
 L02-1

What does my program mean?

Armando Solar Lezama
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Adapted from Arvind 2010. Used with permission.

September 16, 2015

September 16, 2015

 L02-2

Meaning of a term

• The semantics must distinguish between
terms that should not be equal, i.e., if

 0  x.y. y; 1  x.y. x y; 2  x.y. x (x y)

Then x.y. y ≠ x.y. x y ≠ x.y. x (x y)

• The semantics must equate terms that
should be equal, i.e., the terms
corresponding to (plus 0 1) and 1 must
have the same meaning

• A semantics is said to be fully abstract if
two terms have different meaning according
to the semantics then there exists a term
that can tell them apart

 In the -calculus it is possible to define the
meaning of a term almost syntactically

September 16, 2015

 L02-3

Information content of a term

 Term Instantaneous
 information
 (q.p.p (q a)) (z.z)

 p.p ((z.z) a))

 p.p a

Instantaneous information: A term obtained by
replacing each redex in a term by  where 
stands for no information

b-reductions monotonically increase information

The meaning of a term is the maximum
information that can be obtained by b-reductions

September 16, 2015



 p.p 

 p.p a

 L02-4

Is the meaning of a term simply
its normal form?

• Yes, but...

• What if a term doesn’t have a normal form?
– Is the meaning of such terms always  ?

– Consider  = (x.x x) (x.x x)

– It doesn’t have a normal form, and its meaning is 

– What about x.x  ?

– It doesn’t have a normal form, but its meaning is x.x 

• What if a term has more than one normal
form?
– It would have two meanings. BAD

– Not possible in the -calculus because of Confluence ...

September 16, 2015

 L02-5

Can the choice of redexes lead
to different meaning?

• A term may have multiple redexes
1. ((x.M) A) ((x.N) B)

 ----- ---- ---- ----

2. ((x.M) ((y.N)B))

 ---- ----

 ----------  --------

•  followed by  does not necessary
produce the same term as  followed by 
– Notice in the second example  can destroy or

duplicate  

• Can our choice of redexes lead us to
produce terms that are clearly different
(e.g., x versus y.y)?

September 16, 2015

Church-Rosser Property

A reduction system is said to have the
Church-Rosser property, if E   E1 and
E   E2 then there exits a E3 such that
E  E and E  1 3 2 E3.

E E1

E2 E3

also known as CR or Confluence

If a system has the CR property then the
divergence in terms due to the choice of
redexes can be corrected

September 16, 2015 L02-6

 L02-7

Church-Rosser Theorem

Theorem: The -calculus is CR.

 (Martin-Lof & Tate)

• No satisfactory proof of this theorem was
given until 1970 (30 years later!)

• The proof is elegant

• Requires showing how two divergent
terms can be brought together in finite
number of steps
– strategy for choosing reductions

CR implies that if NF exists it is unique

September 16, 2015

 L02-8

Interpreters

An interpreter for the -calculus is a program to

reduce -expressions to “answers”.

Requires:

• the definition of an answer

 - e.g., normal form?

• a reduction strategy
 - a method to choose redexes in an expression

September 16, 2015

 L02-9

• Normal form (NF): an expression without redexes

• Head normal form (HNF):

x is HNF
(x.E) is in HNF if E is in HNF
(x E1 ... En) is in HNF
 Semantically most interesting- represents the
 information content of an expression

• Weak head normal form (WHNF):
An expression in which the left most application is not a
redex.

x is in WHNF
(x.E) is in WHNF
(x E1 ... En) is in WHNF
 Practically most interesting  “Printable Answers”

Definitions of “Answers”

September 16, 2015

 L02-10

Two Common Reduction
Strategies

• applicative order: right-most innermost redex
aka call by value evaluation

• normal order: left-most (outermost) redex

 aka call by name evaluation

(x.y) ((x.x x) (x.x x))

1

2
applicative order

normal order

September 16, 2015

 L02-11

Computing a normal form

1. Every -expression does not have an answer
 i.e., a NF or HNF or WHNF
 (x.x x) (x.x x) = 
  

3. Even if an expression has an answer, not all
 reduction strategies may produce it
 (x.y.y) 

leftmost redex: (x.y.y)   y.y
innermost redex: (x.y.y)  

      

(x.y. y)   ...

