
 L07-1 September 29, 2011

Type Inference and the
Hindley-Milner Type System

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory

M.I.T.
With slides from Arvind. Used with permission.

September 29, 2011

 L06-2

Type Inference

• Consider the following expression
– (𝜆f:int int. f 5) (𝜆x:int. x + 1)

• Is it well typed in F1?

 L06-3

Type Inference

• There wasn’t a single point in the derivation
where we had to look at the type labels in
order to know what rule to apply!
– we could have written the derivation without the labels

• The labels helped us determine the actual
types for all the 𝜏s in the typing rules.
– we could have figured these out even without the labels

– this is the key idea behind type inference!

 L06-4

Type Inference Strategy 1

• 1. Use the typing rules to define
constraints on the possible types of
expressions

• 2. Solve the resulting constraint system

 L06-5

Deducing Types

 1. Assign types to every subexpression
x :: t0 f :: t1

 f x :: t2 f (f x) :: t3

  twice :: ?

 twice f x = f (f x)

What is the most "general type" for twice?

2. Set up the constraints
t1 = because of (f x)
t1 = because of f (f x)

3. Resolve the constraints
 t0 -> t2 = t2 -> t3

  t0 = t2 and t2 = t3  t0 = t2 = t3

  twice :: (t0 -> t0) -> t0 -> t0

t1 -> t0 -> t3

t0 -> t2

t2 -> t3

September 8, 2011

 L06-6

The language of Equality Constraints

• Consider the following Language of
Constraints

• Constraints in this language have a lot of
good properties
– Nice and compositional

– Linear time solution algorithm

 L06-7

Building Constraints from Typing
Rules

• Notation

– The constraints on the right ensure that the

judgment on the left holds

– This mapping is defined recursively.

• Base cases

• Inductive Cases

Γ ⊢ 𝑒1 + 𝑒2: 𝜏 = Γ ⊢ 𝑒1: 𝑖𝑛𝑡 ∧ Γ ⊢ 𝑒2: 𝑖𝑛𝑡 ∧ 𝜏 = 𝑖𝑛𝑡

 L06-8

Back to our example

o (𝜆f. f 5) (𝜆x. x + 1)

 L06-9

Equality and Unification

• What does it mean for two types a and b to
be equal?
– Structural Equality
 Suppose a = 1 -> 2
 b = 3 -> 4
 Is a = b ?

iff 1 = 3 and 2 = 4

• Can two types be made equal by choosing
appropriate substitutions for their type
variables?
– Robinson’s unification algorithm
 Suppose a = t1 -> Bool
 b = Int -> t2
 Are a and b unifiable ? if t1= Int and t2= Bool

Suppose a = t1-> Bool
 b = Int -> Int

Are a and b unifiable ? No
September 27, 2011

 L06-10

Simple Type Substitutions
needed to define type unification

A substitution is a map
 S : Type Variables  Types
 S = [1 / t1,..., n / tn]
 ’ = S  ’ is a Substitution Instance of 
Example:
 S = [(t -> Bool) / t1]
 S (t1 -> t1) = ?
Substitutions can be composed, i.e., S2 S1

Example:

 S1 = [(t -> Bool) / t1] ; S2 = [Int / t]

 S2 S1 (t1 -> t1) ?

Types
 ::=  base types (Int, Bool ..)

| t type variables
|  ->  Function types

(t -> Bool) -> (t -> Bool)

= S2 ((t -> Bool) -> (t -> Bool))
= (Int -> Bool) -> (Int -> Bool)

September 27, 2011

 L06-11

Unification
An essential subroutine for type inference

def Unify(1, 2) =
case (1, 2) of

(1, t2) = [1 / t2] provided t2  FV(1)
(t1, 2) = [2 / t1] provided t1  FV(2)
(1, 2) = if (eq? 1 2) then []

 else fail
 (11->12, 21 ->22)
 =

Unify(1, 2) tries to unify 1 and 2 and returns a
substitution if successful

Does the order matter?

