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Recursion and Fixed Point Equations 

Recursive functions can be thought of as 
solutions of fixed point equations: 
 

fact = n. Cond (Zero? n)  1  (Mul n (fact (Sub n 1))) 

Suppose 
  

H    = f.n.Cond (Zero? n) 1 (Mul n (f (Sub n 1))) 
 

then 
       

fact = H  fact 
 

   fact is a fixed point of function H! 
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Fixed Point Equations 

  f :  D  D 

A fixed point equation has the form  

   f(x) = x 

We want to consider fixed-point equations 
whose solutions are functions, i.e., sets that 
contain their function spaces 
 domain theory, Scottary, ...  

Its solutions are called the fixed points of f 

because if xp is a solution then 

 xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ... 
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An example 

Consider 

f n = if n=0 then 1 

              else (if n=1 then f 3 else f (n-2)) 

H = f.n.Cond(n=0 , 1, Cond(n=1, f 3, f (n-2)) 

Is there an fp such that fp = H fp ? 

f1 n = 1  if n is even 
 =    otherwise 

f1 contains no arbitrary information and is said to be the 
least fixed point (lfp) 
   
Under the assumption of monotonicity and continuity least 
fixed points are unique and computable 

f2 n = 1  if n is even 
 = 5   otherwise 
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• Recursion requires repeated application of a function 
 

• Self application allows us to recreate the original term 
 

• Consider: W  =  (x. x x) (x. x x) 
 

• Notice b-reduction of W leaves W :  W      W 
 

• Now to get F (F (F (F ...))) we insert F in W: 
   WF  =  (x.F (x x)) (x.F (x x)) 

 which b-reduces to: 
WF  F(x. F(x x))(x. F(x x))  
     F WF  F(F WF)  F(F(F WF))  ...  

 
• Now  -abstract F to get a Fix-Point Combinator: 
 
 
 
 
 
 

Computing a Fixed Point 

Y    f.(x. (f (x x))) (x.(f (x x))) 
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Y : A Fixed Point Operator 

Notice 
Y F   (x.F (x x)) (x.F (x x)) 

   F (x.F (x x)) (x.F (x x)) 
     F (Y F) 
 
F (Y F) = Y F    (Y F) is a fixed point of F 
 

Y computes the least fixed point of any function ! 
 
There are many different fixed point operators. 

Y    f.(x. (f (x x))) (x.(f (x x))) 
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Mutual Recursion 

odd = H1 even 
even = H2 odd 
 where   
  H1 = f.n.Cond(n=0, False, f(n-1)) 
  H2 = f.n.Cond(n=0, True,  f(n-1)) 

odd  n = if n==0 then False else even (n-1) 

even n = if n==0 then True  else odd  (n-1) 

substituting “H2 odd” for even 
odd = H1 (H2 odd)  
  = H odd where  H = 

 odd = Y H 

f. H1 (H2 f) 

Can we express 

odd using Y ? 
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Self-application and Paradoxes 

Self application, i.e., (x x) is dangerous.   
 

Suppose: 
              u    y. if (y y) = a then b else a 
What is (u u) ? 
   (u u)  if (u u) = a then b else a 
 

                                    Contradiction!!! 
 
Any semantics of -calculus has to make sure that 
functions such as u have the meaning , i.e. 
“totally undefined” or “no information”. 
 
Self application also violates every type discipline. 
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Intro to Coq 
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Warning 

I am not a Coq Expert 
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Formal Reasoning About Programs  

• New course Prof. Adam Chlipala will teach 
next semester 

• An introduction to a spectrum of techniques 
for rigorous mathematical reasoning about 
correctness of software, emphasizing 
commonalities across approaches.   

• Taught around a formalization of all the 
different correctness approaches with the Coq 
proof assistant 

• Will go into depth into different program 
logics, different approaches to formalize 
concurrency, behavioral refinement of 
interacting modules, etc. 
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Some useful references 

• The reference manual isn't bad: 
– http://coq.inria.fr/distrib/current/refman/

• Prof. Chlipala’s book Certified Programming with 
Dependent Types  
– A draft is available online (http://adam.chlipala.net/cpdt/)

– most of what it covers goes beyond the scope of 6.820. 

• Another popular book: Bertot & Casteran, 
Interactive Theorem Proving and Program 
Development (Coq'Art) 
– https://www.labri.fr/perso/casteran/CoqArt/

• A popular online book that uses Coq to introduce 
ideas in semantics: Software Foundations by 
Pierce et al. 
– http://www.cis.upenn.edu/~bcpierce/sf/
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Key ideas 

• Introduce Definitions and theorems 

• Prove them by applying simple deductive 
steps called tactics 

 

Example: Defining Natural numbers 

 

Inductive nat := O | S (n : nat). 

Fixpoint plus (n m : nat) : nat := 
  match n with 
    | O => m 
    | S n' => S (plus n' m) 
  end. 
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Proving theorems with tactics 

• Basic syntax to introduce lemmas and 
theorems 

– Lemma O_plus : forall n, 
  plus O n = n. 
Proof. 
(* Sequence of tactics *) 
Qed. 
 

• Lemma and Theorem are interchangeable 
(You can also say Remark, Corollary, Fact or 
Proposition)  
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Tactics 

• They instruct Coq on the steps to take to 
prove a theorem 

• reflexivity 
– prove an equality goal that follows by normalizing 

terms. 

• induction x 
– prove goal by induction on quantified variable [x] 

– Structural Induction: X is any recursively defined 
structure 

– All variables appearing _before_ [x] will remain 
_fixed_ throughout the induction! 
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More tactics 

• simpl 
– apply standard heuristics for computational 

simplification in conclusion. 

– Often it will involve doing some 𝛽 reduction 

• rewrite H 
– use (potentially quantified) equality [H] to rewrite 

in the conclusion. 

• intros  
– move quantified variables and/or hypotheses 

"above the double line. 

• apply thm 
– apply a named theorem, reducing the goal into one 

new subgoal for each of the theorem's hypotheses, 
if any. 

 

 September 21, 2015 



 L02-17 

And a few more 

• assumption 
–  Prove a conclusion that matches a known 

hypothesis. 

• destruct E 
– Do case analysis on the constructor used to build 

term [E]. 
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