September 16, 2015

 L02-12

Normalizing Strategy

A reduction strategy is said to be normalizing
if it terminates and produces an answer of an
expression whenever the expression has an
answer.

 aka the standard reduction

Theorem: Normal order (left-most) reduction
strategy is normalizing for the -calculus.

September 16, 2015

 L02-13

A Call-by-name Interpreter

Answers: WHNF
Strategy: leftmost redex

cn(E): Definition by cases on E

 E = x | x.E | E E

cn([[x]]) = x
cn([[x.E]]) = x.E
cn([[E1 E2]]) = let f = cn(E1)

in case f of
 x.E3 =
 _ =

Apply the function
before evaluating
the arguments

f E2

cn(E3[E2/x])

 ... represents syntax
[[...]] is my ppt approx
[[]]

Meta syntax

September 16, 2015

 L02-14

A Call-by-value Interpreter

Answers: WHNF
Strategy: rightmost-innermost redex but not
 inside a -abstraction

cv(E): Definition by cases on E
 E = x | x.E | E E

cv([[x]]) = x
cv([[x.E]]) = x.E
cv([[E1 E2]]) = let f = cv(E1)

 a = cv(E2)
in case f of
 x.E3 =
 _ =

Evaluate the argument before
applying the function

cv(E3[a/x])
f a

September 16, 2015

 L02-15

Coding this in Haskell

with

Algebraic Data Types

September 16, 2015

 L02-16

Algebraic types

• Algebraic types are tagged unions of products

• Example

data Shape = Line Pnt Pnt

 | Triangle Pnt Pnt Pnt

 | Quad Pnt Pnt Pnt Pnt
keyword

 new type

- new "constructors" (a.k.a. "tags", "disjuncts", "summands")
- a k-ary constructor is applied to k type expressions

"union"

"products“ (fields)

September 20, 2011

 L02-17

Examples of Algebraic types

data Bool = False | True

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Node (Tree a) (Tree a)

data Tree’ a b = Leaf’ a

 | Nonleaf’ b (Tree’ a b) (Tree’ a b)

data Course = Course String Int String (List Course)

name number description pre-reqs

September 20, 2011

 L02-18

Constructors are functions

• Constructors can be used as functions to
create values of the type

let

 l1 :: Shape

 l1 = Line e1 e2

 t1 :: Shape = Triangle e3 e4 e5

 q1 :: Shape = Quad e6 e7 e8 e9

in

 ...

where each "eJ" is an expression of type "Pnt"

September 20, 2011

 L02-19

Pattern-matching on algebraic types

• Pattern-matching is used to examine values
of an algebraic type

• A pattern-match has two roles:
– A test: "does the given value match this pattern?"

– Binding ("if the given value matches the pattern, bind
the variables in the pattern to the corresponding parts
of the value")

• Clauses are examined top-to-bottom and
left-to-right for pattern matching

September 20, 2011

s of
p1 p2

anchorPnt :: Shape -> Pnt
anchorPnt s = case

Line -> p1
Triangle p3 p4 p5 -> p3
Quad p6 p7 p8 p9 -> p6

 L02-20

Big Step Semantics

September 16, 2015

 L02-21

Big Step Operational Semantics

• Model the execution in an abstract machine

• Basic Notation: Judgments

– describe how a program configuration is evaluated into a result

– the configuration is usually a program fragment together with any
state.

• Basic Notation: Inference rules
– define how to derive judgments for an arbitrary program

– also called derivation rules or evaluation rules

– usually defined recursively

Some alternative notations:

 L02-22

What evaluation order is this?