let S1=Unify(11, 21)
 S2=Unify(S1(12), S1(22))
 in S2 S1

 otherwise = fail

No

September 27, 2011

 L06-12

Type inference strategy 2

• Like strategy 1, but we solve the
constraints as we see them
– Build the substitution map incrementally

September 29, 2011

 L06-13

Simple Inference Algorithm

W(TE, e) returns (S,) such that S (TE) ├ e : 

The type environment TE records the most
general type of each identifier while the
substitution S records the changes in the type
variables

Def W(TE, e) =
Case e of
 x = ...
 n = ...
 x.e = ...
 (e1 e2) = ...
...

September 27, 2011

This is just Γ (it’s hard to write Γ in code)

 L06-14

Simple Inference Algorithm (cont-1)

Def W(TE, e) =
 Case e of

N =
x =

x.e =

(e1 e2) =

let (S1, 1) = W(TE, e1);
 (S2, 2) = W(S1(TE), e2);
 S3 = Unify(S2(1), 2 -> u);
in (S3 S2 S1, S3(u))

September 27, 2011

let (S1, 2)= W(TE + { x : u }, e)
in (S1, S1(u) -> 2)

if (x  Dom(TE)) then Fail
else let  = TE(x);
 in ({}, )

({}, Typeof(N))

u’s
represent
new type
variables

 L06-15

Simple Inference Algorithm (cont-1)

Def W(TE, e) =
 Case e of

c =
x =

x.e =

(e1 e2) =

 let x = e1 in e2
 =

u’s
represent
new type
variables

let (S1, 1) = W(TE, e1);
 (S2, 2) = W(S1(TE), e2);
 S3 = Unify(S2(1), 2 -> u);
in (S3 S2 S1, S3(u))

let (S1, 1) = W(TE + {x : u}, e1);
 S2 = Unify(S1(u), 1);
 (S3, 2) = W(S2 S1(TE) + {x : }, e2);
in (S3 S2 S1, 2)

September 27, 2011

let (S1, 1) = W(TE + { x : u }, e)
in (S1, S1(u) -> 1)

if (x  Dom(TE)) then Fail
else let  = TE(x);
 in ({}, )

({}, Typeof(c))

Example
Def W(TE, e) =

 Case e of

…

 x.e = let (S1, 1) = W(TE + { x : u }, e)
 in (S1, S1(u) -> 1)

 (e1 e2) = let (S1, 1) = W(TE, e1);
 (S2, 2) = W(S1(TE), e2);
 S3 = Unify(S2(1), 2 -> u);
 in (S3 S2 S1, S3(u))

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥)

𝑊 ∅, 𝜆𝑓. 𝑓 5 =

𝑊 𝑓: 𝑢0 , 𝑓 5 =

𝑊 𝑓:𝑢0 , 𝑓 = (∅, 𝑢0) 𝑊 𝑓:𝑢0 , 5 = (∅, 𝐼𝑛𝑡)

𝑈𝑛𝑖𝑓𝑦 𝑢0, 𝐼𝑛𝑡 → 𝑢1 =

Example

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥)

𝑊 ∅, 𝜆𝑓. 𝑓 5 =

𝑊 𝑓: 𝑢0 , 𝑓 5 =

𝑊 𝑓:𝑢0 , 𝑓 = (∅, 𝑢0) 𝑊 𝑓:𝑢0 , 5 = (∅, 𝐼𝑛𝑡)

𝑈𝑛𝑖𝑓𝑦 𝑢0, 𝐼𝑛𝑡 → 𝑢1 =

def Unify(1, 2) =
 case (1, 2) of

(1, t2) = [1 / t2] provided t2  FV(1)

(t1, 2) = [2 / t1] provided t1  FV(2)

