
Node find (Node prev, Node cur, int key) {

 while (cur.key < key) {

 prev = cur;

 cur = cur.next;

 }

 return cur;

}

Foundations of Program Analysis

Armando Solar-Lezama

6.820

 L01-2

Course Staff

• Armando Solar-Lezama
– Instructor

sgoe12
Stamp

 L01-3

What this course is about

The top N good ideas in
programming languages
that you might be
embarrassed not to
know about. ;)

 L01-4

What this course is about

• How we define the meanings of programs and
programming languages unambiguously?

• How can we prove theorems about the behavior of
individual programs?

• How can we design programming tools to automate
that kind of understanding?

o Applications:
-finding bugs

-designing languages to prevent bugs

-synthesizing programs

-manipulating programs automatically (refactoring, optimization)

 L01-5

Course outline

o Functional Programming
- learn about lambda calculus, Haskell, and OCaml

- learn to make formal arguments about program behavior

o Type Theory
- learn how to design and reason about type systems

- use type-based analysis to find synchronization errors, avoid
information leaks and manage your memory efficiently

o Axiomatic Semantics/Program Logics
- a different view of program semantics

- learn how to make logical arguments about program
correctness

 L01-6

Course Outline

o Abstract Interpretation
- use abstraction to reason about the behavior

of the program under all possible inputs

o Model checking
- learn how to reason exhaustively about

program states

- learn how abstraction and symbolic reasoning
can help you find bugs in device drivers and
protocol designs

 L01-7

Big Ideas (recurring throughout the units)

Operational Semantics

(give programs meanings via stylized interpreters)

Program Proofs as Inductive Invariants

(all induction, all the time!)

Abstraction

(model programs with specifications)

Modularity

(break programs into pieces to analyze separately)

 L01-8

Skills

• Haskell

• Coq

• Ocaml

• Spin

 L01-9

Grading

o 6 homework assignments
- Each is 15-20% of your grade

- start on them early!

 L01-10

6 Homework Assignments

o Pset 1 (out now, due in about 2 weeks!)

- Practice functional programming

- Build some Lambda Calculus interpreters

o Pset 2
- Practice more functional programming

- Implement a type inference engine

- Practice writing proofs in Coq

o Pset 3
- How to make formal arguments about the properties of a type

system

- Coq proof of type safety for a simple language

o Pset 4
- Learn about SMT solvers

- Implement your own verifier for simple C-like programs

 L01-11

Homework Assignments Cont.

o Pset 5
- Implement an analysis to check for memory errors in C-like

programs

o Pset 6
- Practice LTL and CTL (two specification languages)

- Learn how to use a model checker

 L01-12 September 9, 2015

Functional Programming:
Functions and Types

September 9, 2015

Armando Solar Lezama
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Adapted from Arvind 2010

 L01-13

Function Execution by Substitution

 plus x y = x + y

1. plus 2 3  2 + 3  5

2. plus (2*3) (plus 4 5)

 plus 6 (4+5)

 plus 6 9

 6 + 9

 15

 (2*3) +(plus 4 5)

 6 + (4+5)

 6 + 9

 15

The final answer did not depend upon the order
in which reductions were performed

September 9, 2015

 L01-14

Confluence

Informally - The order in which reductions
are performed in a Functional program
does not affect the final outcome

This is true for all functional programs
regardless whether they are right or wrong

A formal definition will be given later

September 9, 2015

 L01-15

Blocks

let
 x = a * a
 y = b * b
in

 (x - y)/(x + y)

• a variable can have at most one definition
 in a block

• ordering of bindings does not matter

September 9, 2015

 L01-16

Layout Convention in Haskell

This convention allows us to omit many delimiters

let
 x = a * a
 y = b * b
in

 (x - y)/(x + y)

is the same as

let
 { x = a * a ;
 y = b * b ;}
in

 (x - y)/(x + y)

September 9, 2015

 L01-17

Lexical Scoping

let
 y = 2 * 2
 x = 3 + 4
 z = let
 x = 5 * 5
 w = x + y * x
 in
 w
in
 x + y + z

Lexically closest definition of a variable prevails.

def

use

September 9, 2015

 L01-18

Renaming Bound Identifiers
(-renaming)

let
 y = 2 * 2
 x = 3 + 4
 z = let
 x = 5 * 5
 w = x + y * x
 in
 w
in
 x + y + z



let
 y = 2 * 2
 x = 3 + 4
 z = let
 x’ = 5 * 5
 w = x’ + y * x’
 in
 w
in
 x + y + z

September 9, 2015

 L01-19

Lexical Scoping and -renaming

 plus x y = x + y

 plus' a b = a + b

plus and plus' are the same because plus'
can be obtained by systematic renaming of
bounded identifiers of plus

September 9, 2015

 L01-20

Capture of Free Variables

 f x = . . .
 g x = . . .
 foo f x = f (g x)

Suppose we rename the bound identifier f to g
in the definition of foo

 foo' g x = g (g x)

 foo  foo' ?

While renaming, entirely new names should be
introduced!