Call by Name

cn([[x]]) = x
cn([[x.E]]) = x.E
cn([[E1 E2]])= let f = cn(E1)
 in case f of
 x.E3 = cn(E3[E2/x])
 _ = f E2

Do these semantics coincide?

 L02-23

What evaluation order is this?

Call by Value

cv([[x]]) = x
cv([[x.E]]) = x.E
cv([[E1 E2]])= let f = cv(E1)
 a = cv(E2)
 in case f of
 x.E3 = cv(E3[a/x])
 _ = f a

 L02-24

Recursion and the Y
Combinator

 L02-25

Recursion and Fixed Point Equations

Recursive functions can be thought of as
solutions of fixed point equations:

fact = n. Cond (Zero? n) 1 (Mul n (fact (Sub n 1)))

Suppose

H = f.n.Cond (Zero? n) 1 (Mul n (f (Sub n 1)))

then

fact = H fact

 fact is a fixed point of function H!

September 16, 2015

 L02-26

Fixed Point Equations

 f : D  D

A fixed point equation has the form

 f(x) = x

We want to consider fixed-point equations
whose solutions are functions, i.e., sets that
contain their function spaces
 domain theory, Scottary, ...

Its solutions are called the fixed points of f

because if xp is a solution then

 xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ...

September 16, 2015

 L02-27

An example

Consider

f n = if n=0 then 1

 else (if n=1 then f 3 else f (n-2))

H = f.n.Cond(n=0 , 1, Cond(n=1, f 3, f (n-2))

Is there an fp such that fp = H fp ?

f1 n = 1 if n is even
 =  otherwise

f1 contains no arbitrary information and is said to be the
least fixed point (lfp)

Under the assumption of monotonicity and continuity least
fixed points are unique and computable

f2 n = 1 if n is even
 = 5 otherwise

September 16, 2015

 L02-28

• Recursion requires repeated application of a function

• Self application allows us to recreate the original term

• Consider:  = (x. x x) (x. x x)

• Notice b-reduction of  leaves  :   

• Now to get F (F (F (F ...))) we insert F in :
 F = (x.F (x x)) (x.F (x x))

 which b-reduces to:
F  F(x. F(x x))(x. F(x x))
  F F  F(F F)  F(F(F F))  ...

• Now  -abstract F to get a Fix-Point Combinator:

Computing a Fixed Point

Y  f.(x. (f (x x))) (x.(f (x x)))

September 16, 2015

 L02-29

Y : A Fixed Point Operator

Notice
Y F  (x.F (x x)) (x.F (x x))

  F (x.F (x x)) (x.F (x x))
  F (Y F)

F (Y F) = Y F (Y F) is a fixed point of F

Y computes the least fixed point of any function !

There are many different fixed point operators.

Y  f.(x. (f (x x))) (x.(f (x x)))

September 16, 2015

 L02-30

Mutual Recursion

odd = H1 even
even = H2 odd
 where
 H1 = f.n.Cond(n=0, False, f(n-1))
 H2 = f.n.Cond(n=0, True, f(n-1))

odd n = if n==0 then False else even (n-1)

even n = if n==0 then True else odd (n-1)

substituting “H2 odd” for even
odd = H1 (H2 odd)
 = H odd where H =

 odd = Y H

f. H1 (H2 f)

Can we express

odd using Y ?

September 16, 2015

 L02-31

Self-application and Paradoxes

Self application, i.e., (x x) is dangerous.

Suppose:
 u  y. if (y y) = a then b else a
What is (u u) ?
 (u u)  if (u u) = a then b else a

 Contradiction!!!

Any semantics of -calculus has to make sure that
functions such as u have the meaning , i.e.
“totally undefined” or “no information”.

Self application also violates every type discipline.

September 16, 2015

 L02-32

-calculus with Combinator Y

Recursive programs can be translated into the
-calculus with constants and combinator Y.
However,

• Y violates every type discipline

• translation is messy in case of mutually
 recursive functions

 
extend the -calculus with recursive let
blocks.

The let Calculus

September 16, 2015

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

