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Outline

> Effects of residual stresses on structures

> Energy methods
* Elastic energy
* Principle of virtual work: variational methods
* Examples

> Rayleigh-Ritz methods for resonant frequencies and
extracting lumped-element masses for structures
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Reminder: Thin Film Stress

> |If a thin film is adhered to a substrate, mismatch of thermal
expansion coefficient between film and substrate can lead to
stresses in the film (and, to a lesser degree, stresses in the
substrate)

> Residual stress can also come from film structure: intrinsic
stress

> Stresses set up bending moments that can bend the substrate

> When we release a residually stressed MEMS structure,
interesting effects can ensue
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Reminder: Differential equation of beam bending
> Small angle bending:
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Image by MIT OpenCourseWare.

Adapted from Figure 9.11 in: Senturia, Stephen D. Microsystem
Design. Boston, MA: Kluwer Academic Publishers, 2001, pp. 214.
ISBN: 9780792372462.

> Beam equation:
* g = distributed load A
e w = vertical displacement d'w ¢

* x = axial position along beam dx’ El
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Example: Fixed-fixed beam

> Fixed-fixed beams are common in MEMS: switches, diffraction
gratings, flexures

> Example: Silicon Light Machines Grating Light Valve display
deflects a beam in order to diffract light

Image removed due to copyright restrictions.

Please see: Figure 1.4 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 7. ISBN: 9780792372462.

> Residual stress in beams can enhance or reduce response to an
applied load, and impact flatness of actuated beam

> Residual stress can be included in the basic beam bending
equation by the addition of an extra term
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Residual Axial Stress in Beams

> Residual axial stress in a beam
contributes to its bending stiffness
> Leads to the Euler beam equation 2pWP, =206 WH

Thin beam 0) H
— R) =

/A p

which i1s equivalent to a distributed load

p

P = vH Y
Images by MIT OpenCourseWare. qo 70 o GO d 2
Adapted from Figure 9.15 in Senturia, Stephen D. Microsystem Design. X
Boston, MA: Kluwer Academic Publishers, 2001, p. 227. ISBN: 9780792372462. . .
Insert as added load into beam equation :
d*w
EI 4 — q + %
dx
Py 4 2
d"w dw
El —F—-oc WH—=¢q

Images by MIT OpenCourseWare.
Adapted from Figure 9.16 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 228. ISBN: 9780792372462.
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Example: Effect of tensile stress on stiffness

Displacement

0 20 40 60 80 100
Position

Image by MIT OpenCourseWare.
Adapted from Figure 9.17 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 232. ISBN: 9780792372462.

100 um long, 2 um wide, 2 um high fixed-fixed silicon beam
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Stress impacts flatness: leveraged bending

> Pull-in is modified if the actuating electrodes are away from the
point of closest approach

Large stable tip
1 ) deflection

Large stable
deflection

with stress-
stiffening

Figure 3 on p. 499 in: Hung, E. S., and S. D. Senturia. "Extending the Travel Range of Analog-tuned Electrostatic Actuators."
Journal of Microelectromechanical Systems 8, no. 4 (December 1999): 497-505. © 1999 |IEEE.
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Buckling of Axially Loaded Beams

> If the compressive stress is too large, a beam will spontaneously
bend - this is called buckling

> The basic theory of buckling is in Sec. 9.6.3

> The Euler buckling criterion:

n’ EH*
cSEuler - = 3 L2
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Plates with in-plane stress and membranes

> As with the Euler beam equation, in plane stress can be included

o0*w

4 4 2 N A2
o 82w2+8v4v_Nx8w yév;:P(x,y)
Ox Ox“0y~ Oy /Wa}/W oy
Axial stresses in x

and y directions

> When tensile stress dominates over flexural rigidity (thin,
tensioned plate), the plate may be considered a membrane

N_o*w N, o*w

-+ —|=—P
W Ox W Oy
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How about cantilevers?

> Example: residually stressed cantilever, where stress is
constant throughout structure

> Before release: stressed cantilever is attached to surface

> After release: cantilever relieves stress by expanding or
contracting to its desired length

> No bending of released structure
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How about nonuniform axial stress?