No

September 9, 2015

 L01-21

Curried functions

 plus x y = x + y

 let

 f = plus 1
in
 f 3

  (plus 1) 3  1 + 3  4

syntactic conventions:
 e1 e2 e3  ((e1 e2) e3)

 x + y  (+) x y

September 9, 2015

 L01-22

Local Function Definitions

integrate dx a b f =
 let
 sum x tot =

 if x > b then tot
 else sum (x+dx) (tot+(f x))
in
 (sum (a+dx/2) 0) * dx

f(x)

a b x

dx

Integral(a,b) = (f(a + dx/2) + f(a + 3dx/2) + ...) dx

integrate
f(x) from a
to b using
trapezoidal
rule

September 9, 2015

 L01-23

Local Function Definitions

integrate dx a b f =
 let
 sum x tot =

 if x > b then tot
 else sum (x+dx) (tot+(f x))
in
 (sum (a+dx/2) 0) * dx

Free
variables

of sum?

integrate dx a b f =
 (sum dx b f (a+dx/2) 0) * dx

sum dx b f x tot =
 if x > b then tot
 else sum dx b f (x+dx) (tot+(f x))

Any function definition can be “closed” and “lifted”

September 9, 2015

 L01-24

Types

All expressions in Haskell have a type

 23 :: Int

"23 belongs to the set of integers"
"The type of 23 is Int"

true :: Bool

"hello" :: String

September 9, 2015

 L01-25

Type of an expression

(sq 529) :: Int

 sq :: Int -> Int

"sq is a function, which when applied to an
integer produces an integer"

"Int -> Int is the set of functions, each of
which when applied to an integer produces an
integer"

"The type of sq is Int -> Int"

September 9, 2015

 L01-26

Type of a Curried Function

 plus x y = x + y

(plus 1) 3:: Int

(plus 1) :: Int -> Int

 plus :: ?

Int -> (Int -> Int)

September 9, 2015

 L01-27

l-Abstraction

Lambda notation makes it explicit that a value
can be a function. Thus,

(plus 1) can be written as \y -> (1 + y)

(In Haskell \x is a syntactic approximation of lx)

plus x y = x + y

can be written as

 plus = \x -> \y -> (x + y)

or as
 plus = \x y -> (x + y)

September 9, 2015

 L01-28

Parentheses Convention

 f e1 e2  ((f e1) e2)

 f e1 e2 e3  (((f e1) e2) e3)

application is left associative

Int -> (Int -> Int)  Int -> Int -> Int

type constructor “->” is right associative

September 9, 2015

 L01-29

Type of a Block

 (let

 x1 = e1

 .

 .

 .

 xn = en

 in

 e) :: t

provided
 e :: t

September 9, 2015

 L01-30

Type of a Conditional

 (if e then e1 else e2) :: t

provided

e :: Bool

e1 :: t

e2 :: t

The type of expressions in both branches
of conditional must be the same.

September 9, 2015

 L01-31

Polymorphism

 twice f x = f (f x)

1. twice (plus 3) 4

 twice :: ?

2. twice (append “Zha") “Gabor"

 twice :: ?

(Int  Int)  Int  Int

(Str  Str)  Str  Str

 (Plus 3) ((plus 3) 4)
 ((plus 3) 7)
 10

 “ZhaZhaGabor”

September 9, 2015

 L01-32

Deducing Types

 1. Assign types to every subexpression
x :: t0 f :: t1

 f x :: t2 f (f x) :: t3

  twice :: ?

 twice f x = f (f x)
What is the most "general type" for twice?

2. Set up the constraints
t1 = because of (f x)
t1 = because of f (f x)

3. Resolve the constraints
 t0 -> t2 = t2 -> t3

  t0 = t2 and t2 = t3  t0 = t2 = t3

  twice :: (t0 -> t0) -> t0 -> t0

t1 -> t0 -> t3

t0 -> t2

t2 -> t3

September 9, 2015

 L01-33

Another Example: Compose

compose f g x = f (g x)

What is the type of compose ?

 1. Assign types to every subexpression
x :: t0 f :: t1 g :: t2

 g x :: t3 f (g x) :: t4

  compose ::

2. Set up the constraints
t1 = because of f (g x)
t2 = because of (g x)

3. Resolve the constraints
  compose ::

 (t3 -> t4) -> (t0 -> t3) -> t0 -> t4

t1 -> t2 -> t0 -> t4

t3 -> t4

t0 -> t3

September 9, 2015

 L01-34

Now for some fun

 twice f x = f (f x)

 a = twice1 (twice2 succ) 4

 b = twice3 twice4 succ 4

1. Is a=b ?

 yes succ (succ (succ (succ 4)

2. Are the types of all the twice

instances the same?

 no

twice1 :: (I -> I) -> I -> I
twice2 :: (I -> I) -> I -> I

twice3 :: ((I -> I) -> I -> I) ->
 (I -> I) -> I -> I

twice4 :: (I -> I) -> I -> I

The first person
with the right
types gets a prize!

September 9, 2015

 L01-35

Hindley-Milner Type System

Haskell and most modern functional languages
follow the Hindley-Milner type system.

The main source of polymorphism in this system
is the Let block.

The type of a variable can be instantiated
differently within its lexical scope.

 much more on this later ...

September 9, 2015

MIT OpenCourseWare
http://ocw.mit.edu

6.820 Fundamentals of Program Analysis
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

