

Simple Types

Armando Solar-Lezama

Computer Science and Artificial Intelligence Laboratory

M.I.T.
With content from Arvind and Adam Chlipala. Used with permission.

September 23, 2015

September 23, 2015 L05-1

Before we Start

Some more Coq

September 21, 2015 L05-2

Induction over natural numbers

N ::= O | S N

Induction principle:
To prove ∀n ∈ N. P(n):

Base case:
Show P(0).

Inductive case:

Assume P(n).

Show P(S(n)).

September 21, 2015 L05-3

Structural Induction

T ::= Leaf | Node T T

Induction principle:

To prove ∀ t ∈ T. P(t):

Base case:
Show P(Leaf).

Inductive case:
Assume P(t1).
Assume P(t2).
Show P(Node t1 t2).

September 21, 2015 L05-4

Another Example

E ::= Const N | Plus E E | Times E E

Induction principle:
To prove ∀ e ∈ E. P(e):

Base case: Inductive case 1: Inductive case 2:
Show P(Const n). Assume P(e1). Assume P(e1).

Assume P(e2). Assume P(e2).
Show P(Plus e1 e2). Show P(Times e1 e2).

September 21, 2015 L05-5

Proofs as a Datatype

even(n)
eveneven((0)0) even(n+2)

Example Derivations:
even(0)

even(0) even(2) ...and so on for all even numbers.

even(0) even(2) even(4)

even ::= Even0 : even(0)
| Even2 (even n) : even(n+2)

Examples:

EvenO : even(0)

Even2(EvenO) : even(2)

Even2(Even2(EvenO)) : even(4)
 L05-6

Induction on Proofs (Rule Induction)

even(n)
even(0) even(n+2)

even ::= Even0 : even(0)
| Even2 (even n) : even(n+2)

Induction principle:
To prove ∀ n ∈ N. even(n) ⇒ P(n):

Base case:
Show P(0).

Because I have a rule that if
(n) is even, it lets me prove
that (n+2) is even

Inductive case:

Assume P(n).

Show P(n+2).

Because I have a rule that
lets me prove even(0) so I
need to show that P(0) holds.

Also called Induction on the
Structure of Derivations

L05-7

More Rule Induction

eval(e1, n1) eval(e2, n2)
eval(Const n, n) eval(Plus e1 e2, n1 + n2)

eval ::= EvConst : eval (Const n, n)
| EvPlus (eval(e1, n1)) (eval(e2, n2))

: eval (Plus e1 e2, n1 + n2)

Induction principle:
To prove ∀ e ∈ E, n ∈ N. eval e n ⇒ P(e, n):

Inductive case: Base case: Assume P(e1, n1). Show P(Const n, n). Assume P(e2, n2).
Show P(Plus e1 e2,8n1 + n2).

L05-8

More Tactics

• induction N:
–	 Induction on the derivation of the [N]th hypothesis in the

conclusion
–	 (numbering goes left to right and starts at 1).

• destruct E
– Do case analysis on the constructor used to build term [E].

• assumption
–	 Prove a conclusion that matches a known hypothesis; like doing

apply H where H is the known hypothesis.

• eapply thm
–	 Like apply, but leaves placeholders for theorem parameters that

are not known yet.

• eassumption
–	 Like assumption, but also learns values for placeholders in the

process.

• rewrite <- H
–	 Like [rewrite], but rewrites right-to-left.

September 21, 2015	 L05-9

More powerful tactics

•	 generalize thm1,...,thmN
–	 Bring the statements of a set of theorems into the

goal explicitly so that other tactics don't need to
deduce them manually.

•	 firstorder
–	 Magic heuristic procedure for proofs based on first-

order logic rules.
–	 (It's undecidable in general, so don't get too

excited.)

September 21, 2015	 L05-10

And now some types!

September 21, 2015 L05-11

Why Types

let

in
f x = if x then 5 else 2

f 5+1

let

in
f x = if x then 5 else 2

f 6

let

in
f x = if x then 5 else 2

if 6 then 5 else 2
!!

September 23, 2015 L05-12

-

What to do in this situation?

• Options
1)	 Leave it up to the implementation

• that’s the C approach
• is it a good idea?

2)	 Provide a mechanism to identify and rule out such
“bad” programs

• type systems will allow us to do this!

• do any practical languages do this?
• untyped calculus works like this

3) Prescribe correct behavior for every program

• programs can only run if you can prove they
will execute to completion according to the
semantics of the language

• type systems are useful in this situation too.

