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Elasticity
(and other useful things to know)

Carol Livermore

Massachusetts Institute of Technology

*   With thanks to Steve Senturia, from whose lecture notes some 
of these materials are adapted.
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Outline
> Overview

> Some definitions
• Stress
• Strain

> Isotropic materials
• Constitutive equations of linear elasticity
• Plane stress
• Thin films:  residual and thermal stress

> A few important things
• Storing elastic energy
• Linear elasticity in anisotropic materials
• Behavior at large strains

> Using this to find the stiffness of structures
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Why we care about mechanics
> Mechanics makes up half of the M’s in MEMS!
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What do we need to calculate?
> Eager beaver suggestion:  everything

• When I apply forces to this structure, it bends.  
• Here’s the function that describes its deformed shape at 

every point on the structure when the deformations are 
small.  

• Here are numerical calculations of the shape at every point 
on the structure when the deformations are large.  

• The structure is stressed, and the stress at every point in the 
structure is…  

> Shortcut suggestion:  just what we really need to know
• When I apply a force F to the structure, how far does the point of 

interest (the end, the middle, etc) move?  
• This boils down to a stiffness, as in F = kx
• What is the stress at a particular point of interest (like where my 

sensors are, or at the point of maximum stress)?
• How much load can I apply without breaking the structure?
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Why things have stiffness I
Unloaded beam is undeformed:

Stretching costs energy, which is stored as elastic energy.  
Exactly how much energy is determined by material and 
geometry.  

Axially loaded beam is stretched:
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Why things have stiffness II
Unloaded beam is undeformed:

Loaded beam is bent:

Stretching and compressing cost energy, which is stored in 
elastic energy.  Exactly how much energy is determined by 
material and geometry.  

Stretched

CompressedM M
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Example:  relating load to displacement in bending
> What are the loads, and where on the structure are they applied?

> Given the loads, what is going on at point (x,y,z)?

> How much curvature does that bending moment create in the 
structure at a given point? 

• What is the geometry of the structure?
• What is it made of, and how does the material respond to the 

kind of load in question?
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Elasticity
> Elasticity:  the ability of a body to deform in response to applied 

forces, and to recover its original shape when the forces are 
removed

> Contrast with plasticity, which describes permanent deformation 
under load

> Elasticity is described in terms of differential volume elements to 
which distributed forces are applied

> Of course, all real structural elements have finite dimensions

> We will ultimately use partial differential equations to relate 
applied loads and deformations
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Outline
> Overview

> Some definitions
• Stress
• Strain

> Isotropic materials
• Constitutive equations of linear elasticity
• Plane stress
• Thin films:  residual and thermal stress

> A few important things
• Storing elastic energy
• Linear elasticity in anisotropic materials
• Behavior at large strains

> Using this to find the stiffness of structures
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Stress
> Stress is force per unit area

> Normal stress
σx, σy, or σz

> Compressive:  σ < 0

> Tensile:  σ > 0

> Shear stress
τxy, τxz, or τyz
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Stress

> Can have all components 
at a given point in space

> SI Units:  the Pascal
• 1 Pascal = 1 N/m2

> Other units:
• 1 atm = 14 psi = 100 kPa
• 1 dyne/cm2 = 0.1 Pa

> Notation:  τface,direction
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Deformation
> Illustrating a combination of translation, rotation, and 

deformation
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Strain
> Strain is a continuum description of deformation.

> Center of mass translation and rigid rotation are NOT strains 

> Strain is expressed in terms of the displacements of each point 
in a differential volume, u(x) where u is the displacement and x is 
the original coordinate

> Deformation is present only when certain derivatives of these 
displacements u are nonzero



Normal Strains (εx, εy, εz)
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Shear Strains (γxy, γxz , γyz)

> Angles change

> Comes from shear stresses

> Quantified as change in angle 
in radians
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Different regimes
> How are stress and strain related?  It depends on the regime in 

which you’re operating.

> Linear vs nonlinear
• Linear:  strain is proportional to stress
• Most things start out linear 

> Elastic vs. plastic
• Elastic:  deformation is recovered when the load is removed
• Plastic:  some deformation remains when unloaded

> Isotropic vs. anisotropic
• Life is simpler when properties are the same in all directions; 

however, anisotropic silicon is a part of life
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Linear Elasticity in Isotropic Materials
> Young’s modulus, E

• The ratio of axial stress to axial strain, under uniaxial loading
• Typical units in solids:  GPa = 109 Pa
• Typical values – 100 GPa in solids, less in polymers
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Linear Elasticity in Isotropic Materials
> Poisson ratio,  ν

• Some things get narrower in the transverse direction when 
you extend them axially.