(1, 2) = if (eq? 1 2) then []
 else fail

 (11->12, 21 ->22)
 = let S1=Unify(11, 21)
 S2=Unify(S1(12), S1(22))

 in S2 S1

[(𝐼𝑛𝑡 → 𝑢1) 𝑢0]

Example

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥)

𝑊 ∅, 𝜆𝑓. 𝑓 5 =

𝑊 𝑓: 𝑢0 , 𝑓 5 =

𝑊 𝑓:𝑢0 , 𝑓 = (∅, 𝑢0) 𝑊 𝑓:𝑢0 , 5 = (∅, 𝐼𝑛𝑡)

𝑈𝑛𝑖𝑓𝑦 𝑢0, 𝐼𝑛𝑡 → 𝑢1 = [(𝐼𝑛𝑡 → 𝑢1) 𝑢0]

Def W(TE, e) =

 Case e of

…

 x.e = let (S1, 1) = W(TE + { x : u }, e)
 in (S1, S1(u) -> 1)

 (e1 e2) = let (S1, 1) = W(TE, e1);
 (S2, 2) = W(S1(TE), e2);
 S3 = Unify(S2(1), 2 -> u);
 in (S3 S2 S1, S3(u))

([𝐼𝑛𝑡 → 𝑢1 𝑢0], 𝑢1)

((𝐼𝑛𝑡 → 𝑢1) 𝑢0 , 𝐼𝑛𝑡 → 𝑢1 → 𝑢1)

Example

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥)

𝑊 ∅, 𝜆𝑓. 𝑓 5 =

Def W(TE, e) =

 Case e of

…

 x.e = let (S1, 1) = W(TE + { x : u }, e)
 in (S1, S1(u) -> 1)

 (e1 e2) = let (S1, 1) = W(TE, e1);
 (S2, 2) = W(S1(TE), e2);
 S3 = Unify(S2(1), 2 -> u);
 in (S3 S2 S1, S3(u))

((𝐼𝑛𝑡 → 𝑢1) 𝑢0 , 𝐼𝑛𝑡 → 𝑢1 → 𝑢1)

𝑊 ∅, 𝜆𝑥. 𝑥 = (∅, 𝑢3 → 𝑢3)

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 → 𝑢1, 𝑢3 → 𝑢3 → 𝑢4 =

Example

𝑊(∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥)

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 → 𝑢1, 𝑢3 → 𝑢3 → 𝑢4 =

def Unify(1, 2) =
 case (1, 2) of

(1, t2) = [1 / t2] provided t2  FV(1)

(t1, 2) = [2 / t1] provided t1  FV(2)

(1, 2) = if (eq? 1 2) then []
 else fail

 (11->12, 21 ->22)
 = let S1=Unify(11, 21)
 S2=Unify(S1(12), S1(22))

 in S2 S1

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡, 𝑢4 = [𝐼𝑛𝑡 𝑢4]

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 , 𝑢3 → 𝑢3 = 𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1

𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1 ; 𝐼𝑛𝑡/𝑢4

Example

𝑊 ∅, 𝜆𝑓. 𝑓 5 𝜆𝑥. 𝑥 =

𝑊 ∅, 𝜆𝑓. 𝑓 5 =

Def W(TE, e) =

 Case e of

…

 x.e = let (S1, 1) = W(TE + { x : u }, e)
 in (S1, S1(u) -> 1)

 (e1 e2) = let (S1, 1) = W(TE, e1);
 (S2, 2) = W(S1(TE), e2);
 S3 = Unify(S2(1), 2 -> u);
 in (S3 S2 S1, S3(u))

((𝐼𝑛𝑡 → 𝑢1) 𝑢0 , 𝐼𝑛𝑡 → 𝑢1 → 𝑢1)

𝑊 ∅, 𝜆𝑥. 𝑥 = (∅, 𝑢3 → 𝑢3)

𝑈𝑛𝑖𝑓𝑦 𝐼𝑛𝑡 → 𝑢1 → 𝑢1, 𝑢3 → 𝑢3 → 𝑢4 = 𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1 ; 𝐼𝑛𝑡/𝑢4

((𝐼𝑛𝑡 → 𝑢1) 𝑢0 ; 𝐼𝑛𝑡 𝑢3 ; 𝐼𝑛𝑡 𝑢1 ; 𝐼𝑛𝑡/𝑢4 , 𝐼𝑛𝑡)

 L06-22

What about Let?

