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Part 7. Fundamental Limits in Computation 
 

This course has been concerned with the future of electronics, and especially digital 

electronics. At present digital electronics is dominated by a single architecture, 

Complementary Metal Oxide Semiconductor (CMOS), which is built on planar silicon 

field effect transistors. Steady improvements in the performance of CMOS circuits have 

been achieved by shrinking the feature sizes of the component transistors. This 

remarkable progress in electronics achieved over a period of > 30 years has come to 

underpin much of our economic life.  

 

In this section, we address both practical and thermodynamic limits to silicon CMOS 

electronics. It is likely that these limits will dominate the future of the electronics 

industry. 

 

Speed and power in CMOS circuits 

 

As you should remember from 6.002, the archetype CMOS circuit is shown in Fig. 7.1. It 

is composed of two complementary FETs: the upper MOSFET is off for a high voltage 

input, and the lower MOSFET is off given a low input. The circuit is an inverter.  

Fig. 7.1. A CMOS inverter consists of two complementary MOSFETs in series. 

 

For constant voltage input, the circuit has two stable states, as shown in Fig. 7.2. Because 

one of the transistors is always off in steady state, the circuit ideally has no static power 

dissipation.  
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Fig. 7.2. The two steady state configurations of the inverter. No power is dissipated in 
either. 

 

But when the input voltage switches the circuit briefly dissipates power. This is known as 

the dynamic power. We model the dynamics of a CMOS circuit as shown in Fig. 7.3. In 

this archetype CMOS circuit one inverter is used to drive more CMOS gates. To turn 

subsequent gates on an off the inverter must charge and discharge gate capacitors. Thus, 

we model the output load of the first inverter by a capacitor.  

Fig. 7.3. Cascaded CMOS inverters. The first inverter drives the gate capacitors of the 
second inverter. To examine the switching dynamics of the first inverter, we model the 
second inverter by a capacitor. 
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We now consider the key performance characteristics of CMOS electronics. 

 

The Power-Delay Product (PDP) 

 

The power-delay product measures the energy dissipated in a CMOS circuit per 

switching operation. Since the energy per switching event is fixed, the PDP describes a 

fundamental tradeoff between speed and power dissipation – if we operate at high speeds, 

we will dissipate a lot of power. 

 

Imagine an input transition from high to low to the inverter of Fig. 7.1. 

Fig. 7.4. Changes in the input voltage cause the output capacitor to charge or discharge 
dissipating power in the inverter. 

 

If the output capacitor is initially uncharged, the energy dissipated in the PMOS FET is 

given by: 

  
2

0

DD OUTW dt V V I



   (7.1) 

The current into the capacitor is given by: 

 OUTdV
I C

dt
 , (7.2) 

Combining these expressions: 
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Similarly, in the second half of the cycle, when the capacitor is discharged through the 

NMOS FET, it is straightforward to show that again 21
2 DDW CV . Thus, the energy 

dissipated per cycle is: 

 2

DDPDP CV . (7.4) 
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Switching Speed 

 

The dynamic model of Fig. 7.4 relates the switching speed to the charging and 

discharging time of the gate capacitor.  

 
max

DD

I
f

CV
  (7.5) 

Thus, switching speed can be improved by  

(i) increasing the on current of the transistors 

(ii) decreasing the gate capacitance by scaling to smaller sizes 

(iii) decreasing the supply voltage (thereby decreasing the voltage swing during 

charge/discharge cycles 

 

Scaling Limits in CMOS 

 

Equation (7.4) demonstrates the importance of the gate capacitance. The capacitance is 

 
ox

A
C

t


  (7.6) 

where A is the cross sectional area of the capacitor, tox is the thickness of the gate 

insulator and  is its dielectric constant.  

 

Fig. 7.5. The dimensions of a gate capacitor. 

 

Now, if we scale all dimensions down by a factor s (s < 1), the capacitance decreases: 

  
2

0

ox

s A
C s sC

st


   (7.7) 

From Eq. (7.4), reductions in C reduce the PDP, allowing circuits to run faster for a given 

power dissipation. Indeed, advances in the performance of electronics have come in large 

part through a continued effort of engineers to reduce the size of transistors, thereby 

reducing the capacitance and the PDP; see Fig. 7.6. 
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Fig. 7.6. The semiconductor roadmap predicts that feature sizes will approach 10 nm 
within 10 years. Data is taken from the 2002 International Technology Roadmap for 
Semiconductors update. 

