
 L02-1

The -calculus

Armando Solar Lezama
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Adapted from Arvind 2010.
Used with permission.

 L02-2

Functions

• A function may be viewed as a set of
ordered pairs <d,r> where d  D and r  R

• But we need to specify a method of
computing value r corresponding to
argument d

• Important notations for this purpose were
developed in the 1930s

– -calculus (Church)

– Turing machines (Turing)

– Partial recursive functions

. . .

.
.
.

Domain Range

f : D  R

September 13, 2011

 L02-3

The -calculus:
a simple type-free language

• a way of writing and applying functions
without having to give them names

• useful for studying evaluation orders,

termination, confluence...

• useful for studying various typing

systems

• often serves as a kernel language for

functional languages

September 13, 2011

 L02-4

Pure -calculus: Syntax

variable abstraction application

E = x | x.E | E E

1. application E1 E2

 function argument

- application is left associative
 E1 E2 E3 E4  (((E1 E2) E3) E4)

2. abstraction x.E

 bound variable body
or formal parameter

 - the scope of the dot in an abstraction extends as
 far to the right as possible

 x.x y  x.(x y)  (x.(x y))  (x.x y)  (x.x) y

September 13, 2011

 L02-5

Free and Bound Variables

• -calculus follows lexical scoping rules

• Free variables of an expression

FV(x) = {x}

FV(E1 E2) = ?

FV(x.E) = ?

• A variable occurrence which is not free in an
expression is said to be a bound variable of the
expression

FV(E1) U FV(E2)

FV(E) – {x}

combinator or closed -expression: a
-expression without free variables

September 13, 2011

 L02-6

ß-substitution

(x.E) Ea  E[Ea /x]
replace all free occurrences of x in E with Ea

E[A/x] is defined by cases on E:

variable
 y[Ea/x] = Ea if x  y

 y[Ea/x] = otherwise ?

application
 (E1 E2)[Ea/x] = ?

abstraction
 (y.E1)[Ea/x] = y.E1 if x  y

 (y.E1)[Ea/x] =

y

(E1[Ea/x] E2[Ea/x])

(y.E1[Ea/x]) otherwise

What if Ea contains y ?

? z.((E1[z/y])[Ea/x]) otherwise
 where z  FV(E1) U FV(Ea) U FV(x)

September 13, 2011

 L02-7

ß-substitution: an example

 (p.p (p q)) [(a p b) / q]

 (z.z (z q)) [(a p b) / q]

 (z.z (z (a p b)))

September 13, 2011

 L02-8

-Calculus as a Reduction
System

Syntax
E = x | x.E | E E

Reduction Rule
-rule: x.E  y.E [y/x] if y  FV(E)
-rule: (x.E) Ea  E [Ea/x]
-rule: (x.E x)  E if x  FV(E)

Redex

(x.E) Ea

Normal Form
An expression without redexes

September 13, 2011

 L02-9

 and  Rules

 -rule says that the bound variables can be
 renamed systematically:

 (x.x (x.a x)) b  (y.y (x.a x)) b

 -rule can turn any expression, including a
 constant, into a function:

 x.a x  a

 -rule does not work in the presence of
types; we will not consider it any further

September 13, 2011

 L02-10

 A Sample Reduction

 f.f (x.y.x)) (C a b)
 (C a b) (x.y.x)
 f.f a b) (x.y.x)
 (x.y.x) a b
 (y.a) b
 a

 
  H (C a b) a

 T (C a b) b

C  x.y.f.f x y
H  f.f (x.y. x)
T  f.f (x.y. y)

What is H (C a b) ?

September 13, 2011

 L02-11

0  x.y. y
1  x.y. x y
2  x.y. x (x y)
...
n  x.y. x (x...(x y)...)

succ ?

If n is an integer, then (n a b) gives n
nested a’s followed by b

 the successor of n should be

succ  ?

Integers: Church's Representation

September 13, 2011

n.a.b.a (n a b)

a (n a b)

 L02-12

0  x.y. y
1  x.y. x y
2  x.y. x (x y)
...
n  x.y. x (x...(x y)...)

succ  n.a.b.a (n a b)

plus  ?
plus m n -- apply succ m times to n

mul  ?

mul m n -- apply (plus n) to 0 m times

Integer Arithmetic

m.n.m succ n

m.n.m (plus n) 0

September 13, 2011

 L02-13

Booleans and Conditionals

True  x.y.x
False  x.y.y

zero?  n. n (y.False) True
zero? 0 ?

zero? 1 ?

 

 

 x.y.y) (y.False) True
 y. y) True
 True

 x.y.x y) (y.False) True
 (y.False) True
 False

 
 

cond  b.x.y. b x y
cond True E1 E2 ?
cond False E1 E2 ?

E1

E2

September 13, 2011

 L02-14

Meaning of a term

• The semantics must distinguish between
terms that should not be equal, i.e., if

 0  x.y. y; 1  x.y. x y; 2  x.y. x (x y)

Then x.y. y ≠ x.y. x y ≠ x.y. x (x y)

• The semantics must equate terms that
should be equal, i.e., the terms
corresponding to (plus 0 1) and 1 must
have the same meaning

• A semantics is said to be fully abstract if
two terms have different meaning according
to the semantics then there exists a term
that can tell them apart

 In the -calculus it is possible to define the
meaning of a term almost syntactically

September 13, 2011

MIT OpenCourseWare

http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