• 𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 𝑒2

• Typing rule

–
Γ;𝑥:𝜏′⊢𝑒1:𝜏

′ Γ;𝑥:𝜏′⊢𝑒2:𝜏

Γ ⊢𝑙𝑒𝑡 𝑥=𝑒1𝑖𝑛 𝑒2∶𝜏

• Constraints
– Γ ⊢ 𝑙𝑒𝑡 𝑥 = 𝑒1𝑖𝑛 𝑒2 ∶ 𝜏 =

∃𝜏′, Γ; 𝑥: 𝜏′ ⊢ 𝑒1: 𝜏
′ ∧ Γ; 𝑥: 𝜏′ ⊢ 𝑒2: 𝜏

• Algorithm

September 29, 2011

Case Exp = let x = e1 in e2
=> let (S1, 1) = W(TE + {x : u}, e1);
 S2 = Unify(S1(u), 1);
 (S3, 2) = W(S2 S1(TE) + {x : }, e2);
 in (S3 S2 S1, 2)

This is Hindley Milner

 without polymorphism

 L06-23

Polymorphism

September 27, 2011

 L06-24

Some observations

• A type system restricts the class of
programs that are considered “legal”

• It is possible a term in the untyped –
calculus may be reducible to a value but
may not be typeable in a particular type
system

let
 id = x. x
in

... (id True) ... (id 1) ...

This term is not typeable in the simple type
system we have discussed so far. However,
it is typeable in the Hindley-Milner system

September 29, 2011

 L06-25

Explicit polymorphism

• You’ve seen this before

• How do we formalize this?

• Example

 𝑖𝑑 = Λ𝑇. 𝜆𝑥 ∶ 𝑇. 𝑥

 𝑖𝑑 𝑖𝑛𝑡 5
September 27, 2011

public interface List<E>{

 void add(E x);

 E get();

}

List<String> ls = ...

ls.add("Hello");

String hello = ls.get(0);

Γ ⊢ 𝑒 ∶ 𝜏

Γ ⊢ Λ𝑡. 𝑒 ∶ ∀𝑡. 𝜏

Γ ⊢ 𝑒 ∶ ∀𝑡. 𝜏′

Γ ⊢ 𝑒[𝜏] ∶ 𝜏′[𝜏 / 𝑡]

 L06-26

Different Styles of
Polymorphism

• Impredicative Polymorphism

 𝜏 ::= 𝑏 𝜏1 → 𝜏2 𝑇 | ∀𝑇. 𝜏

 e ::= 𝑥 𝜆𝑥: 𝜏. 𝑒 𝑒1𝑒2 ΛT. e e[𝜏]

• Very powerful
– Although you still can’t express recursion

• Type inference is undecidable !

 L06-27

Different Styles of
Polymorphism

• Predicative Polymorphism

 𝜏 ::= 𝑏 𝜏1 → 𝜏2 𝑇

 𝜎 ∷= 𝜏 ∀𝑇. 𝜎 𝜎1 → 𝜎2

 e ::= 𝑥 𝜆𝑥: 𝜎. 𝑒 𝑒1𝑒2 ΛT. e e[𝜏]

• Still very powerful
– But you can no longer instantiate with a polymorphic type

• Type inference is still undecidable !

 L06-28

Different Styles of
Polymorphism

• Prenex Predicative Polymorphism

 𝜏 ::= 𝑏 𝜏1 → 𝜏2 𝑇

 𝜎 ∷= 𝜏 |∀𝑇. 𝜎

 e ::= 𝑥 𝜆𝑥: 𝜏. 𝑒 𝑒1𝑒2 ΛT. e e[𝜏]

• Now we have decidable type inference

• But polymorphism is now very limited
– We can’t pass polymorphic functions as arguments!!