 

At present, however, there are increasing concerns that we are approaching the end of our 

ability to scale electronic components. There are at least two looming problems in 

electronics: 

 

(i) Poor electrostatic control. 

 

We saw in part 5 that gate control over charge in the channel requires tox << L, where L is 

the channel length. Now as the channel length, L → 10 nm, tox → 1 nm, i.e. the gate 

insulator is only several atoms thick! But the electric field across the gate must remain 

high to induce charge in the channel. Thus, reductions in feature sizes will eventually 

place severe demands on the gate insulator. 

 

(ii) Power density 

 

The electrostatic problem is fundamental, but it is possible that power concerns may 

obstruct the scaling of CMOS circuits prior to the onset of electrostatic issues. Power 

density is a particular concern since it does not benefit from continued reductions in 

component size. If the dimensions of a MOSFET are scaled down by a factor s (s < 1), 

C s (recall that capacitance is proportional to cross sectional area, and inversely 
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proportional to the spacing between the charges). But even if the PDP scales as s, the 

power density may increase because the number of devices per unit area increases as 1/s
2
.  

 

The power densities of typical integrated circuits are approaching those of a light bulb 

filament ( ~ 100 W/cm
2
). For comparison, the power density of the surface of the sun is 

~ 6000 W/cm
2
. Removal of the heat generated by an integrated circuit has become 

perhaps the crucial constraint on the performance of modern electronics. Indeed, the 

fundamental limit to power density appears to be approximately 1000 W/cm
2
. In practice, 

using water cooling of a uniformly heated Si substrate with embedded micro channels, a 

power density of 790 W/cm
2
 has been achieved with a substrate temperature near room 

temperature. 
 

Fig. 7.7. The semiconductor roadmap predicts that supply voltages will drop to nearly 
0.4V within 10 years. Power dissipation per chip is expected to increase to above 200W 
by 2008. It is expected that power dissipation in the shaded region will require 
significantly more expensive cooling systems. Data is taken from the 2002 International 
Technology Roadmap for Semi-conductors update. 

 

As is evident from Eq. (7.4) above, the PDP also depends on the supply voltage VDD. 

Ensuring that the total power dissipated per chip << 200 W has driven VDD from 5V in 

early CMOS circuits to nearly 1V today. If the industry conforms to roadmap predictions, 

the supply voltage will eventually reach 0.4V by 2016.  

 

But what is the ultimate limit to the PDP? 
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Brief notes on information theory and the thermodynamics of computation 

 

We now examine the thermodynamics of computation.  

 

(i) Minimum energy dissipated per bit 

Assume we have a system, perhaps a computer, with a number of possible states. The 

uncertainty, or entropy of the computer is a measure of the number of states. Recall from 

thermodynamics that the Boltzmann-Gibbs entropy of a physical system is defined as 

 
1

ln
N

B i i

i

S k p p


   , (7.8) 

where the system has N possible states, each with probability pi, and kB is the Boltzmann 

constant. 

 

The opposite of entropy and uncertainty is information. When the uncertainty of the 

system decreases, it gains information.  

 

Now, the second law of thermodynamics can be restated as “all physical processes 

increase the total entropy of the universe”. Let‟s separate the universe into the computer, 

and everything else. The corresponding entropy of each system is given by 

 universe computer everythingelseS S S  . (7.9) 

Thus, thermodynamics requires 

 0universeSD  . (7.10) 

It follows that 

 everythingelse computerS SD  D , (7.11) 

i.e. if the information within a computer increases during a computation, then the entropy 

decreases. This change in entropy within the computer must be at least balanced by an 

increase in the entropy of the remainder of the universe. The increase in entropy in the 

remainder of the universe is obtained by dissipating heat, DQ, from the computer. 

