
 L02-1

Recursion and Intro to Coq

Armando Solar Lezama
Computer Science and Artificial Intelligence Laboratory

M.I.T.

With content from Arvind and Adam Chlipala. Used with permission.

September 21, 2015

September 21, 2015

 L02-2

Recursion and Fixed Point Equations

Recursive functions can be thought of as
solutions of fixed point equations:

fact = n. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))

Suppose

H = f.n.Cond (Zero? n) 1 (Mul n (f (Sub n 1)))

then

fact = H fact

 fact is a fixed point of function H!

September 21, 2015

 L02-3

Fixed Point Equations

 f : D  D

A fixed point equation has the form

 f(x) = x

We want to consider fixed-point equations
whose solutions are functions, i.e., sets that
contain their function spaces
 domain theory, Scottary, ...

Its solutions are called the fixed points of f

because if xp is a solution then

 xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ...

September 21, 2015

 L02-4

An example

Consider

f n = if n=0 then 1

 else (if n=1 then f 3 else f (n-2))

H = f.n.Cond(n=0 , 1, Cond(n=1, f 3, f (n-2))

Is there an fp such that fp = H fp ?

f1 n = 1 if n is even
 =  otherwise

f1 contains no arbitrary information and is said to be the
least fixed point (lfp)

Under the assumption of monotonicity and continuity least
fixed points are unique and computable

f2 n = 1 if n is even
 = 5 otherwise

September 21, 2015

 L02-5

• Recursion requires repeated application of a function

• Self application allows us to recreate the original term

• Consider: W = (x. x x) (x. x x)

• Notice b-reduction of W leaves W : W  W

• Now to get F (F (F (F ...))) we insert F in W:
 WF = (x.F (x x)) (x.F (x x))

 which b-reduces to:
WF  F(x. F(x x))(x. F(x x))
  F WF  F(F WF)  F(F(F WF))  ...

• Now  -abstract F to get a Fix-Point Combinator:

Computing a Fixed Point

Y  f.(x. (f (x x))) (x.(f (x x)))

September 21, 2015

 L02-6

Y : A Fixed Point Operator

Notice
Y F  (x.F (x x)) (x.F (x x))

  F (x.F (x x)) (x.F (x x))
  F (Y F)

F (Y F) = Y F (Y F) is a fixed point of F

Y computes the least fixed point of any function !

There are many different fixed point operators.

Y  f.(x. (f (x x))) (x.(f (x x)))

September 21, 2015

 L02-7

Mutual Recursion

odd = H1 even
even = H2 odd
 where
 H1 = f.n.Cond(n=0, False, f(n-1))
 H2 = f.n.Cond(n=0, True, f(n-1))

odd n = if n==0 then False else even (n-1)

even n = if n==0 then True else odd (n-1)

substituting “H2 odd” for even
odd = H1 (H2 odd)
 = H odd where H =

 odd = Y H

f. H1 (H2 f)

Can we express

odd using Y ?

September 21, 2015

 L02-8

Self-application and Paradoxes

Self application, i.e., (x x) is dangerous.

Suppose:
 u  y. if (y y) = a then b else a
What is (u u) ?
 (u u)  if (u u) = a then b else a

 Contradiction!!!

Any semantics of -calculus has to make sure that
functions such as u have the meaning , i.e.
“totally undefined” or “no information”.

Self application also violates every type discipline.

September 21, 2015

 L02-9

Intro to Coq

September 21, 2015

 L02-10

Warning

I am not a Coq Expert

September 21, 2015

So if I can do it, you can do it too!

 L02-11

Formal Reasoning About Programs

• New course Prof. Adam Chlipala will teach
next semester

• An introduction to a spectrum of techniques
for rigorous mathematical reasoning about
correctness of software, emphasizing
commonalities across approaches.

• Taught around a formalization of all the
different correctness approaches with the Coq
proof assistant

• Will go into depth into different program
logics, different approaches to formalize
concurrency, behavioral refinement of
interacting modules, etc.

September 21, 2015

 L02-12

Some useful references

• The reference manual isn't bad:
– http://coq.inria.fr/distrib/current/refman/

• Prof. Chlipala’s book Certified Programming with
Dependent Types
– A draft is available online (http://adam.chlipala.net/cpdt/)

– most of what it covers goes beyond the scope of 6.820.

• Another popular book: Bertot & Casteran,
Interactive Theorem Proving and Program
Development (Coq'Art)
– https://www.labri.fr/perso/casteran/CoqArt/

• A popular online book that uses Coq to introduce
ideas in semantics: Software Foundations by
Pierce et al.
– http://www.cis.upenn.edu/~bcpierce/sf/

September 21, 2015

http://coq.inria.fr/distrib/current/refman/
http://adam.chlipala.net/cpdt/
https://www.labri.fr/perso/casteran/CoqArt/
http://www.cis.upenn.edu/~bcpierce/sf/

 L02-13

Key ideas

• Introduce Definitions and theorems

• Prove them by applying simple deductive
steps called tactics

Example: Defining Natural numbers

Inductive nat := O | S (n : nat).

Fixpoint plus (n m : nat) : nat :=
 match n with
 | O => m
 | S n' => S (plus n' m)
 end.

September 21, 2015

Just a familiar

ADT and Recursive

Function Definition

 L02-14

Proving theorems with tactics

• Basic syntax to introduce lemmas and
theorems

– Lemma O_plus : forall n,
 plus O n = n.
Proof.
(* Sequence of tactics *)
Qed.

• Lemma and Theorem are interchangeable
(You can also say Remark, Corollary, Fact or
Proposition)

September 21, 2015

 L02-15

Tactics

• They instruct Coq on the steps to take to
prove a theorem

• reflexivity
– prove an equality goal that follows by normalizing

terms.

• induction x
– prove goal by induction on quantified variable [x]

– Structural Induction: X is any recursively defined
structure

– All variables appearing _before_ [x] will remain
fixed throughout the induction!

September 21, 2015

 L02-16

More tactics

• simpl
– apply standard heuristics for computational

simplification in conclusion.

– Often it will involve doing some 𝛽 reduction

• rewrite H
– use (potentially quantified) equality [H] to rewrite

in the conclusion.

• intros
– move quantified variables and/or hypotheses

"above the double line.

• apply thm
– apply a named theorem, reducing the goal into one

new subgoal for each of the theorem's hypotheses,
if any.

 September 21, 2015

 L02-17

And a few more

• assumption
– Prove a conclusion that matches a known

hypothesis.

• destruct E
– Do case analysis on the constructor used to build

term [E].

September 21, 2015

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