– (𝜆𝑠: ∀𝑇 . 𝜏 … 𝑠 𝑖𝑛𝑡 𝑥 … 𝑠 𝑏𝑜𝑜𝑙 𝑥)(Λ𝑇. 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑠𝑜𝑟𝑡)

 L06-29

Let polymorphism

• Introduce let x = e1 in e2
– Just like saying 𝜆𝑥. 𝑒2 𝑒1

– Except x can be polymorphic

• Good engineering compromise
– Enhance expressiveness

– Preserve decidability

• This is the Hindley Milner type system

September 29, 2011

 L06-30

Type inference with
polymorphism

September 27, 2011

 L06-31

Polymorphic Types

Constraints:

let
 id = x. x
in

... (id True) ... (id 1) ...

id :: t1 --> t1
id :: Int --> t2
id :: Bool --> t3

Does not unify!!

id :: t1. t1 --> t1

Different uses of a generalized type variable
may be instantiated differently

id2 : Bool --> Bool
id1 : Int --> Int

Solution: Generalize the type variable

When can we

generalize?

September 29, 2011

 L06-32

A mini Language
to study Hindley-Milner Types

• There are no types in the syntax of the language!

• The type of each subexpression is derived by the

Hindley-Milner type inference algorithm.

Expressions
E ::= c constant

| x variable
| x. E abstraction
| (E1 E2) application
| let x = E1 in E2 let-block

September 29, 2011

 L06-33

A Formal Type System

Note, all the ’s occur in the beginning of a type scheme,
i.e., a type  cannot contain a type scheme 

Types
 ::=  base types

 | t type variables
 | 1 -> 2 Function types

Type Schemes
 ::= 
 | t. 

Type Environments
TE ::= Identifiers  Type Schemes

September 29, 2011

 L06-34

Instantiations

• Type scheme  can be instantiated into a type ’ by
substituting types for the bound variables of , i.e.,

 ’ = S  for some S s.t. Dom(S)  BV()

 - ’ is said to be an instance of  ( > ’)

 - ’ is said to be a generic instance of  when S

maps variables to new variables.

 = t1...tn. 

Example:
  =t1. t1 -> t2

t3 -> t2 is a generic instance of 
Int -> t2 is a non generic instance of 

September 29, 2011

 L06-35

Generalization aka Closing

• Generalization introduces polymorphism

• Quantify type variables that are free in 
but not free in the type environment (TE)

• Captures the notion of new type variables
of 

Gen(TE,) =  t1...tn. 
 where { t1...tn } = FV() - FV(TE)

September 29, 2011

 L06-36

HM Type Inference Rules

(App)
Γ⊢𝑒1:𝜏→𝜏′ Γ⊢𝑒2:𝜏

Γ⊢ 𝑒1𝑒2 :𝜏′

(Abs)
Γ ; 𝑥:𝜏 ⊢𝑒∶𝜏′

Γ⊢𝜆𝑥.𝑒∶𝜏→𝜏′

(Var)
𝑥:𝜎 ∈Γ 𝜎≥𝜏

Γ⊢𝑥:𝜏

(Const)
𝑡𝑦𝑝𝑒𝑜𝑓(𝑐)≥𝜏

Γ⊢𝑐:𝜏

(Let)
Γ; 𝑥:𝜏 ⊢𝑒1:𝜏 Γ; 𝑥:𝐺𝑒𝑛(Γ,𝜏) ⊢𝑒2:𝜏′

Γ⊢(𝑙𝑒𝑡 𝑥=𝑒1 𝑖𝑛 𝑒2):𝜏′

September 29, 2011

𝑥 can be considered of type 𝜏 as
long as its type as specified in the
environment can be specialized to
𝜏 (i.e. 𝜏 is an instance of 𝜎)

Note: x has a different type in 𝑒1
than in 𝑒2. In 𝑒1, x is not a
polymorphic type, but in 𝑒2 it gets
generalized into one.

