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Thermal MEMS
> Everything is affected by temperature

> Therefore, anything can be detected or measured or 
actuated via the thermal domain

> Sometimes this is good…
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MEMS Imagers
> A bolometer heats up due to 

incoming radiation

> This results in a temperature 
change that changes the 
resistance across the pixel

Poor residual stress control

Honeywell

Better design…

Figure 1 on p. 55 in: Leonov, V. N., N. A. Perova, P. De Moor, B. Du Bois,
 C. Goessens, B. Grietens, A. Verbist, C. A. Van Hoof, and
J. P. Vermeiren. "Micromachined Poly-SiGe Bolometer
 Arrays for Infrared Imaging and Spectroscopy." 
Proceedings of SPIE Int Soc Opt Eng 4945 (2003): 54-63.

Figure 2 on p. 56 in: Leonov, V. N., N. A. Perova, P. De Moor, B. Du Bois,
 C. Goessens, B. Grietens, A. Verbist, C. A. Van Hoof, and
J. P. Vermeiren. "Micromachined Poly-SiGe Bolometer 
Arrays for Infrared Imaging and Spectroscopy.“
Proceedings of SPIE Int Soc Opt Eng 4945 (2003): 54-63.
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MEMS Imagers
> This application illustrates key features of thermal 

MEMS
• Excellent thermal isolation creates excellent sensitivity

» Response is proportional to thermal resistance
• Low thermal mass creates fast response time

» Response time is proportional to thermal capacitance
• Easy integration with sense electronics
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Thermal flow sensing
> A time-of-flight flowrate sensor
> One resistor creates a heat pulse

> A downstream resistor acts as a 
temperature sensor

> Time for heat pulse to drift 
downstream is inversely related to 
flowrate

> This example illustrates the 
important benefit of MEMS 
materials

• Large range in thermal 
conductivities

• From vacuum (~0) to metal (~100’s 
W/m-K)

Figure 1 on p. 686 in: Meng, E., and Y.-C. Tai. "A Parylene MEMS Flow Sensing Array.“
Technical Digest of Transducers'03: The 12th International Conference on Solid-State
Sensors, Actuators, and Microsystems, Boston, June 9-12, 2003. Vol. 1. Piscataway, NJ:
IEEE Electron Devices Society, 2003, pp. 686-689. ISBN: 9780780377318. © 2003 IEEE.

Figure 3 on p. 687 in: Meng, E., and Y.-C. Tai. "A Parylene MEMS Flow Sensing Array.“
Technical Digest of Transducers'03: The 12th International Conference on Solid-State
Sensors, Actuators, and Microsystems, Boston,  June 9-12, 2003. Vol. 1. Piscataway, NJ:
IEEE Electron Devices Society, 2003, pp. 686-689.  ISBN: 9780780377318. © 2003 IEEE.
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MEMS flow sensing: commercial
> OMRON flow sensor uses measures 

temperature distribution around a 
heat source

> Convection alters temperature 
profile in a predictable fashion

Image removed due to copyright restrictions. OMRON flow sensor.
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The Thermal Domain
> Sometimes this is bad…

> Reason #1
• Everything is a temperature sensor
• Evaluation of MEMS devices over 

temperature is often critical to 
success

> Reason #2
• As we will see, we can never 

transfer energy between domains 
perfectly

• The “extra” energy goes into the 
thermal domain (e.g., heat)

• We can never totally recover that 
heat energy

ADI ADXL320

Academic

Commercial

Figure 12 on p. 115 in: Takao, H., Y. Matsumoto, and M. Ishida. "A Monolithically
Integrated Three-axis Accelerometer Using CMOS Compatible Stress-sensitive
Differential Amplifiers." IEEE Transactions on Electron Devices 46, no. 1 (1999):
109-116. © 1999 IEEE.
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Charging a capacitor
> We will transfer energy from a power supply to  a 

capacitor

> Ideally, all energy delivered from supply goes to 
capacitor

> In actuality, there is ALWAYS dissipation
• And this is true for ALL domains

> Thus, we will lose some energy
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Example: Charging a Capacitor
> Use step input

> Voltage source must supply 
twice the amount of energy as 
goes into the capacitor

> One half the energy is 
dissipated in the resistor, 
independent of the value of R!
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Power Considerations: Joule Heating
> The extra energy is lost 

to Joule heating in the 
resistor

> Globally, the power 
entering a resistor is 
given by the IV
product.

> Locally, there is power 
dissipation given by 
the product of the 
charge flux and the 
electric field.
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Thermal Energy Domain

> It is easier to put ENERGY 
INTO than get WORK OUT of 
thermal domain

> All domains are linked to 
thermal domain via 
dissipation

> Thermal domain is linked to 
all domains because 
temperature affects 
constitutive properties

Electric

Chemical

Elastic

Fluids

Thermal energy domain

Magnetic

Adapted from Figure 11.2 in Senturia, S
Boston, MA: Kluwer Academic Publishers, 2001, p. 271. ISBN: 9780792372462.

