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Before we Start
 
Some more Coq
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Induction over natural numbers
 

N ::= O | S N 

Induction principle: 
To prove ∀n ∈ N. P(n):
 

Base case: 
Show P(0). 

Inductive case:
 
Assume P(n).
 
Show P(S(n)).
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Structural Induction
 

T ::= Leaf | Node T T
 

Induction principle:
 
To prove ∀ t ∈ T. P(t):
 

Base case: 
Show P(Leaf). 

Inductive case: 
Assume P(t1). 
Assume P(t2). 
Show P(Node t1 t2). 
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Another Example
 

E ::= Const N | Plus E E | Times E E
 

Induction principle: 
To prove ∀ e ∈ E. P(e): 

Base case: Inductive case 1: Inductive case 2: 
Show P(Const n). Assume P(e1). Assume P(e1). 

Assume P(e2). Assume P(e2). 
Show P(Plus e1 e2). Show P(Times e1 e2). 
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Proofs as a Datatype
 

even(n) 
eveneven((0)0) even(n+2) 

Example Derivations: 
even(0) 

even(0) even(2) ...and so on for all even numbers. 

even(0) even(2) even(4) 

even ::= Even0 : even(0) 
| Even2 (even n) : even(n+2) 

Examples:

EvenO : even(0)

Even2(EvenO) : even(2)

Even2(Even2(EvenO)) : even(4)
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Induction on Proofs (Rule Induction) 

even(n) 
even(0) even(n+2) 

even ::= Even0 : even(0) 
| Even2 (even n) : even(n+2) 

Induction principle: 
To prove ∀ n ∈ N. even(n) ⇒ P(n):
 

Base case: 
Show P(0). 

Because I have a rule that if 
(n) is even, it lets me prove 
that (n+2) is even 

Inductive case:
 
Assume P(n).
 
Show P(n+2).
 

Because I have a rule that 
lets me prove even(0) so I 
need to show that P(0) holds. 

Also called Induction on the 
Structure of Derivations 
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More Rule Induction
 

eval(e1, n1) eval(e2, n2) 
eval(Const n, n) eval(Plus e1 e2, n1 + n2) 

eval ::= EvConst : eval (Const n, n) 
| EvPlus (eval(e1, n1)) (eval(e2, n2)) 

: eval (Plus e1 e2, n1 + n2) 

Induction principle: 
To prove ∀ e ∈ E, n ∈ N. eval e n ⇒ P(e, n): 

Inductive case: Base case: Assume P(e1, n1). Show P(Const n, n). Assume P(e2, n2). 
Show P(Plus e1 e2,8n1 + n2). 
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More Tactics
 

• induction N: 
–	 Induction on the derivation of the [N]th hypothesis in the 

conclusion 
–	 (numbering goes left to right and starts at 1). 

• destruct E 
– Do case analysis on the constructor used to build term [E]. 

• assumption 
–	 Prove a conclusion that matches a known hypothesis; like doing 

apply H where H is the known hypothesis. 

• eapply thm 
–	 Like apply, but leaves placeholders for theorem parameters that 

are not known yet. 

• eassumption 
–	 Like assumption, but also learns values for placeholders in the 

process. 

• rewrite <- H 
–	 Like [rewrite], but rewrites right-to-left. 
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More powerful tactics
 

•	 generalize thm1,...,thmN 
–	 Bring the statements of a set of theorems into the 

goal explicitly so that other tactics don't need to 
deduce them manually. 

•	 firstorder 
–	 Magic heuristic procedure for proofs based on first-

order logic rules. 
–	 (It's undecidable in general, so don't get too 

excited.) 
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And now some types!
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Why Types
 

let 

in 
f x = if x then 5 else 2 

f 5+1 

let 

in 
f x = if x then 5 else 2 

f 6 

let 

in 
f x = if x then 5 else 2 

if 6 then 5 else 2 
!! 

September 23, 2015 L05-12 



   
  

 
    

 
   

   
  

   
  

-  
  

   

What to do in this situation?
 

• Options 
1)	 Leave it up to the implementation 

• that’s the C approach 
• is it a good idea? 

2)	 Provide a mechanism to identify and rule out such 
“bad” programs 

• type systems will allow us to do this! 

• do any practical languages do this? 
• untyped calculus works like this 

3) Prescribe correct behavior for every program 

• programs can only run if you can prove they 
will execute to completion according to the 
semantics of the language 

• type systems are useful in this situation too. 
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Self-application and Paradoxes
 

Self application, i.e., (x x) is dangerous. 

