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Meaning of a term 

• The semantics must distinguish between 
terms that should not be equal, i.e., if 

 0  x.y. y;   1  x.y. x y;     2  x.y. x (x y) 

Then x.y. y ≠  x.y. x y ≠  x.y. x (x y) 

• The semantics must equate terms that 
should be equal, i.e., the terms 
corresponding to (plus 0 1) and 1 must 
have the same meaning 

• A semantics is said to be fully abstract if 
two terms have different meaning according 
to the semantics then there exists a term 
that  can tell them apart 

 In the -calculus it is possible to define the 
meaning of a term almost syntactically  
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Information content of a term 

 Term     Instantaneous  
      information 
    (q.p.p (q a)) (z.z)   

 
 p.p ((z.z) a))    
 
 p.p  a      

Instantaneous information: A term obtained by 
replacing each redex in a term by  where  
stands for no information 

b-reductions monotonically increase information 

The meaning of a term is the maximum 
information that can be obtained by b-reductions 
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Is the meaning of a term simply 
its normal form? 

• Yes, but... 

• What if a term doesn’t have a normal form? 
– Is the meaning of such terms always  ? 

 

– Consider    = (x.x x)  (x.x x) 

– It doesn’t have a normal form, and its meaning is  

– What about x.x  ? 

– It doesn’t have a normal form, but its meaning is x.x   

 

• What if a term has more than one normal 
form? 
– It would have two meanings. BAD 

– Not possible in the -calculus because of Confluence ... 

September 16, 2015 



 L02-5 

Can the choice of redexes lead 
to different meaning? 

• A term may have multiple redexes 
1.  ((x.M) A) ((x.N) B) 

     ----- ---- ---- ---- 

2.  ((x.M) ((y.N)B)) 

                ---- ---- 

     ----------  --------  

•   followed by  does not necessary 
produce the same term as  followed by  
– Notice in the second example  can destroy or 

duplicate    

• Can our choice of redexes lead us to 
produce terms that are clearly different 
(e.g., x versus y.y)? 
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Church-Rosser Property
 

A reduction system is said to have the 
Church-Rosser property, if E       E1 and 
E       E2 then there exits a E3 such that 
E  E and E  1 3 2 E3. 

E E1

E2 E3 

also known as CR or Confluence
 

If a system has the CR property then the 
divergence in terms due to the choice of 
redexes can be corrected 
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Church-Rosser Theorem 

Theorem:   The -calculus is CR. 

   (Martin-Lof & Tate) 

 

• No satisfactory proof of this theorem was 
given until 1970 (30 years later!) 

• The proof is elegant 

• Requires showing how two divergent 
terms can be brought together in finite 
number of steps 
– strategy for choosing reductions 

CR  implies that if  NF exists it is unique 
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Interpreters 

An interpreter for the -calculus is a program to 

reduce -expressions to “answers”.  

 

Requires: 

• the definition of an answer 

 - e.g., normal form? 

• a reduction strategy   
 - a method to choose redexes in an expression 
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• Normal form (NF): an expression without redexes 
 
• Head normal form (HNF): 

x is HNF 
(x.E) is in HNF if E is in HNF 
(x E1 ... En) is in HNF 
 Semantically most interesting- represents the  
 information content of an expression 

 

• Weak head normal form (WHNF): 
An expression in which the left most application is not a 
redex. 

x is in WHNF 
(x.E) is in WHNF 
(x E1 ... En) is in WHNF 
      Practically most interesting  “Printable Answers” 

Definitions of “Answers” 
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Two Common Reduction 
Strategies 

• applicative order:  right-most innermost redex 
aka call by value evaluation 

   
• normal order:  left-most (outermost) redex 

  aka call by name evaluation 

( x.y) (( x.x x) ( x.x x)) 

1 

2 
applicative order 

normal order 
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Computing a normal form 

1. Every -expression does not have an answer 
     i.e., a NF or HNF or WHNF 
              (x.x x)  (x.x x)   =    
                         
 
3. Even if an expression has an answer, not all  
    reduction strategies may produce it 
              (x.y.y)   
 

leftmost redex: (x.y.y)    y.y 
innermost redex: (x.y.y)    