Image by MIT OpenCourseWare.
tephen D. Microsystem Design.
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Thermal Energy Domain

> Heat engines convert heat into 
mechanical work, but not 
perfectly efficiently, just like the 
charging of a capacitor cannot be 
done perfectly efficiently

> This is a statement of 
irreversibility: the 2nd Law of 
Thermodynamics

> Zyvex heatuator
• One skinny leg and one fat leg
• Run a current and skinny leg will 

heat up
• Structure will bend in response

Electrical energy

Thermal energy

Strain energy and
deflection

Lost to thermal
reservoir

Courtesy of Zyvex Corporation. Used with permission.
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Governing Equations
> Some introductory 

notation

> Be careful with units 
and normalizations
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Governing Equations

> Like many domains, 
conservation of energy 
leads to a continuity 
equation for thermal 
energy
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Types of Heat Flow
> Flow proportional to a temperature 

gradient
• Heat conduction

> Convective heat transfer
• A subject coupling heat transfer to 

fluid mechanics
• Often not important for MEMS, but 

sometimes is…
• Talk more about this later

> Radiative heat transfer
• Between two bodies (at T1 and T2)
• Stefan-Boltzmann Law
• Can NEVER turn off

TJQ ∇−= κ

( )4
1

4
212 TTFJ SBQ −=σ

( )2 1Q cJ h T T= −
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The Heat-Flow Equation
> If we assume linear heat conduction, we are led to the heat-flow 

equation
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Thermodynamic Realities
> The First law of thermodynamics implies that entropy is a 

generalized displacement, and temperature is a generalized 
effort; their product is energy

> The Second Law states that entropy production is ≥0 for any 
process

• In practice it always increases

> Entropy is not a conserved quantity….

> Thus, it does not make for a good generalized variable

> Therefore, we use a new convention, the thermal modeling 
convention, with temperature as effort and heat flow (power) 
as the flow.  Note that the product of effort and flow is no 
longer power!!!

• But heat energy (thermal displacement) is conserved
• Just like charge (electrical displacement) is conserved
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Thermal sources
> Heat current source IQ is 

represented with a flow 
source

> Temperature difference 
source ΔT is represented 
with an effort source

IQ

ΔT +
-
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Thermal equivalent-circuit elements
> Use direct analogy again
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Thermal equivalent-circuit elements
> Therefore we can derive a thermal resistance

> Plus, heat conduction and current flow obey the same 
differential equation

> Thus, we can use exactly the same solutions for 
thermal resistors as for electrical resistors

• Just change σ to κ

RT

IQ

+ -ΔT
[K/W]    1

A
LRT κ

= For bar of uniform 
cross-section
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Thermal equivalent-circuit elements
> What about other 

types of heat flow?

> Convection

> Use linear resistor

( )
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Thermal equivalent-circuit elements
> Radiation

• Nonlinear with temperature
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Thermal equivalent-circuit elements

> Radiation
• Many ways to linearize
• We show two approaches ( )
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Thermal equivalent-circuit elements
> What about energy storage?

> Just like electrical capacitors 
store charge (Q),

> We can store thermal energy (Q)

> No thermal inductor 
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Electro-thermal transducer

> In electromechanical energy transduction, we introduced the two-
port capacitor

• Energy-storing element coupling the two domains
• Capacitor because it stores potential energy

> What will we use to couple electrical energy into thermal energy?
• In the electrical domain, this is due to Joule dissipation, a loss 

mechanism
» Therefore it looks like an electrical resistor

• In the thermal domain it looks like a heat source
» Therefore it looks like a thermal current source
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Electro-thermal transducer
> Our transducer is a resistor and a 

dependent current source
• The thermal current source depends

on R and I in the electrical domain

> We reverse convention on direction of 
port variables in thermal domain

• OK, because IQ·ΔT does not track 
power

• Reflects fact that heat current will 
always be positive out of transducer

> This is not energy-conserving
• Dissipation is intrinsic to transducer

> This is not reciprocal
• Heat current does not cause a voltage

> Thermal domain can couple back to 
the electrical domain

• See next time…
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I R2
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Different heat transfer components
> How does one know which heat transfer processes are 

important for thermal modeling?

> Heat input is a current

> Heat loss is a resistor

> Heat storage in mass is a capacitor

RT
CT ΔTIQ

+

-

sCR
IR

sC
RIT

TT

QT

T
TQ +

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ

1
1//

TT

QTss

CR

IRT

=

=Δ

τ

Silicon nitride and
vanadium oxide

IR
Radiation

X-metal

B

E

Y-metal

50 µm
0.5 µm

Monolithic bipolar
transistor

2.5 µm

Image by MIT OpenCourseWare.



Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

J. Voldman:  2.372J/6.777J Spring 2007, Lecture 12 - 33

Implications
> Increasing RT increases response

• This means better thermal isolation
• There is always some limiting value determined by radiation

> Given a fixed RT, decreasing CT improves response 
time

• This means reducing the mass or volume of the system
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Thermal resistance
> What goes into RT?

> RT is the parallel combination of all loss terms
• Conduction through the air and legs
• Convection
• Radiation

> We can determine when different terms dominate
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Conduction resistance
> Conduction

• Si is too thermally 
conductive

• SiO2 is compressively 
stressed

• Try SiN

Material κ (W/m-K)

Silicon 148

Silicon Nitride 20

Thermal Oxide 1.5

Air (1 atm) 0.03

Air (1 mtorr) 10-5
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Other resistances

> Convection
• At low pressure, there 

will be no air movement
• Convection will not exist

> Radiation
• There is transfer 

between plate and body
• Use case where bodies 

are close in temp
• Radiation negligible

> Very fast time constant
• ~ms is typical for 

thermal MEMS
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Improving the design
> How can we make 

responsivity higher?

> Change materials

> Decrease thickness or 
width of legs, or increase 
length

• This reduces mechanical 
rigidity
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Does convection ever matter?
> Usually not

> But it can come into play in 
microfluidics

> The key is whether energy is 
transported faster by fluid flow or 
heat conduction

> We’ll analyze this a bit better after 
we do fluids
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The Next Step
> When dealing with conservative systems, we found 

general modeling methods based on energy 
conservation

> With dissipative systems, we must always be coupled 
to the thermal energy domain, and must address 
time-dependence

> This is the topic for the next Lecture
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