> Nonuniform axial stress through the thickness of a beam creates
a bending moment

> |t can arise from two sources

* Intrinsic stress gradients, created during formation of the
cantilever material (e.g. polysilicon)

* Residual stress in thin films deposited onto the cantilever

> The bending moment curls the cantilever
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Example: Cantilever with stress gradient

~ Think about it in three steps:
* Relax the average stress to zero after release
* Compute the moment when the beam is flat
* Compute the curvature that results from the moment

e = N — I —

Before release After release After bending
but before bending
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/ -01 61
Oy f f—> Oy > Oy

»
L

i Go Compression Compression
+H/2 +H/2 +H/2

Compression y Y Y
zZ zZ zZ
Stress before release Stress after release After bending
but before bending
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Adapted from Figure 9.13 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic

Publishers, 2001, p. 223. ISBT: 9780792372462. E ] 1 E H
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Example: Thin Film on Cantilever

> |In this case, the curling does not relieve all the stress

[r— |—I_—ﬁ
[ |
Before release After release
2 L
_H]2 F——— /4 =
E— i H— > Oy
-03 63
H2 + H2 +—
Y
Yy Yy
Stress before release Stress after release
and after bending

Image by MIT OpenCourseWare.
Adapted from Figure 9.14 in Senturia, Stephen D. Microsystem Design.

Boston, MA: Kluwer Academic Publishers, 2001, p. 224. ISBN: 9780792372462.

> See text for math Barbastathis group, MIT

Courtesy of George Barbastathis. Used with permission.
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Outline

> Effects of residual stresses on structures

> Energy methods
* Elastic energy
* Principle of virtual work: variational methods
* Examples

> Rayleigh-Ritz methods for resonant frequencies and
extracting lumped-element masses for structures
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Elastic Energy

> Elastic stored energy density is the integral of stress with
respect to strain

Elastic energy density :  W(x,y,z) = J‘;(x’y’Z) o(e)de
~ |
When o(¢)=E¢: W(x,y,z)= EE [8()C, y,z)]2

> The total elastic stored energy is the volume integral of the
elastic energy density

Total stored elasticenergy: W = I I j W(x, v,z)dxdydz

Volume
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Including Shear Strains

> More generally, the energy density in a linear elastic medium is
related to the product of stress and strain

> A similar approach can be used for electrostatic stored energy
density (1/2)D*E and magnetostatic stored energy density
(1/2)B*H.

: : ~ 1

For axial strains: W = 5 os
: ~ 1

For shear strains: W = 5 144

This leads to a total elastic strain energy :

+7. 7. +T.7,. )dxdydz

W=+ ([[(0.e, 40,6, +0.c.+7,7,

Volume
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Concept: Principle of Virtual Work

> The question: how to determine the deformation that results
from an applied load

l F
Is
> Known: the work done on an energy-conserving system by

external forces must result in an equal amount of stored
potential energy

5(F) = 22

> Imposing this condition can provide an exact solution to many
problems

* For example, if functional dependence between quantities is
known, and you just need to find what the actual values are
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Concept: Principle of Virtual Work

> Can approach this from a “guessing” point of view

* Guess values for §; whichever one best equates stored
energy and work done is the right answer

A

Stored energy - x are guesses
work done x Is best guess

S

Deformation &

v

> What if you don’t know the functional form of your
deformations/displacements — does this still work?

> Yes! You can choose a plausible shape function for the
displacement with a few adjustable parameters and iteratively
“guess” the constants to best equate stored energy and work
done
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Principle of Virtual Work

> Goal: a variational method for solving energy-conserving
problems (a mathematical way of approaching the “guessing”)

> Define total potential U, including work and stored energy
U = Stored energy - Work done

> A system in equilibrium has a total potential U that is a minimum
with respect to any virtual displacement

* No matter what you change, you won’t get any closer to
matching work and stored energy
> Requirement: the virtual displacement must obey B.C.