        

(x.y. y)    ... 
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Normalizing Strategy 

A reduction strategy is said to be normalizing  
if it terminates and produces an answer of an 
expression whenever the expression has an 
answer. 
 
  aka  the standard reduction  
 
Theorem:  Normal order (left-most) reduction 
strategy is normalizing for the -calculus. 
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A Call-by-name Interpreter 

Answers:  WHNF 
Strategy:   leftmost redex 
 
cn(E):  Definition by cases on E 
 
 E   =   x  | x.E  | E  E 

 
cn([[x]])  =  x 
cn([[x.E]]) =  x.E 
cn([[E1 E2]]) = let  f = cn(E1) 

in case f of 
 x.E3 = 
 _   = 

Apply the  function 
before evaluating 
the arguments  

f E2 

cn(E3[E2/x]) 

 ...  represents syntax 
[[...]] is my ppt approx 
[ [ ] ] 

Meta syntax 
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A Call-by-value Interpreter 

Answers:  WHNF 
Strategy:   rightmost-innermost redex but not 
  inside a -abstraction 
 
 
cv(E):  Definition by cases on E 
  E   =   x  | x.E  | E  E 

 
cv([[x]])  =  x 
cv([[x.E]]) =  x.E 
cv([[E1 E2]]) = let  f = cv(E1) 

     a = cv(E2)  
in case f of 
      x.E3  = 
        _     = 

Evaluate the  argument before 
applying the function 

cv(E3[a/x]) 
f a 
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Coding this in Haskell 

with 

Algebraic Data Types 
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Algebraic types 

• Algebraic types are tagged unions of products 

• Example 

data Shape = Line      Pnt  Pnt 

           | Triangle  Pnt  Pnt  Pnt 

           | Quad      Pnt  Pnt  Pnt  Pnt 
keyword 

 new type 

- new "constructors" (a.k.a. "tags", "disjuncts", "summands") 
- a k-ary constructor is applied to k type expressions 

"union" 

"products“ (fields) 
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Examples of Algebraic types 

 

 

 

data Bool = False | True 

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat 

data Maybe a  = Nothing | Just a 

data List a = Nil | Cons a (List a) 

data Tree a = Leaf a | Node (Tree a) (Tree a) 

data Tree’ a b = Leaf’ a 

               | Nonleaf’ b (Tree’ a b) (Tree’ a b) 

 

data Course  = Course String Int String (List Course)  

name   number  description   pre-reqs 
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Constructors are functions 

• Constructors can be used as functions to 
create values of the type 

let 

    l1 :: Shape 

    l1 = Line  e1  e2 

 

    t1 :: Shape = Triangle  e3  e4  e5 

    q1 :: Shape = Quad  e6  e7  e8  e9 

in 

    ... 

where each "eJ" is an expression of type "Pnt" 
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Pattern-matching on algebraic types 

• Pattern-matching is used to examine values 
of an algebraic type 

 

• A pattern-match has two roles: 
– A test: "does the given value match this pattern?" 

– Binding ("if the given value matches the pattern, bind 
the variables in the pattern to the corresponding parts 
of the value") 

• Clauses are examined top-to-bottom and 
left-to-right for pattern matching 
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s of
p1 p2  

anchorPnt :: Shape -> Pnt
anchorPnt s = case 

Line -> p1
Triangle p3 p4 p5 -> p3
Quad p6 p7 p8 p9 -> p6 
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Big Step Semantics 
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Big Step Operational Semantics 

• Model the execution in an abstract machine 

• Basic Notation: Judgments 

 

 
– describe how a program configuration is evaluated into a result 

– the configuration is usually a program fragment together with any 
state. 

• Basic Notation: Inference rules 
– define how to derive judgments  for an arbitrary program 

– also called derivation rules or evaluation rules 

– usually defined recursively 

Some alternative notations: 
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What evaluation order is this? 

Call by Name 

cn([[x]])      =  x 
cn([[x.E]]) =  x.E 
cn([[E1 E2]])=  let  f = cn(E1) 
                      in case f of 
                    x.E3  = cn(E3[E2/x]) 
               _       = f E2 

Do these semantics coincide? 
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What evaluation order is this? 

