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Context

> Where are we?
• We have just learned how to make structures
• About the properties of the constituent materials
• And about elements in two domains

» structures and electronics

> Now we are going to learn about modeling
• Modeling for arbitrary energy domains
• How to exchange energy between domains

» Especially electrical and mechanical
• How to model dynamics

> After, we start to learn about the rest of the domains
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Inertial MEMS
> Analog Devices Accelerometer

• ADXL150
• Acceleration Î Changes gap Î

capacitance Î electrical output
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RF MEMS
> Use electrical signal to create mechanical motion 

> Series RF Switch (Northeastern & ADI)
• Cantilever closes circuit when actuated Æ relay

Zavracky et al., Int. J. RF Microwave CAE, 9:338, 1999, via Rebeiz RF MEMS

Image removed due to copyright restrictions.
Figure 11 on p. 342 in: Zavracky, P. M., N. E. McGruer, R. H. Morrison, 
and D. Potter. "Microswitches and Microrelays with a View Toward 
Microwave Applications." International Journal of RF and Microwave 
Computer-Aided Engineering  9, no. 4 (1999): 338-347.
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What we’d like to do
> These systems are complicated 3D geometries

> Transform electrical energy Æ mechanical energy

> How do we design such structures?
• Multiphysics FEM

» Solve constitutive equations
at each node

» Tedious but potentially 
most accurate

> Is there an easier way?
• That will capture dimensional dependencies?
• Allow for quick iterative design?
• Maybe get us within 10-20%?

Distorted switch (Coventor)

Image removed due to copyright restrictions.
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RF MEMS Switch

> What we’d really like to know
• What voltage will close the switch?
• What voltage will open the switch (when closed)?
• How fast will this happen?
• What are the tradeoffs between these variables?

» Actuation voltage vs. maximum switching frequency

> So let’s restrict ourselves to relations between 
voltage and tip deflection

• Hah! – we have “lumped” our system
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Lumped-element modeling

> What is a lumped element?
• A discrete object that can exchange energy with other 

objects
• An object whose internal physics can be combined into 

terminal relations
• Whose size is smaller than wavelength of the appropriate 

signal
» Signals do not take time to propagate
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Lumped elements
> Electrical capacitor

> Spring

> Rigid mass
• Push on it and it moves
• Relation between force 

and displacement

> Fluidic channel
• Apply pressure and fluid 

flows instantaneously 
• Relation between 

pressure and volumetric 
flow rate
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MA: Kluwer Academic Publishers, 2001, p. 209. ISBN: 9780792372462.
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Pros/cons of lumped elements

> Pros
• Simplified representations that carry dimensional 

dependencies
• Can do equivalent circuits
• Static and dynamic analyses

> Cons
• Lose information

» Deflection along length of cantilever
• Will not get things completely right

» Capacitance due to fringing fields
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So how do we go about lumping?

> First, we need input/output relations
• This requires solving physics
• This is what we do in the individual domains

» We have already done this in electrical and mechanical 
domains

> For cantilever RF switch
• What is relation between force and tip deflection?
• Not voltage and deflection

» Different energy domains
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RF Switch mechanical model
> We have seen that there is a linear relation 

between force and tip deflection
• Cantilever behaves as linear spring k
• CAVEAT: k is specific for this problem
• Different k’s for same cantilever but

» Distributed force applied over whole 
cantilever

» Point force applied at end
» Deflection of cantilever middle is needed
» Etc.

> Lesson: Don’t just use equation out of a book

xF k=

k F

x
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RF Switch mechanical model

> What else is needed for 
model?

> Inertia of cantilever Æ
Lumped mass

> Energy loss Æ Lumped 
dashpot

• Due to air damping
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How do we connect these together?

> Intuition and physics

> Example: cantilever switch
• Tip movement (x) stretches spring
• And causes damping
• Tip has mass associated with it
• All elements have same displacement

m

k F

x
b
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Why use equivalent circuits?

> One modeling approach
• Use circuits for electrical domain

» Solve via KCL, KVL
• Use mechanical lumped elements in mechanical domain

» Solve via Newton’s laws
• Connect two using ODEs or matrices or other representation

> Our approach
• Lumped elements have electrical equivalents
• Can hook them together such that solving circuit intrinsically 

solves Newton’s laws (or continuity relationships)
• Now we have ONE representation for many different domains
• VERY POWERFUL
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Onward to equivalent circuits

> Each lumped element has one or 
more ports

> Each port is associated with 
two variables

• A “through” variable
• An “across” variable

> Power into the port is defined by 
the product of these two variables

through

across
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Onward to equivalent circuits

> In electrical circuits, voltage is physically “across” and current 
is physically “through”

> What happens when we translate mechanics into equivalent 
circuits?

> Why does this matter?

voltage Æ across

current Æ through

force Æ across (V)

velocityÆ through (I)

force Æ through (I)

velocityÆ across (V)
OR
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What circuit element is the spring?

> It stores elastic energy

> Is it a capacitor or an inductor?
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Which is correct?
> Both are correct

> And both are used Æ beware!