> Nomenclature for small virtual displacements
* In the x direction: oJu
* In the y direction: dv
* In the z direction: éw
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Math: Principle of Virtual Work

> Consider all possible virtual displacements; evaluate change in
strains

ox oy
> This implies changes in strain energy density

58x:§5u and %:(iawﬁauJ
X

~~

oW =006, +...+7,,0y,, +...
> The principle of virtual work states that in equilibrium, for any
virtual displacement that is compatible with the B.C.,

([[oWdxdydz— ([(F, du~+F, v+ F,_swls

Volume Surface

- _“J‘_“(Fva&/l +F, ov+ Fb,z&v)dxdydz —0

Volume
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Differential Version

> The previous equation is equivalent to the following:

5{ ”J Wdxdydz — H (stu +F v+ F;’Zw)dS - ”j (E)xu +F, v+ Fb’zw)dxdydz} =0

Volume Surface Volume

This can be restated in the following form :
oU =0

where

U= { HJ Wdxdydz — ” (Fs’xu +F v+ FS’Zw)dS - ”j (F}?’xu +F, v+ Fb,zw)dxdydz}
Volume Surface Volume
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Variational methods

> Select a trial solution with parameters that can be varied
* u(x,y, z; c,, C,,...Cc,) = trial displacement in x
* v(x, Yy, z; ¢4, Cy,...C,) = trial displacement in y
° \;“v(x, Y, Z; C4, C,,...C,) = trial displacement in z

> Formulate the total potential U of the system as functions of
these parameters

> Find the potential minimum with respect to the values of the

parameters
oU oU oU
—=0, —=0,....—=0
oc, oc, oc,
> The result is the best solution possible with the assumed trial
function
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Why Bother?

> Nonlinear partial differential equations are basically very nasty.

> Approximate analytical solutions can always be found with
variational methods

> The analytical solutions have the correct dependence on
geometry and material properties, hence, serve as the basis for
good macro-models

> Accurate numerical answers may require finite-element
modeling
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Analytic vs. Numerical

> Analytic variational methods and numerical finite-element
methods both depend on the Principal of Virtual Work

> Both methods minimize total potential energy

> FEM methods use local trial functions (one per element).
Variational parameters are the nodal displacements

> Analytic methods use global trial functions
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Outline

> Effects of residual stresses on structures

> Energy methods
* Elastic energy
* Principle of virtual work: variational methods
* Examples

> Rayleigh-Ritz methods for resonant frequencies and
extracting lumped-element masses for structures
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Example: fixed-fixed beam, small deflections

> Doubly-fixed beam with a point load at some position along the
beam, in the small deflection limit

> Our present choice: use a fourth degree polynomial trial
solution

Ww(x)=c, +cx+c,x” +e,x° +¢,x"
Boundary conditions: w=0 and w'=0 at x=0, L
> Apply boundary conditions:
°co,=c,=0fromBCatx=0
* BC at x =L eliminate two more constants

* Result is a shape function with one undetermined amplitude
parameter

w(x) =c, (sz2 —2Lx> + x4)
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Example: fixed-fixed beam, small deflections

> Formulate total potential energy and find the minimum

> Calculate strain energy from bending

d*"
width of beam g=-"=-z y 1;1/ = _ZC4(ZL2 —12Lx+12x2)
Ni X
total strain energy —\W = J‘ J‘H/Z 2 Idz = LEWH L5
H/2

> Calculate work done by ex%ernal force applied at x,

Work = Fw(x,) = Fc ()le —2Lx; + xg)
> This yields total potentlal energ

1
U=  EWH'L'c; - (Px2 —2Lx} + x2 e,
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> Minimize total potential energy with respect to c,, determine c,,
and plug in to find variational solution for deflection w(x)

ou
804
L’x} —2Lx, +x,
i
EWH'L
(szé —2Lx, +x, Xszz —2Lx> +x* ) P

_ EWH’L _
> Compare stiffness for the case of a center-applied load

=0

c, =15

w=15

(L ) 256 EWH3 F Recall solution of beam equation
3
256 EWH® . _EWH’ - 16 EWH
k = 17T ——— IE
15 I L
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Properties of the Variational Solution