Call by Value 

cv([[x]])      =  x 
cv([[x.E]]) =  x.E 
cv([[E1 E2]])=  let  f = cv(E1) 
                           a = cv(E2) 
                      in case f of 
                    x.E3  = cv(E3[a/x]) 
               _       = f a 
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Recursion and the Y 
Combinator 
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Recursion and Fixed Point Equations 

Recursive functions can be thought of as 
solutions of fixed point equations: 
 

fact = n. Cond (Zero? n)  1  (Mul n (fact (Sub n 1))) 

Suppose 
  

H    = f.n.Cond (Zero? n) 1 (Mul n (f (Sub n 1))) 
 

then 
       

fact = H  fact 
 

   fact is a fixed point of function H! 
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Fixed Point Equations 

  f :  D  D 

A fixed point equation has the form  

   f(x) = x 

We want to consider fixed-point equations 
whose solutions are functions, i.e., sets that 
contain their function spaces 
 domain theory, Scottary, ...  

Its solutions are called the fixed points of f 

because if xp is a solution then 

 xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ... 
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An example 

Consider 

f n = if n=0 then 1 

              else (if n=1 then f 3 else f (n-2)) 

H = f.n.Cond(n=0 , 1, Cond(n=1, f 3, f (n-2)) 

Is there an fp such that fp = H fp ? 

f1 n = 1  if n is even 
 =    otherwise 

f1 contains no arbitrary information and is said to be the 
least fixed point (lfp) 
   
Under the assumption of monotonicity and continuity least 
fixed points are unique and computable 

f2 n = 1  if n is even 
 = 5   otherwise 
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• Recursion requires repeated application of a function 
 

• Self application allows us to recreate the original term 
 

• Consider:   =  (x. x x) (x. x x) 
 

• Notice b-reduction of  leaves  :         
 

• Now to get F (F (F (F ...))) we insert F in : 
   F  =  (x.F (x x)) (x.F (x x)) 

 which b-reduces to: 
F  F(x. F(x x))(x. F(x x))  
     F F  F(F F)  F(F(F F))  ...  

 
• Now  -abstract F to get a Fix-Point Combinator: 
 
 
 
 
 
 

Computing a Fixed Point 

Y    f.(x. (f (x x))) (x.(f (x x))) 
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Y : A Fixed Point Operator 

Notice 
Y F   (x.F (x x)) (x.F (x x)) 

   F (x.F (x x)) (x.F (x x)) 
     F (Y F) 
 
F (Y F) = Y F    (Y F) is a fixed point of F 
 

Y computes the least fixed point of any function ! 
 
There are many different fixed point operators. 

Y    f.(x. (f (x x))) (x.(f (x x))) 
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Mutual Recursion 

odd = H1 even 
even = H2 odd 
 where   
  H1 = f.n.Cond(n=0, False, f(n-1)) 
  H2 = f.n.Cond(n=0, True,  f(n-1)) 

odd  n = if n==0 then False else even (n-1) 

even n = if n==0 then True  else odd  (n-1) 

substituting “H2 odd” for even 
odd = H1 (H2 odd)  
  = H odd where  H = 

 odd = Y H 

f. H1 (H2 f) 

Can we express 

odd using Y ? 
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Self-application and Paradoxes 

Self application, i.e., (x x) is dangerous.   
 

Suppose: 
              u    y. if (y y) = a then b else a 
What is (u u) ? 
   (u u)  if (u u) = a then b else a 
 

                                    Contradiction!!! 
 
Any semantics of -calculus has to make sure that 
functions such as u have the meaning , i.e. 
“totally undefined” or “no information”. 
 
Self application also violates every type discipline. 
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-calculus with Combinator Y  

Recursive programs can be translated into the  
-calculus with constants and combinator Y. 
However,  
 

• Y violates every type discipline 
 
• translation is messy in case of mutually  
  recursive functions 

   
extend the -calculus with recursive let 
blocks. 

 
The let Calculus 
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