Suppose: 
u  y. if (y y) = a then b else a 

What is (u u) ? 
(u u)  if (u u) = a then b else a 

Contradiction!!! 

This was one of the original motivations for types
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What is a type system
 

•	 Narrow View 
–	 It’s a mechanism for ensuring that variables only take values 

from predefined sets 
•	 Ex. Integers, Strings, Characters 

–	 A mechanism for avoiding unchecked errors 
•	 by ruling out programs with undefined behaviors 
• by specifying how a program should fail (eg. 

NullPointerException) 

•	 Expansive View 
–	 It’s a light-weight proof system and annotation mechanism for 

efficiently checking for a specific property of interest 
–	 Address bugs that go beyond corner-cases in the semantics 

•	 Information flow violations 
•	 deadlocks 
•	 etc, etc, etc 
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What are Types?
 

•	 A method of classifying objects (values) in
a language 

x :: 

says object x has type or object x
 
belongs to a type 
 

• denotes a set of values. 

This notion of types is different from types in
languages like C, where a type is a storage class 
specifier. 
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Type Correctness
 

•	 If x :: then only those operations that are
appropriate to set may be performed on x. 

•	 A program is type correct if it never performs
a wrong operation on an object. 

- Add an Int and a Bool
 
- Head of an Int
 
- Square root of a list
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Type Safety
 

•	 A language is type safe if only type 
correct programs can be written in that
language. 

•	 Most languages are not type safe, i.e.,
have “holes” in their type systems. 

Fortran: Equivalence, Parameter passing 
Pascal: Variant records, files 
C, C++: Pointers, type casting 

However, Java, Ada, CLU, ML, Id, Haskell, 
Bluespec, etc. are type safe. 
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Type Declaration vs Reconstruction 
•	 Languages where the user must declare the types 

–	 CLU, Pascal, Ada, C, C++, Fortran, Java 

•	 Languages where type declarations are not needed
 
and the types are reconstructed at run time
 
–	 Scheme, Lisp 

•	 Languages where type declarations are generally not 
needed but allowed, and types are reconstructed at 
compile time 
–	 ML, Id, Haskell, pH, Bluespec 

A language is said to be statically typed if type-checking 
is done at compile time 

September 23, 2015	 L05-19 



 
  

  

  
 

  
  

   

 

  

 
  

Polymorphism
 

•	 In a monomorphic language like Pascal, 
one defines a different length function for
each type of list 

•	 In a polymorphic language like ML, one 
defines a polymorphic type (list t), where t
is a type variable, and a single function 
for computing the length 

•	 Haskell and most modern functional 
languages have polymorphic types and
follow the Hindley-Milner type system. 

Simple types = Non polymorphic types 

more on polymorphic types – next time ... 
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Formalizing a Type System
 

September 23, 2015 



    
 

  

   
 

 
  

 
    

 
    

Formalizing a type system
 

•	 The type system is almost never orthogonal to the 
semantics of the language 
–	 The types in a program can affect its behavior (e.g. operator 

overloading) 

• We don’t define the type system in isolation, we
 
define a typed language including definitions of
 
–	 The syntax 
–	 dynamic semantics (e.g. operational semantics) 
–	 static semantics 

•	 also known as typing rules 
•	 describe how types are assigned to elements in a program 

–	 type soundness argument 
• describe the relationship between static and dynamic 

semantics 
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Basic notation
 

•	 The type system assigns types to elements in the 
language 
– basic notation: e : T (e is of type T) 
–	 What is the type of :
 

5
 ?
 

• The types of some elements depends on the 
environment 

–	 basic notation 
(Given environment Γ , we can derive that e is of type T) 

– An environment associates types with free variables 
– This is called a Judgment 
– Ex. 
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Static Semantics
 

• Typing rules 
– Typing rules tell us how to derive typing judgments 
– Very similar to derivation rules in Big Step OS 

• Ex. Language of Expressions
 

L05-24
 



 

  

Ex. Language of Expressions
 

• Show that the following Judgment is 
valid 
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Calculus Simply Typed (F1)
 

• Basic Typing Rules 

• Extensions
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Example
 

• Is this a valid typing judgment?
 

• How about this one?
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f x        

  

Example
 

• What’s the type of this function? 
.( . if x = 1 then x else (f f (x-1) ) * x) 

– Hint: This IS a trick question
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–	 It’s so strong t won’t even let us write non-
terminating computation 

•	 We have def ned a really strong type 
system on calculus 

Calculus Simply Typed (F1)
 

–	 We can actually prove this! 
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