> Velocity Æ voltage
• “Indirect” or “mobility” analogy
• Cleaner match between physical system and circuit

» Velocity is naturally “across” (e.g., relative) variable
• But stores mechanical PE in inductors, KE in capacitors
• Springs Æ Inductors

> Force Æ voltage
• “Direct” analogy
• Always store PE in capacitors
• Springs Æ Capacitors

> Circuit topologies are dual of each other

This is 
what we 
will use
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Generalized variables

> We want a consistent modeling approach across 
different domains

> Can we generalize what we just did?
» YES
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Generalized variables

> Formalize “terminal”
relations

> Displacement  q(t)

> Flow f(t):  the derivative of 
displacement

> Effort e(t)

> Momentum p(t): the 
integral of effort

> Net power into device is 
effort times flow
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Examples

 

  

 

 

> Effort-flow relations occur in MANY different energy domains

General Electrical Mechanical Fluidic Thermal
Effort (e) Voltage, V Force, F Pressure, P Temp. diff., ΔT

Flow (f) Current, I Velocity, v Vol. flow rate, Q Heat flow 

Displacement (q) Charge, Q Displacement, x Volume, V Heat, Q

Momentum (p) - Momentum, p Pressure 
Momentum, Γ

-

Capacitance Capacitor, C Spring, k Fluid 
capacitance, C

Heat capacity, 
mcp

Inertance Inductor, L Mass, m Inertance, M -

Resistance Resistor, R Damper, b Fluidic 
resistance, R

Thermal 
resistance, R

Node law KCL Continuity of space Mass 
conservation

Heat energy 
conservation

Mesh law KVL Newton’s 2nd law Pressure is 
relative

Temperature is 
relative
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Other conventions

> Thermal convention:  T becomes the across variable 
(voltage) and heat-flow becomes the through variable 
(current)

• Conserved quantity is heat energy
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Building equivalent circuits

> Need power sources

> Passive elements

> Topology and connection rules
• Figure out how to put things together

> What do we get?
• An intuitive representation of the relevant physics
• Ability to model many domains in one representation
• Access to extremely mature circuit analysis techniques and 

software
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One-port source elements

> Effort source and flow source

> Effort source establishes a 
time-dependent effort 
independent of flow

• Electrical voltage source
• Pressure source

> Flow source establishes a 
time-dependent flow 
independent of effort

• Electrical current source
• Syringe pump
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One-port circuit elements

> Three general passive elements

> Represent different functional relationships
• Energy storage, dissipation

Relates e & f
Directly relates e & f

Relates e & q
Differentiates e

Integrates f

Relates f & p
Integrates e

Differentiates f
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Analogies between mechanics and electronics
> Electrical Domain

• A resistor
> Mechanical Domain

• A damper (dashpot)

dt
dQRRIV ==

dt
dxbbvF ==

> There is again a correspondence between
• V and F
• I and v
• Q and x
• R and b

b

FvRI

+ -V

> Electrical Power = VI

> Mechanical Power = Fv

bR =
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Generalized resistor

> For the resistor, 
• e is an algebraic function of f

(or vice versa)
• Can be a nonlinear function

Fbv
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Analogies between mechanics and electronics

> Electrical Domain
• A capacitor

> Mechanical Domain
• A spring

> There is again a correspondence between
• V and F
• I and v
• Q and x
• R and b

> Electrical Power = VI

> Mechanical Power = Fv

k
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Generalized capacitance

> For a generalized capacitance, the effort e is a 
function of the generalized displacement q.
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Generalized capacitance

> Capacitors store potential energy Æ How much?

> Leads to concept of energy and co-energy
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Parallel-plate capacitor

> A linear parallel-plate capacitor

> It’s energy and co-energy are numerically equal
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Analogies between mechanics and electronics
> Electrical Domain

• An inductor
> Mechanical Domain

• A mass
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> There is a correspondence between
• V and F
• I and v
• Q and x
• L and m

> Electrical Power = VI

> Mechanical Power = Fv

mL =
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Generalized Inertance

> For a generalized inertance, flow f is a function of 
momentum p.

> This once again leads to concepts of energy and co-
energy
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Circuits in the e Æ V convention

> Elements that share flow (e.g., current) and 
displacement (e.g., charge) are placed in series in an 
electric circuit

> Elements that share a common effort (e.g., Voltage) 
are placed in parallel in an electric circuit
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Solving circuit solves the physics

> Apply force balance to spring-mass-damper system

> Solving KVL gives same result as Newton’s laws!

> Can also do this with complex impedances
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Generating equivalent circuits

> Possible to go “directly”
• But hard with eÆV analogy
• See slide at end and text for details

> Easier to do via circuit duals

> Use convenience of fÆV convention, then switch to 
eÆV

• Force is current source
• Each displacement variable is a node
• Masses connected between nodes and ground
• Other elements connected as shown in diagram
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Where does this leave us?

> A 2nd-order system is a 2nd-order system

> Analogies between RLC and SMD system

> Use what you already know to understand the 
intricacies of what you don’t know
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Energy coupling

> Where is coupling between domains?

> How does voltage Æ deflection?

> We need transducers Æ two-port elements that store 
energy

> We will do this next time…
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Conclusion

> Can model complicated systems with lumped 
elements

> Lumped elements from different domains have 
equivalent-circuit representations

> These representations are not unique
• We use the e Æ V convention in assigning voltage to the 

effort variable

> Once we have circuits, we have access to 
POWERFUL analysis tools
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For more info

> Course text chapter 5

> H.A.C. Tilmans. “Equivalent circuit representation of 
electromechanical transducers”

• Part I: lumped elements: J. Micromech. Microeng. 6:157, 1996.
• Part II: distributed systems: J. Micromech. Microeng. 7:285, 1997.
• Errata: J. Micromech. Microeng. 6:359, 1996.

> R. A. Johnson. Mechanical filters in electronics

> Woodson and Melcher. Electromechanical Dynamics

> M. Rossi. Acoustics and electroacoustics

> Lots and lots of papers
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Finding equivalent circuit: direct approach

> Find eÆV equivalent 
circuit of following

> Note: 
• k2 and m2 share same 

displacement, caused 
by F

• b1, and k1 share same 
displacement, x2 – x1

• If k1Æ∞, m2 and m1
share same 
displacement 
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