:T  Remember, T stands for a

(App)
T'(eqe,):T! monotype,_a for a
polymorphic type
[{x:t}e:Tr
(Abs) _ -
I'FAx.e:T—>T/ x can be considered of type 7 as
long as its type as specified in the
i > environment can be specialized to
(Var) (X.O')EF 0=t 7 (i.e. 7 is an instance of o) )
I'x:T
Note: x has a different type in e; )
typeof(c)=t than in e,. In e;, X is not a
(Const) polymorphic type, but in e, it gets
I'+c:T generalized into one. D
(Let) i{x:t}re:t Ti{x:Gen(T,1)}ey:T/
et

['H(let x=eq in ey):T/
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HM Inference Algorithm

Def W(TE, e) = Case e of u’s

C = ({}, Typeof(c)) represent

X = jf (x ¢ Dom(TE)) then Fail new type
else let vt,...t,.t = TE(X); variables

in ({3 [u/tlx)

AX.e =let (Sy, 1) =W(TE+ {x:u}, e)
in (S, S;(u) -> 14)

(e; €;) = let (Sy, 11) = W(TE, €;);

(S, 12) = W(_S1(TE), €);

_ S; = Unify(S,(ty), t, -> u);

in (S3S;,54, S3(u))

let x =e.in e,
= let (Sy, t;) = W(TE + {x : u}, ey);

S, = Unify(S,(u), t,);
(0} = Gen(SZ Sl(TE), SZ(TI) );
(S3; 12) = W(S,S((TE) + {x : o}, &,);

in (S35,5;, 12)
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Hindley-Milner: Example

Ax.|let £ = Ay.x B A
in (£ 1, £ True)

WD, Ay = ([1,uy => (ug,uy))
W({x:u}, B)Y= ([],(u,uy))
WX :uy, Frud Ay.x)=([],u3->u;)
WHXx tu, fruy,yiust, x)= ([1,uy)
Unify(u,, us -=> uy) = [ (U3 -> uy) / U]
Gen({X : u;}, u3-> u;) = Vus.U; -> Uy
TE = {x : uy, f: Vus.u; -> uy}
W(TE, (£ 1) )= ([], uy)
W(TE, £) = ([ ],us -> uy)

W(TE, 1) = ([ ], Int )
Unify(u, ->u; , Int -> uUg) = [ Int /Uy, u;/ us]
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Important Observations

e Do not generalize over type variables used
elsewhere

e Let is the only way of defining polymorphic
constructs

e Generalize the types of let-bound identifiers
only after processing their definitions

September 29, 2011
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Properties of HM Type Inference

e It is sound with respect to the type system.
An inferred type is verifiable.

e It generates most general types of expressions.
Any verifiable type is inferred.

e Complexity

PSPACE-Hard
Nested /et blocks
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Extensions

e Type Declarations
Sanity check; can relax restrictions

e Incremental Type checking
The whole program is not given at the same
time, sound inferencing when types of some
functions are not known

e Typing references to mutable objects
Hindley-Milner system is unsound for a
language with refs (mutable locations)

e Overloading Resolution
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HM Limitations:

L-bound vs Let-bound Variables

Only let-bound identifiers can be instantiated
differently.

let

twice £ x = £ (f x)

in
twice twic

Generic vs. Non-generic type variables

September 29, 2011

let
twice £ x
foo g = (g
in
foo twice

e succ 4

VEIrsus

= £ (£ x)
g succ) 4

foo is not

type correct !

LO6-42



Puzzle: Another set of Inference rules

(Gen) TE Fe:t tg FV(TE)
TE Fe: Vt.t

(Spec) TE e : Vtuz
TE | e : t[u/t]

(Var) (x:1) € TE
TE X1
(Let) TE+{x:t} fe;it TE+{x:it} | et

TE [ (letx =e,ine,) : 7

(App) and (Abs) rules remain unchanged.

September 29, 2011

Sound but
no
inference
algorithm |
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