The A-calculus

Armando Solar Lezama
Computer Science and Artificial Intelligence Laboratory
M.I.T.

Adapted from Arvind 2010.
Used with permission.

LO2-1

Functions

-~

f:D->R

[

Domain

e A function may be viewed as a set of
ordered pairs <d,r> whered € D and r € R

e But we need to specify a method of
computing value r corresponding to
argument d

e Important notations for this purpose were
developed in the 1930s

— A-calculus (Church)
— Turing machines (Turing)
— Partial recursive functions

September 13, 2011 L02-2

The A-calculus:
a simple type-free language

e a way of writing and applying functions
without having to give them names

e useful for studying evaluation orders,
termination, confluence...

e useful for studying various typing
systems

o often serves as a kernel language for
functional languages

September 13, 2011

LO2-3

Pure A-calculus: Syntax

E=Xx]|AX.E|EE
/ I N

variable abstraction application

1. application E, E,
v AN
function argument

- application is left associative
E, E; E; E,=(((E; Ey) E3) E,)

2. abstraction AX.E
VN
bound variable body
or formal parameter
- the scope of the dot in an abstraction extends as
far to the right as possible
AX XY =AX.(XY) =(AX.(XY)) = (AX.X Y) # (AX.X) Y

September 13, 2011 L02-4

Free and Bound Variables

e J-calculus follows lexical scoping rules

e Free variables of an expression

FV(x) = {X}
FV(E, E;) =|FV(E;) UFV(E,) ?
FV(Ax.E) =|FV(E) - {x} ?

e A variable occurrence which is not free in an
expression is said to be a bound variable of the
expression

combinator or closed A-expression: a
L-expression without free variables

September 13, 2011 L02-5

[3-substitution

(AX.E) E, —> E[E, /X]
replace all free occurrences of x in E with E,

E[A/X] is defined by cases on E:

variable

y[E./x]= E, if x =y

YI[E./X]=|Y otherwise ?
application

(E; E;)[EL/X] =| (E4[E/X] E,[E./X]) ?
abstraction

(Ay.E)[E./X] = Av.E; if X =vy

(AYy.E)IE/X] = Az.((E{[z/Y])[E./X]) otherwise
where z ¢ FV(E;) U FV(E,) U FV(x)

LO2-6

September 13, 2011

f-substitution: an example

(Ap.p (pq)) [(@apb)/q]

- (Az.z (z q)) [(@apb)/d]

— (rz.z (z (apb)))

September 13, 2011 LO2-7

A-Calculus as a Reduction
System

Syntax
E=Xx|AX.E| EE

Reduction Rule
a-rule: IX.E - AY.E [y/X] ify ¢ FV(E)
p-rule: (Ax.E) E, > E [E_,/X]
n-rule: (AX.EX) - E if Xx ¢ FV(E)

Redex
(AX.E) E,

Normal Form
An expression without redexes

September 13, 2011 L02-8

a and n Rules

a -rule says that the bound variables can be
renamed systematically:

(AX.X (Ax.@a X)) b = (Ay.y (AX.a X)) b

n-rule can turn any expression, including a
constant, into a function:

AX.a X —>, a

n -rule does not work in the presence of
types; we will not consider it any further

September 13, 2011

LO2-9

A Sample Reduction

C = AXAYyAf XY

H = Af.f (AX.Ay. X)

T = Aff (AX.AY. Y)
What is H (C a b) ?

(ML (Ax.Ay.x)) (Cab)
(Cab) (Ax.rAy.X)
(Mf.fa b) (AX.AY.X)
(AX.AY.X) @ b

(Ay.a) b

a

H(Cab) —» a
T(Cab) —» b

September 13, 2011 L02-10

R NS

Integers: Church's Representation

0= 2AX.AY. Y
1= AX.AY. XY
2 = AX.AY. X (XY)

H-E AX.AY. X (X...(X Y)...)

succ ?
If n is an integer, then (na b) gives n
nested a’s followed by b
= the successor of n should be |a (n a b)

SUCC

an.ra.Ab.a (na b) ?

September 13, 2011 L02-11

Integer Arithmetic

0= 2AX.AY. Y

1= AX.AY. XY
2 = AX.AY. X (XY)

H-E AX.AY. X (X...(X Y)...)

SUCC

plus

plus m n -- apply succ m times to n

mul

mul m n -- apply (plus n) to 0 m times

September 13, 2011

rn.ia.Ab.a (na b)

AM.ANn.m succ n

rm.an.m (plus n) O

L02-12

Booleans and Conditionals

September 13, 2011

True = AX.AY.X
False = AX.AV.Y
zero? = in. n (Ay.False) True

zero? 0 —» (Ax.Ay.y) (Ly.False) True
— (AY. y) True
— True

zero? 1 —» (Ox.ay.x y) (ry.False) True
— (Ly.False) True
— False

cond = Ab.AX.AYy. b X Y
cond True E,E, ™ E,
cond False E;E, —>» E

N)

L02-13

Meaning of a term

e The semantics must distinguish between

terms

that should not be equal, i.e., if

O=AX.AYy.Yy; 1=AX.AYy.XY; 2 =AX.AY. X (XY)

Then AX.AY. Y # AX.AY. XY F AX.AY. X (X Y)

e The semantics must equate terms that

should
corres

be equal, i.e., the terms
ponding to (plus 0 1) and 1 must

have t

ne same meaning

e A semantics is said to be fully abstract if

two te
to the

rms have different meaning according
semantics then there exists a term

that can tell them apart

September 13, 2011

In the A-calculus it is possible to define the
meaning of a term almost syntactically

LO2-14

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