 

According to thermodynamics the heat dissipated is 

 
everythingelse computerQ T S T SD  D   D  (7.12) 

 

Uncertainty and entropy can also be measured in bits. For example, how many bits are 

required to describe the computer with N states? 

 2H N . (7.13) 

Here, H is known as the Shannon entropy. If the states are equally probable, with 

probability 1p N , then the uncertainty reduces to: 

 2 2log logH N p   . (7.14) 

Or more generally, if each state of the computer has probability pi.  

 
2 2

1

log log
N

i i i

i

H p p p


     (7.15) 

Comparing Eq. (7.8) with Eq. (7.15) and noting that   2ln ln 2 logi ip p  gives  
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  ln 2B computerQ k T HD   D  (7.16) 

The heat must ultimately come from the power supply. Thus, the minimum energy 

required per generation of one bit of information is: 

 ln(2)min BE k T . (7.17) 

This minimum is known as the Shannon-von Neumann-Landauer (SNL) limit. 

 

(ii) Energy required for signal transmission 

Recall Shannon‟s theorem for the capacity, c, in bits per second, of a channel in the 

presence of noise. 

 
2log 1

s
c b

n

 
  

 
, (7.18) 

where s and n are the signal and noise power, respectively, and b is the bandwidth of the 

channel. The noise in the channel is at least Bn bk T . 

 

The energy required per bit transmitted is: 

 
 0 0

2

lim lim
log 1

min s s

s s
E

c b s n
 

   
    

    
. (7.19) 

L‟Hôpital‟s rule gives 

 ln(2)min BE k T . (7.20) 

consistent with the previous calculation of Emin. 

 

(iii) Consequences of Emin 

It has been argued that since the uncertainty in energy, DE, within an individual logic 

element can be no greater than Emin, we can apply the Heisenberg uncertainty relations to 

a system operating at the SNL limit to determine the minimum switching time, i.e.
†
 

 E tD D   (7.21) 

Eq. (7.21) gives a minimum switching time of 

 
 

0.04ps
ln 2

min

BE k T
   

D
 (7.22) 

 

Assuming that the maximum power density that we can cool is Pmax ~ 100W/cm
2
, the 

maximum integration density is 

 
2

max max
max

min min min

P P
n

E E
   (7.23) 

At room temperature, we get nmax ~< 10
10

 cm
-2

, equivalent to a switch size of 

100 x 100 nm. This is very close to the roadmap value for 2016.  

 

At lower temperatures, the power dissipation on chip is decreased, but the overall power 

dissipation actually increases due to the requirement for refrigeration.
4
 Since the 

                                                 
†
 This argument, due to Zhirnov, et al. "Limits to Binary Logic Switch Scaling - A Gedanken Model", 

Proceedings of the IEEE 91, 1934 (2003), has been used to argue that end of the roadmap Si CMOS is as 

good as charge based computing can get.  
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engineering constraint is likely to be on chip power dissipation – refrigeration may be one 

method for further increasing the density of electronic components. 

 

Reversible computers 

 

In the previous section, we defined computation as a process that increases information 

and decreases uncertainty. But if uncertainty (i.e. entropy) decreases within the computer, 

entropy must increase outside the computer. This is an application of the second law of 

thermodynamics, which states that all physical systems can only increase entropy over 

time.  

 

Of all physical laws, the second law of thermodynamics is famous for defining the „arrow 

of time‟. The implication of the second law is that computation is irreversible, at least if 

the computation changes uncertainty.  

 

For example, let‟s consider a two input AND gate. If one of the inputs to the AND gate is 

a zero, then the information in the other input is thrown away. Thus, the total number of 

states decreases when the inputs propagate to the output of an AND gate. Consequently, 

entropy decreases, heat is dissipated and AND gates are not reversible. 

 

Fig. 7.8. AND gates are not reversible. If the output is zero, the inputs cannot be 
reconstructed. 

 

The heat dissipated in the AND gate is calculated as follows. There are four possible 

input states. Assuming each is equi-probable the Shannon entropy is 

 2
1log 2 bits

4inH     (7.24) 

There are two possible output states. The probability of the output X = 0 is ¾ and the 

probability of X = 1 is ¼. 