• Some things get wider in the transverse direction when you 
compress them axially.

• This is described by the Poisson ratio:  the negative ratio of 
transverse strain to axial strain

• Poisson ratio is in the range 0.1 – 0.5 (material dependent)

xy νεε −=

Cite as: Carol Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



Cite as: Carol Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

C. Livermore:  6.777J/2.372J Spring 2007, Lecture 6 - 20

Poisson’s ratio relates to volume change
> Volume change is 

proportional to (1-2ν)

> As Poisson ratio 
approaches ½, volume 
change goes to zero

• We call such materials 
incompressible

> Example of incompressible 
material:

• Rubber
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Isotropic Linear Elasticity
> For a general case of loading, the constitutive relationships 

between stress and elastic strain are as follows

> 6 equations, one for each normal stress and shear stress
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Other Elastic Constants
> Other elastic constants in 

isotropic materials can 
always be expressed in 
terms of the Young’s 
modulus and Poisson 
ratio

• Shear modulus G
• Bulk modulus (inverse of 

compressibility)
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Plane stress
> Special case:  when all stresses are confined to a single plane 

Often seen in thin films on substrates (will discuss origin of 
these stresses shortly)

> Zero normal stress in z direction (σz = 0)

> No constraint on normal strain in z, εz
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Plane stress:  directional dependence

> Principal axes:  those 
directions in which the 
load appears to be 
entirely normal stresses 
(no shear)

> In general, there are shear 
stresses in other 
directions

x

y

Here, principal axes are in x and y.
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Stresses on Inclined Sections
> Can resolve axial forces into normal and shear forces 

on a tilted plane
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Resultant stresses vary with angle

Failure in shear occurs at an angle of 45 degrees
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Special case:  biaxial stress
> A special case of plane stress

• Stresses σx and σy along principal axes are equal

• Strains εx and εy along principal axes are equal

> Leads to definition of biaxial modulus
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Thin Film Stress
> A thin film on a substrate can have residual stress

• Intrinsic stress
• Thermal stress

> Mostly well-described as a plane stress

Thin film Plane stress region

Edge 
region

Substrate

Adapted from Figure 8.5 in: Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer
Academic Publishers, 2001, p. 190. ISBN: 9780792372462.
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Types of strain
> What we have just talked about is elastic strain

• Strains caused by loading; returns to undeformed
configuration when load is removed

• Described by the isotropic equations of linear elasticity

> There are other kinds of strain as well
• Thermal strain, which is related to thermal expansion
• Plastic strain:  if you stretch something too far, it doesn’t 

return to its undeformed configuration when the load is 
removed (permanent component)

• Total strain:  the sum of all strains
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Thermal expansion

> Thermal expansion:  if you 
change an object’s temperature, 
its length changes

> This is a thermally-induced strain

> An unopposed thermal 
expansion produces a strain, but 
not a stress

> If you oppose the thermal 
expansion, there will be a stress

> Coefficient of thermal expansion, 
αT
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Thermally Induced Residual Stress
> If a thin film is adhered to a substrate, mismatch of thermal 

expansion coefficient between film and substrate can lead to 
stresses in the film (and, to a lesser degree, stresses in the 
substrate)

> The stresses also set up bending moments
• You care about this if you don’t want your wafer to curl up 

like a saucer or potato chip

> And the vertical expansion of the film is also modified
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Thermally Induced Residual Stress
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Intrinsic residual stress
> Any thin film residual stress that cannot be explained by thermal 

expansion mismatch is called an intrinsic stress

> Sources of intrinsic stress
• Deposition far from equilibrium
• Secondary grain growth can modify stresses
• Ion implantation can produce compressive stress
• Substitutional impurities can modify stress
• etc….
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Edge effects
> If a bonded thin film is in a state of plane stress due to residual 

stress created when the film is formed, there are extra stresses
at the edges of these films

F = 0 F = 0

Shear stresses

Extra peel force

Adapted from Figure 8.6 in: Senturia, Stephe
Kluwer Academic Publishers, 2001, p. 191. ISBN: 9780792372462.
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Outline
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• Stress
• Strain

> Isotropic materials
• Constitutive equations of linear elasticity
• Plane stress
• Thin films:  residual and thermal stress

> A few important things
• Storing elastic energy
• Linear elasticity in anisotropic materials
• Behavior at large strains