L05-13



Self-application and Paradoxes

Self application, i.e., (x x) is dangerous.

Suppose:
u  y. if (y y) = a then b else a

What is (u u) ?
(u u)  if (u u) = a then b else a

Contradiction!!!

This was one of the original motivations for types

September 15, 2010 L05-14

What is a type system

•	 Narrow View
–	 It’s a mechanism for ensuring that variables only take values

from predefined sets
•	 Ex. Integers, Strings, Characters

–	 A mechanism for avoiding unchecked errors
•	 by ruling out programs with undefined behaviors
• by specifying how a program should fail (eg.

NullPointerException)

•	 Expansive View
–	 It’s a light-weight proof system and annotation mechanism for

efficiently checking for a specific property of interest
–	 Address bugs that go beyond corner-cases in the semantics

•	 Information flow violations
•	 deadlocks
•	 etc, etc, etc

L05-15

What are Types?

•	 A method of classifying objects (values) in
a language

x :: 

says object x has type or object x

belongs to a type 

• denotes a set of values.

This notion of types is different from types in
languages like C, where a type is a storage class
specifier.

September 23, 2015	 L05-16

 

Type Correctness

•	 If x :: then only those operations that are
appropriate to set may be performed on x.

•	 A program is type correct if it never performs
a wrong operation on an object.

- Add an Int and a Bool

- Head of an Int

- Square root of a list

September 23, 2015	 L05-17

Type Safety

•	 A language is type safe if only type
correct programs can be written in that
language.

•	 Most languages are not type safe, i.e.,
have “holes” in their type systems.

Fortran: Equivalence, Parameter passing
Pascal: Variant records, files
C, C++: Pointers, type casting

However, Java, Ada, CLU, ML, Id, Haskell,
Bluespec, etc. are type safe.

September 23, 2015	 L05-18

Type Declaration vs Reconstruction
•	 Languages where the user must declare the types

–	 CLU, Pascal, Ada, C, C++, Fortran, Java

•	 Languages where type declarations are not needed

and the types are reconstructed at run time

–	 Scheme, Lisp

•	 Languages where type declarations are generally not
needed but allowed, and types are reconstructed at
compile time
–	 ML, Id, Haskell, pH, Bluespec

A language is said to be statically typed if type-checking
is done at compile time

September 23, 2015	 L05-19

Polymorphism

•	 In a monomorphic language like Pascal,
one defines a different length function for
each type of list

•	 In a polymorphic language like ML, one
defines a polymorphic type (list t), where t
is a type variable, and a single function
for computing the length

•	 Haskell and most modern functional
languages have polymorphic types and
follow the Hindley-Milner type system.

Simple types = Non polymorphic types

more on polymorphic types – next time ...
September 23, 2015	 L05-20

Formalizing a Type System

September 23, 2015

Formalizing a type system

•	 The type system is almost never orthogonal to the
semantics of the language
–	 The types in a program can affect its behavior (e.g. operator

overloading)

• We don’t define the type system in isolation, we

define a typed language including definitions of

–	 The syntax
–	 dynamic semantics (e.g. operational semantics)
–	 static semantics

•	 also known as typing rules
•	 describe how types are assigned to elements in a program

–	 type soundness argument
• describe the relationship between static and dynamic

semantics

L05-22

“Hello” x

Basic notation

•	 The type system assigns types to elements in the
language
– basic notation: e : T (e is of type T)
–	 What is the type of :

5
 ?

• The types of some elements depends on the
environment

–	 basic notation
(Given environment Γ , we can derive that e is of type T)

– An environment associates types with free variables
– This is called a Judgment
– Ex.

L05-23

Static Semantics

• Typing rules
– Typing rules tell us how to derive typing judgments
– Very similar to derivation rules in Big Step OS

• Ex. Language of Expressions

L05-24

Ex. Language of Expressions

• Show that the following Judgment is
valid

L05-25

Calculus Simply Typed (F1)

• Basic Typing Rules

• Extensions

L05-26

Example

• Is this a valid typing judgment?

• How about this one?

L05-27

f x

Example

• What’s the type of this function?
.(. if x = 1 then x else (f f (x-1)) * x)

– Hint: This IS a trick question

L05-28

i
 -

, i

–	 It’s so strong t won’t even let us write non-
terminating computation

•	 We have def ned a really strong type
system on calculus

Calculus Simply Typed (F1)

–	 We can actually prove this!

L05-29

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