 
2 2

3 13 1log log 0.811bits
4 44 4

outH      (7.25) 

Thus, 

   21ln 2 3.4 10 JBE k T H D   D    (7.26) 

But what if we designed a gate that did not throw away states during the computation? 

Such a system would be reversible, and more importantly it would not need to dissipate 

energy.  

 

In fact, several reversible logic elements have been proposed. Perhaps the best known 

irreversible computer is the billiard ball computer pioneered by Fredkin.  
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An example of a billiard ball logic gate is shown in Fig. 7.9. Billiard balls are fired into 

the logic gate from positions A and B. If there is a collision, the balls are deflected to 

positions W and Z. If one ball is absent, however, an output at either X or Y is generated. 

We also need to assume that the balls obey the laws of classical mechanics; there is no 

friction and the collisions are perfectly elastic. Note that the number of states in a billiard 

ball logic elements does not change – the billiard balls are neither created nor destroyed. 

Fig. 7.9. A two ball collision gate. After Feynman, Lectures on Computation. Editors 
A.J.G. Hey and R.W. Allen, Addison-Wesley 1996.  

 

More complex devices are possible by adding „redirection gates‟ (walls). For example, 

Fig. 7.10 shows a switch made from collision and redirection gates. 

Fig. 7.10. A billiard ball switch. After Feynman, Lectures on Computation. Editors A.J.G. 

Hey and R.W. Allen, Addison-Wesley 1996. 

 

But given that many logic gates such as the AND gate are inherently non-reversible, the 

question arises: Can an arbitrary algorithm be implemented entirely from reversible 

elements? The answer is yes. Reversible computers can be constructed entirely of a 

fundamental reversible element known as the Fredkin gate, shown in Fig. 7.11.  

Fig. 7.11. The symbol for the Fredkin gate. A is unchanged. If A = 0 then B and C 
switch. If A = 1 then B and C remain unchanged. All logic elements may be formulated 
from reversible Fredkin gates. After Feynman, Lectures on Computation. Editors A.J.G. 
Hey and R.W. Allen, Addison-Wesley 1996. 
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An implementation of a Fredkin gate with billiard balls is shown in Fig. 7.12. 

Fig. 7.12. A Fredkin gate constructed from four billiard ball switches. After Feynman, 
Lectures on Computation. Editors A.J.G. Hey and R.W. Allen, Addison-Wesley 1996. 

 

Reversible computers and noise 

 

Reversible computers, however, remain extremely controversial in engineering circles. 

The catch is noise. Shannon‟s theorem, for example, requires Emin = kBT ln(2) for the 

transmission of one bit of information in a noisy channel. This applies even in a 

reversible system such as the billiard ball collision gate. In fact, billiard ball gates are 

extremely sensitive to errors. Given a slight error in the trajectory or timing of one ball 

and a billiard ball computer would accrue a large number of errors.  

 

A billiard ball computer could be made more robust and noise resistant by including 

trenches to guide the balls. But the trench guides the balls by dissipating that component 

of the ball‟s momentum that would otherwise drive it off its designed trajectory. Thus, 

the trenches inevitably lead to energy dissipation. 

 

In contrast, let‟s briefly look at noise in CMOS circuits. The transfer function of a CMOS 

inverter is shown in Fig. 7.13. We see that close to the switching voltage, the inverter has 

very large gain, AV: 

 1out
V

in

dV
A

dV
  (7.27) 

The gain protects the inverter against noise. For example, consider two cascaded 

inverters. Assume some noise is added to the output of the first inverter. The noise 

margin tells us the minimum amount of noise required to cause an error at the output of 

the second inverter; see Fig. 7.14. 
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Thus, many device engineers argue that without gain no computation system is practical. 

And since reversible computers do not dissipate power it is not clear how they can 

amplify a signal, rendering them always subject to the adverse effects of noise.  

Fig. 7.13. Transfer characteristics of a CMOS inverter. VIL and VIH are defined as the 
threshold of low and high inputs, respectively. Note that the large gain means that VOL < 
VIL and VOH > VIH, helping protect signal integrity against the effects of noise. 