Remember, 𝜏 stands for a
monotype, 𝜎 for a
polymorphic type

 L06-37

HM Inference Algorithm

Def W(TE, e) = Case e of
c = ({}, Typeof(c))
x =

x.e =

(e1 e2) =

 let x = e1 in e2
 =

u’s
represent
new type
variables

let (S1, 1) = W(TE, e1);
 (S2, 2) = W(S1(TE), e2);
 S3 = Unify(S2(1), 2 -> u);
in (S3 S2 S1, S3(u))

if (x  Dom(TE)) then Fail
else let t1...tn. = TE(x);
 in ({ }, [ui / ti] )

let (S1, 1) = W(TE + { x : u }, e);
in (S1, S1(u) -> 1)

let (S1, 1) = W(TE + {x : u}, e1);
 S2 = Unify(S1(u), 1);
  = Gen(S2 S1(TE), S2(1));
 (S3, 2) = W(S2 S1(TE) + {x : }, e2);
in (S3 S2 S1, 2)

September 29, 2011

 L06-38

Hindley-Milner: Example

x. let f = y.x

 in (f 1, f True)

W(, A) =

W({x : u1}, B) =

([] , u1)

([] , u3 -> u1)

u3.u3 -> u1

TE = {x : u1, f : u3.u3 -> u1}

([] , u4 -> u1)

W(TE, 1) = ([] , Int)
[Int / u4 , u1 / u5]

([] , u1)

([] , (u1,u1))

Unify(u4 -> u1 , Int -> u5) =

W({x : u1, f : u2, y : u3}, x) =

W({x : u1, f : u2}, y.x) =

Gen({x : u1}, u3 -> u1) =

W(TE, (f 1)) =

([] , u1 -> (u1,u1))

W(TE, f) =

Unify(u2 , u3 -> u1) =

A B

[(u3 -> u1) / u2]

...
September 29, 2011

 L06-39

Important Observations

• Do not generalize over type variables used
elsewhere

• Let is the only way of defining polymorphic
constructs

• Generalize the types of let-bound identifiers
only after processing their definitions

September 29, 2011

 L06-40

Properties of HM Type Inference

• It is sound with respect to the type system.
 An inferred type is verifiable.

• It generates most general types of expressions.
 Any verifiable type is inferred.

• Complexity

PSPACE-Hard
Nested let blocks

September 29, 2011

 L06-41

Extensions

• Type Declarations
 Sanity check; can relax restrictions

• Incremental Type checking
 The whole program is not given at the same
 time, sound inferencing when types of some
 functions are not known

• Typing references to mutable objects
 Hindley-Milner system is unsound for a
 language with refs (mutable locations)

• Overloading Resolution

September 29, 2011

 L06-42

HM Limitations:
 -bound vs Let-bound Variables

Only let-bound identifiers can be instantiated
differently.

let
 twice f x = f (f x)
in
 twice twice succ 4

 versus

let
 twice f x = f (f x)
 foo g = (g g succ) 4
in
 foo twice

foo is not
type correct !

Generic vs. Non-generic type variables

September 29, 2011

 L06-43

Puzzle: Another set of Inference rules

(Gen) TE ├ e :  t  FV(TE)

 TE ├ e : t.

(Spec) TE ├ e : t.

 TE ├ e :  [u/t]

(Var) (x : )  TE

 TE ├ x : 

(Let) TE+{x:} ├ e1:  TE+{x:} ├ e2:’

 TE ├ (let x = e1 in e2) : 
’

(App) and (Abs) rules remain unchanged.

Sound but
no
inference
algorithm !

September 29, 2011

MIT OpenCourseWare

http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