> Does it solve the beam equation? NO

> |s the point of maximum deflection near where the
load is applied? NOT IN GENERAL

> How can we determine how accurate the solution is?
TRY A BETTER FUNCTION

> Was this a good trial function? NO
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A Better Trial Function

> Fifth-order polynomial allows both the amplitude and shape of
the deformation to be varied

0.000 0.000
0.010 0.010
= 0.020 = 0.020
2 S
2 0.030 'z 0.030
3 S
£ 0.040 £ 0.040
< <
2 .S
£ 0.050 |- Z0.050
> >
0.060 |- - 0.060
0.070 L Exact when x,=L/2 | 0.070 L Exact when x,=L/2 |
0.080 ' : ' ' 0.080 ' 1 ! :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Axial position Axial position

Image by MIT OpenCourseWare.

Adapted from Figure 10.1 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 248.
ISBN: 9780792372462. The artist's representation of the fourth and fifth degree polynomials is approximate.(]

Fourth degree polynomial Fifth degree polynomial
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What about large deflections?

> For small deflections, pure bending is a good approximation

* The geometrically constructed neutral axis really does have
about zero strain

> For large deflections, the beam gets longer
* Tensile side gets even more tensile
* Compressed side gets less compressed
* Neutral axis becomes tensile

> We can treat this as a superposition of two events
* First, the beam bends in pure bending, which draws the end
of the beam away from the second support
* Then, the beam is stretched to reconnect with the second
support

* Quantify the stretching by the strain at the originally neutral
axis
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Analysis of “Large” Deflections

> When deflections are “large,” on the order of the beam
thickness, stretching becomes important

jF As a result of stretching, the arc length increases
ds = \/[dx +u(x+dx) - u(x)]2 + [w(x + dx) — W(x)]2
-L/2 0 L2 )
Using the result that v1+0 =1+ —
TTe 2
< 2
\ du 1(dw
Deformed shape ds=dx| 1+ —+—| —
of original dx 2\ dx
ginal neutral

axis The axial strain is given by

Segment of original neutral axis o ds — dx B du . 1( dw 2
* J xrd e de 2\dx
The change in length is
w(x) L/2 . L/2
u(x) \ w(x+dx) OL = I ds —dx dx = stdx
u(x+dx) 12 dx )

Same segment after deformation

Image by MIT OpenCourseWare.
Adapted from Figure 10.2 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 250. ISBN: 9780792372462.
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Example: Center-Loaded Beam

> Potential energy has three terms:

* Bending strain energy {

* Stretching strain energy L2 ¥
R Te

* External work x

Image by MIT OpenCourseWare.

Adapted from Figure 10.2 in Senturia, Stephen
D. Microsystem Design. Boston, MA: Kluwer
Academic Publishers, 2001, p. 250. ISBN: 9780792372462.

> Bending and external work already calculated for one trial
function

> Pick another trial function (same weakness as last attempt, but
easy to use) and include large deflections

. C 271X
WZE 1+COST Why not a (i?
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Example: Center-Loaded Beam

> First, calculate the strain due to stretching (aggregate axial
strain)

> Total strain = bending strain + aggregate axial strain

gT = gbending T&

stretching
2 A
dw
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Example: Center-Loaded Beam

> Calculate total stored elastic energy from total strain

E H/2 L/2 E H 4 H2 2 2
W= e - WHr* (8 3+3c)c
2 -H/2-L/2 96L

> Finally, potential energy...

EWHz*(8H? +3¢* )*
96
> ...which we minimize with respect to c

ou 7\ EWH’ 7\ EWH
—— =0 _ 3
I KRl v,
> Compare linear term with solution to beam equation: prefactor
16.2 instead of 16
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Results from example

> Force-displacement relationship: an amplitude-stiffened Duffing

spring
(ﬂ“j{EWH"J (n“j[EWH} .
F= —lc+ — Ic
6 L 8 L
> Solution shows geometry dependence; constants may or may
not be correct

3
F=C, —EV;H c+C, EIZZH}&

> Once you’ve found the elastic strain energy, finding results for
another load is easy