Fig. 7.14. The noise margin in a digital circuit is the minimum input noise voltage 
required to cause an error at the output of the next gate. The greater the gain, the 
greater the noise margin.  
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The future of electronics? 

 

The immediate path is clear: we have not yet reached the limits of scaling, or the 

fundamental limits of field effect transistors. The electronics industry will push to smaller 

length scales to minimize the power delay product. It will also seek to exploit ballistic 

conduction in low dimensional materials, thereby increasing switching speeds.  

 

It is realistic to expect that a future MOSFET might possess: 

 

(i) ballistic transport and operation at the quantum limit of conductance 

(ii) switching on and off at the optimum FET subthreshold slope of kT/q 

(iii) scaling of all dimensions with a gate insulator thickness of ~ 1 nanometer 

 

Traditionally, substantial materials development efforts have been devoted to improving 

the mobility of transistor channels. But because devices are already at the ballistic limit, 

the electrostatic design of nanotransistors will be a likely focus of materials development. 

We have seen that good electrostatic control of the channel can be achieved by 

maximizing the gate capacitance. For example, with a nanowire channel, the gate could 

be implemented as a concentric ring. Or a channel that consists of a single atomic layer 

(such as a grapheme sheet) might be preferable from the electrostatic viewpoint to a 

thicker layer of silicon, even though both will operate at the ballistic limit. Manufacturing 

such advanced structures may require a substantial amount of further development.  

 

Beyond this, there appears to be only one major weakness of conventional FET 

technologies. There is a strong possibility that new technologies will demonstrate 

subthreshold slope far superior to kT/q. As we have seen, this will allow for dramatic 

reductions in operating voltage, and hence significantly lower power dissipation. 

 

From a fundamental viewpoint, all transistors that operate in thermodynamic equilibrium, 

must exhibit an energy difference between their ON and OFF states. For example, the 

potential energy difference between the ON and OFF states of a FET is DE = ½CV
2
, 

which can also be expressed as DE = ½QV, where Q is the total charge on the gate 

capacitor and V is the supply voltage. The fundamental limit in the OFF state current is 

the probability of thermal excitation from the OFF state to the ON state. That is: 

 1

2
expOFF ONI I QV kT     (7.28) 

where ION is the maximum current associated with the ON state. But as we have seen, 

modern FETs do not operate at this limit because each electron in the channel is 

independent. In contrast to Eq. (7.28), the FET follows: 

  expOFF ONI I qV kT   (7.29) 

Except for a FET that operates with a single electron in the channel, the difference is 

substantial: a subthreshold slope of kT/Q versus kT/q. Indeed, at present transistor 

dimensions Q >> 10
3 

q. 
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So how can we approach the subthreshold limit? 

 

It is thought that if all the charge in the channel behaves collectively, (i.e. all or none of 

the charge contributes to current) then it might be possible to switch closer to the limit. 

Perhaps the best examples of this principle are the voltage-dependent ion channels of 

biology, in which conformation changes may enable subthreshold slopes as sharp 

≈ 10 mV/decade.
†
  

 

 

 

 
Fig. 7.15. The switching 
characteristics of voltage 
gated sodium ion channels 
from the giant squid axon. 
Note the extremely sharp 
switching characteristics. 
Reproduced from Hodgkin and 
Huxley‟s classic 1952 series of 
papers. 

 

 

 

 

 

Below, we show the structure and mechanism of the mechanical change in a voltage 

dependent K+ ion channel, as determined by MacKinnon, et al.
§
 The channels sit in a 

membrane; when open they allow the diffusion of ions from one side of the membrane to 

the other. 

Fig. 7.16. The voltage dependent K+ ion channel has 4 charged paddles that rotate in an 
electric field, opening and closing a mechanical gate at the base of the channel. 
Reproduced from MacKinnon, et al. 

 

                                                 
†
 Hodgkin and Huxley, J. Physiol. 116, 449 (1952a) 

§
 Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait and R. MacKinnon. Nature. 423. 33-41 (2003) 
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Consider a membrane where there are N closed channels and N* open channels. The ratio 

of open to closed channels is determined by the Boltzmann relation: 

 
*

exp
open closedU UN

N kT

 
  

 
 (7.30) 

where Uopen and Uclosed are the energies of the open and closed conformations 

respectively. Under an electric field, we assume that Z charges move through a potential 

of DV, i.e.: 

 open closedU U Zq V  D . (7.31) 

The current through the ion channel is proportional to the number of open channels, N*.  