> Using this to find the stiffness of structures
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Storing elastic energy
> Remember calculating potential energy in physics

> Deforming a material stores elastic energy

> Stress = F/A, strain = ΔL/L 

> Together, they contribute 1/length3:  strain energy density at a 
point in space

) example,(for    mghUdxFU f

i

x

x x =−= ∫

???  
0
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ε(x,y,z)

σ(ε)dε
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Elastic Energy

[ ]2
0

2
1~            :)(When  

~      :densityenergy  Elastic

ε(x,y,z)E(x,y,z)WE

σ(ε)d(x,y,z)W
ε(x,y,z)

==

= ∫
εεσ

ε

> Elastic stored energy density is the integral of stress with 
respect to strain 

> The total elastic stored energy is the volume integral of the 
elastic energy density

> You must know the distribution of stress and strain through a 
structure in order to find the elastic energy stored in it (next
time).

∫∫∫=
Volume

ydz(x,y,z)dxdWW ~      :energy elastic stored Total
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Including Shear Strains
> More generally, the energy density in a linear elastic medium is

related to the product of stress and strain (both normal and 
shear)

( )dxdydzW
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Linear elasticity in anisotropic materials
> General case:

• Stress is a second 
rank tensor

• Strain is a second 
rank tensor

• Elastic constants 
form a fourth rank 
tensor

> There is lots of 
symmetry in all the 
tensors

> Can represent stress 
as a 1 x 6 array and 
strain as a 1 x 6 array

> The elastic constants 
form a 6 x 6 array, 
also with symmetry
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Stiffness and Compliance
> The matrix of stiffness coefficients, 

analogous to Young’s modulus, are 
denoted by Cij

> The matrix of compliance 
coefficients, which is the inverse of 
Cij, is denoted by  Sij

> Yes, the notation is cruel

> Some texts use different symbols, 
but these are quite widely used in 
the literature
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Cubic materials
> Only three 

independent elastic 
constants

• C11 = C22 = C33
• C12 = C23 = C31 = C21 

= C32 = C13
• C44 = C55 = C66
• All others zero

> Values for silicon
• C11 = 166 GPa
• C12 =   64 GPa
• C44 =   80 GPa
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Materials with Lower Symmetry
> Examples:

• Zinc oxide – 5 elastic constants
• Quartz – 6 elastic constants

> These materials come up in piezoelectricity

> Otherwise, we can enjoy the fact that most materials 
we deal with are either isotropic or cubic
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What lies beyond linear elasticity?
> So far, we have assumed linear elasticity.

> Linear elasticity fails at large strains
• Some of the deformation becomes permanent (plastic strain)
• Things get stiffer
• Things break

σ

ε

E
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Plastic deformation

> Beyond the yield 
point, a plastic 
material develops 
a permanent set

> This is exploited 
in the bending 
and stamping of 
metals
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Material behavior at large strain
> Brittle and ductile materials are very different
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Any thoughts on this device?

Figures 2, 3, and 4 on pp. 236-237 in:  Kinoshita, H., K. Hoshino,
K., K. Matsumoto, and I. Shimoyama. "Thin Compound eye Camera with a Zooming
Function by Reflective Optics." In MEMS 2005 Miami: 18th IEEE International
Conference on Micro Electro Mechanical Systems: technical digest, Miami Beach,
Florida, USA, Jan. 30-Feb. 3, 2005. Piscataway, NJ: IEEE, 2005, pp. 235-238.
ISBN: 9780780387324. © 2005 IEEE.
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Outline
> Overview

> Some definitions
• Stress
• Strain

> Isotropic materials
• Constitutive equations of linear elasticity
• Plane stress
• Thin films:  residual and thermal stress

> A few important things
• Linear elasticity in anisotropic materials
• Behavior at large strains

> Using this to find the stiffness of structures
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A simple example:  axially loaded beams

> In equilibrium, force is uniform; hence stress is inversely 
proportional to area (as long as area changes slowly with 
position)

     
:stress Uniaxial
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Plug in for L=100 μm, 
W=5 μm, H=1 μm,
E=160 GPa:

k=8000 N/m
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Stretched:  tensile stress
Compressive stress

Another example:  bending of beams and plates
> Stress and strain underlie bending, too

> Unlike uniaxial tension, where stress and strain are uniform, 
bending of beams and plates is all about how the spatially 
varying stress and strain contribute to an overall deformation. 

> Next time!
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