More Symple Types
Progress And Preservation

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory
M.I.T.

September 28, 2015

September 28, 2015 LO6-1

Formalizing a Type System
Recap

September 28, 2015

Static Semantics

e Typing rules
- Typing rules tell us how to derive typing judgments
— Very similar to derivation rules in Big Step OS

premises

Judgment

e EX. Language of Expressions

x:T eT ' Fel:int [' FeZ:int
[Vx:T ' -N:int [Fel+e2:int

LO6-3

Ex. Language of Expressions

x:T el ' Fel:int [Fe2:int
' mx:T I' -N:int ' Fel+e2:int

e Show that the following Judgment is

valid
x:int,y:int - x+ (y+5):int

x:int,y:int + x:int x:int,y:int + (y +5) :int
x:int,y:int x4+ (y+5) :int

x:int € x:int,y:int x:int,y:int +y:int x:int,y:int + 5 :int
x:int,y:int + x:int x:int,y:int + (y +5):int
x:int,y:int - x+ (y +5) :int

LO6-4

Simply Typed A Calculus (F,)

e Basic Typing Rules

x:TET [x:t, FeT, [Fe:T' =>1 ket

' Fx:7 ' -(Axitye):ty =1, [Fee,:T

e EXxtensions

[Fel:int ' Fe2:int T Fel:int ' -e2:int
[WN:int ' Fel+e2:int I el =e¢€2:bool

[me:bool T ke i1 I'Feit
[-if ethene,elsees: 7

LO6-5

Example

e [s this a valid typing judgment?

F (Ax: bool Ay:int if x thenyelsey+ 1):bool = int = int

e How about this one?

F (Ax:int Ay:bool x + y):int = bool = int

LO6-6

Example

e What's the type of this function?
(Af. Ax. if x = 1 then x else (f f (x-1)) * x)

x:TETD Ixt Fer, Fe:T' 57T ket
x:71 ' -(Ax:ty €)1y 2 T, [Fee,:T
[hel:iint T re2:int Lreleint T rez:int
[-N:int ' mel+e2:int [' el =e2:bool

[—e:bool T ke T T ket
[-if ethene,elsees: T

— Hint: This IS a trick question

LO6-7

Simply Typed A Calculus (F,)

e We have defined a really strong type
system on A-calculus

- It's so strong, it won't even let us write non-
terminating computation

- We can actually prove this!

LO6-8

Progress and Preservation

September 28, 2015

What makes a type system “correct”

e "Well typed programs never go wrong”

e Inductive argument

— Preservation: If a program is well typed it will stay well
typed in the next step of evaluation

- Progress: If a program is well typed now, it won’t go
wrong in the next step of evaluation

e What do we mean by “step of evaluation”?

September 28, 2015 L06-10

Preservation

e Using Big-Step semantics we can argue
global preservation

[Feq:TN eg2>e;, > T'hReyt

e Prove by induction on the structure of
derivation of e; - e,

September 28, 2015 L06-11

Proof by induction on Structure
of Evaluation

e Base cases: trivial

X=X Ax.e = Ax.e

e Inductive case is a little trickier

e; > Ax.e; eqle,/x] - e

€1 6, — €3

September 28, 2015 L06-12

Induction on the Structure of the
Derivation

e Inductive case e; > Ax.e; ejlex/x] - e3
€1 €2 — €3

- Given ' Fee,:7,o we wanttoshowthat I'-e3:7,5
- By our typing rule, we have

et =57, ket

[Fee:t.q0

- And by the IH, we have that Ax.e/: 7' = 7,4,

[x1T Fe':iT.q,
I -(Ax:T'e): T - T,

- Which again by the typing rule

— Now, we need to show that

[x:t' FeiToo AT Fe:iT = T Fefles/x]:Tors

- And from our IH

['Fejlea/x]: o1 2T Fe3itey
LO6-13

Small Step Semantics

e Big step goes directly from initial
program to result

e Small Step evaluates one step at a time

September 28, 2015 L06-14

Small Step Example

o Contexts

H: H+el|n+H|]

=0| Hel|
if H the ne1e|see2 |
H==el|n-=

e Local Reduction Rules
- nl +n2-> n (wheren = plus nl n2)
- nl == n2 2> b (where b =(equals n1 n2))
- iftruethen el elsee2 > el

— if false then el elsee2 - e2
- (Ax:t.el) v2 > [v2/x] el

e Global Reduction Rules
- H[r] > H[e] iff r> e

LO6-15

The proof strategy

e Progress Theorem

If Fe:t and e is not a value, then there is an e’ s.t.
e > e

e We can prove this through a

decomposition lemma

- If +e:r and e is not a value, then there are H and r
s.t. e = H[r]
— This guarantees one step of progress

LO6-16

Proving the Progress Theorem

If Fe:t and e is not a value, then there is an e’ s.t.
e > e

or equivalently, e = H[r]

e Proved by induction on the derivation of
F et

e Base case:
— Irreducible values

x:T€T Ixt Fert,
I'+-false:bool T +N:int [FX:T T +true: bool '+ = (Ax:itye):1y = 1

LO6-17

Proving the Progress Theorem

e Inductive case

[me:bool T ke i1 I'Feit
[-if ethene,elsees: 7

- by the IH, e can be irreducible,

e in which case it must be true or false and the
whole thing is a redex

— Or, it can be decomposed into H[r]

e in which case if H then el else e2 is a valid
context.

LO6-18

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