 *I N  (7.32) 

Since N + N* is a constant 

 
* *

*
exp

N N Zq V
I

N N N kT

D 
      

 (7.33) 

 

That is, the subthreshold slope is sharpened by a factor, Z, the effective
†
 number of 

charges on the movable paddles. 

 
10 10

1 60
 mV/decade

log log e

V kT

I Ze Z

D
  . (7.34) 

Fig. 7.17. Ion channels modulate the diffusion of ions through a membrane. The 
direction of ion current is determined by the concentration gradient. Typically, the ion 
channel preferentially passes ions of a particular size and charge. When it is open, the 
channel illustrated above selectively allows K+ ions to diffuse. 

                                                 
†
 Note that the effective number of charges is usually less than the actual number of charges on the movable 

structures in the ion channel because the charges are not usually free to move through the full potential DV 

across the membrane (the motion of the paddles is somewhat restricted). 
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The conclusion is that transistors are possible with subthreshold characteristics superior 

to those of conventional FETs. The ion channel shows that mechanically-coupling the 

charges together is one path to achieving the collective behavior that we desire. But the 

reliability of mechanical devices is questionable. Instead, it is possible that another 

collective phenomenon, like the switching of a magnetic domain in a ferromagnet, may 

be exploited to improve switching.  

 

 

And beyond? 

 

Researchers are currently pursuing a few ideas: 

 

1. Reversible computing 

The absence of power dissipation makes this a big prize, but concerns remain as to its 

noise immunity and fundamental practicality.  

 

2. New information tokens 

Transistors today use electrons to carry information. Instead, we might seek to use a 

different information token such as the spin of an electron or position in a mechanical 

switch. A change in information token could revolutionize electronics. But at present it is 

not clear what, for example, a spin-in spin-out transistor might look like, nor do we have 

a clear idea of the potential benefits of spin-based technology. For example, could it 

escape the Shannon-Von Neumann- Landauer limit? 

 

3. Integration 

More transistors per chip have traditionally meant more computing power. If we can‟t 

make transistors any smaller, perhaps we could shift to three dimensional circuits? A 

transition from two to three dimensional circuits could massively increase integration 

densities. But apart from the difficulty of fabricating such structures, we must also figure 

out how to cool them. 

 

4. Architecture 

The computing power of the brain clearly demonstrates the virtue of different approaches 

to certain problems such as pattern recognition. But it is not clear that our current model 

of electronics is suited to say, a shift to a neural network type architecture.  

 

Whatever happens the stakes are high. As we approach the limits of CMOS, slow 

technological progress may reduce the need to update computers every few years. But the 

economic model of the electronics industry has come to rely on rapid technological 

change. Consequently, the rewards may be especially great for the next revolution in 

electronics technology. 
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Problems 

 

Q1. Adiabatic Transistors 

 

Consider the inverter shown below. 

Fig. 7.18. An adiabatically-driven inverter. 

 

Unlike in a conventional CMOS inverter, in this device, the supply voltage, VR, adjusts 

during the switching operation. Initially the voltage on the output capacitor is zero, but at 

t = 0 the input voltage drops to zero. Also at t = 0, the supply voltage ramps from zero to 

the logic high voltage, VDD.  

 

Assume that the PMOS FET is modeled by a resistor, R.  

 

(a) Show that the energy dissipated during the switching operation is  

2

DD

RC
E CV


  for  >> RC. 

This is known as an adiabatic switch, since switching occurs (in the limit) with no energy 

dissipation, i.e. we are adding charge to a capacitor using a vanishingly small excess 

voltage. 

[Hint: You may assume VOUT of the form VOUT = a + bexp[-t/RC] + ct where a, b, and c 

are constants to be determined.] 

 

(b) Show also that the energy dissipated reduces to the standard CMOS switching energy 
2

DDCV
E = 

2
 for  << RC.  