L2

Work=Fc T—>  Work= _[ g (x)W(x )dx

_1)2
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Example: uniform pressure load P

> Adopt the elastic strain energy

> Calculate the work for a uniform pressure load

L/2
Work = WP j E(l + cosz—mjdx = WLPc
2 L

2
—L/2
> Minimize U to find relationship between load and deflection

Selrase

> The geometry dependence appears!
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Combining Variational and FEM Methods

> Use the analytic variational method to find a good functional
form for the result

> Establish non-dimensional numerical parameters within the
solution

> Perform well-meshed FEM simulations over the design space

> Fit the analytic solution to the FEM results
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Residual Stress In Clamped Structures

> Must add a new term to the elastic energy to capture the effects
of the residual stress

€a

szade = W:I(00+E8)d8
> Now there is a residual stress term ih the stored elastic energy

Hi2  -L2
W =0, W I dz Igadx

> For the fixed-fixed beam exaiﬁﬁle,_fﬁe residual stress term is:

2
W, =0 WLH| —
4L

> This leads to a general form of the load-deflection relationship
for beams, which can be extended to plates and membranes

2
C
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Results for Doubly-Clamped Beam

For the case of a central point load :

- E L (L

and for the pressure loaded case :
P zz[%H}r =\ EH? - z* [EH}(33
r 3 ) L. 4 L
The general form for pressure loading, useful for fitting to FEM results, 1s :

3
el )
L L L

Finally, we note that the stress term dominates over bending when
EH?
L2

Oy 2
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Outline

> Effects of residual stresses on structures

> Energy methods
* Elastic energy
* Principle of virtual work: variational methods
* Examples

> Rayleigh-Ritz methods for resonant frequencies and
extracting lumped-element masses for structures
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Estimating Resonance Frequencies

> We have achieved part of our goal of converting structures into
lumped elements

* We can calculate elastic stiffness of almost any structure, for
small and large deflections

e But we still don’t know how to find the mass term associated
with structures

> We can get the mass term from the resonance frequency and the
stiffness

> The resonance frequency comes from Rayleigh-Ritz analysis

* In simple harmonic motion at resonance, the maximum kinetic
energy equals the maximum potential energy

* Determine kinetic energy; equate its maximum value to the
maximum potential energy; find o,.
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Estimating Resonance Frequencies

> Guess a time dependent trial function from w(x)

w(x,t) = w(x)cos(wrt)

> Find maximum kinetic energy from maximum velocity

Maximum velocity : (M) = —oW(x)
Ot t=r/2w

. 1
Max kinetic energy, lumped: W, . = > menax

~

Max kinetic energy density: W, = % P, (x)o Ww(x)

Max kinetic energy: W, . = % ” pm dxdydz

volume beam

> Calculate maximum potential energy from w(x) as before
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Rayleigh-Ritz

> The resonance frequency is obtained from the ratio of
potential energy to kinetic energy, using a variational
trial function

> The result is remarkably insensitive to the specific
trial function

Welastzc
— j ] 2 oyi? ()

Volume
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Example: Tensioned Beam

> Compare two trial solutions:
* Tensioned wire — the exact solution (1/2 A of a cosine)
* Bent beam — a very poor solution

0.00 § T T T
0.02 —
0.04 — —
0.06 -
0.08 -
0.10 —

Deflection

0.12 — Tensioned wire ]
0.14 ' ' '
-0.5 -0.25 0 0.25 0.5

x/L

Image by MIT OpenCourseWare.
Adapted from Figure 10.3 in Senturia, Stephen D. Microsystem Design. Boston,
MA: Kluwer Academic Publishers, 2001, p. 263. ISBN: 9780792372462.

> Resonant frequencies differ by only 15%

> Worse trial functions yield higher stiffness, higher resonant
frequencies
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Extracting Lumped Masses

> Use variational methods to calculate the stiffness

> Use Rayleigh-Ritz with the same trial function to calculate
the resonant frequency ®»?

> Extract the mass from the relation between mass, stiffness,
and resonant frequency.

* ®?=k/m
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