(c) The above example shows adiabatic switching when the capacitor voltage changes 

from low to high. Can it be implemented generally? i.e. consider the case when the 

capacitor voltage changes from high to low. And what happens when the capacitor does 

not change voltage during a cycle? 

VR(t)

VIN VOUT

VDD

VDD



0

0
t

t

VIN

VR
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Q2. Cellular Automata 

 

This question refers to a proposed architecture for molecular electronics: Molecular 

Quantum-Dot Cellular Automata. The figures are drawn from the reference. 

 

In this architecture information is stored in bistable cells. An example cell is shown 

below: 

Fig. 7.19. A bistable cell for use in a cellular automata computer.  

 

This cell consists of four electron traps positioned at the corners of a square. Only two of 

the traps are filled. From electrostatics, there are two stable states with the electrons at 

opposing corners of the square. 

 

To transmit information, the cells are placed in a line. Information then propagates 

electrostatically, without current flow. It is argued that power dissipation is therefore 

eliminated and no interconnecting wires are required. 

Fig. 7.20. A cellular automata wire. 

 

By changing the topology, it is possible to make logic gates. For example, below we 

show an inverter. 

Fig. 7.21. A cellular automata inverter. 

 

Question continued on next page…. 

00 11
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A

C

B Z

 

 

(a) A proposed „majority gate‟ is shown below. The output Z is the majority of the inputs, 

A, B and C. i.e. if there are more 1 inputs than zero inputs then Z = 1, otherwise Z = 0. 

Use this gate to design a two input AND gate. 

 

 

 

 

 
Fig. 7.22. A proposed majority gate. 

  

 

 

 

 

 

 

 

 

(b) Is the majority gate truly dissipationless? Hint: calculate the entropy before and after 

a majority decision. 

 

Reference: Lent, “Bypassing the transistor paradigm” Science 288 1597 (2004) 

 

 

Q3. Power delay products at the nanoscale 

 

The power delay product is the minimum energy dissipated per bit of information 

processed. For a CMOS inverter the PDP is: 

 2PDP CV   

where V is the supply voltage and C is the load capacitance as seen by the inverter. In this 

question, we will assume that the supply voltage is fixed. 

 

(a) Determine the load capacitance as a function of the gate and quantum capacitances. 

Assume we can neglect all other capacitances. 

 

(b) Consider a 2d field effect transistor (where CQ → ∞). If its dimensions are scaled by a 

factor s, how does the PDP scale? 

 

(c) Now consider a quantum wire field effect transistor with CQ << CG. Its gate 

capacitance is given by 

 
 0

2
log

G

l
C

r a
   

where  is the dielectic constant of the gate insulator, l is the gate length, r is the gate 

radius and a0 is the 1d wire radius. 
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Assume that l and r are scaled by a factor s, how does the gate capacitance for a quantum 

wire field effect transistor scale?  

 

(d) Now consider the impact of the quantum capacitance on the PDP on the quantum 

wire field effect transistor. How does the overall PDP scale? Is the scaling faster or 

slower than the equivalent PDP using large quantum well field effect transistors? 

 

Q4. Mechanical transistors 

 

Consider a mechanical switch. 

             
Fig. 7.23. A mechanical switch. 

 

The conductor is pulled towards the gate electrode when GS TSV V , switching the 

device on, and towards the threshold electrode when  GS TSV V  switching the device 

off. Assume two switches are wired together in a complementary logic circuit that drives 

a capacitive load as shown below. 

 
Fig. 7.24. A complementary logic circuit featuring mechanical switches. 

 

(i) Plot steady state VOUT versus VIN, where VIN ranges from 0 to 5V. Show that the circuit 

is complementary. 

VTS = -4V

5V

S

D

VTS = +1V

0V

S

D
VIN

0V

G

G

VOUT

C
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(ii) Assume VIN is switched from 0V to 5V and then back to 0V. How much energy is 

dissipated? 

(iii) Consider one of the switches. Let CT
ON

  and  CG
ON  be the threshold-conductor 

capacitance,  and the gate-conductor capacitance, respectively, in the ON state, and let 

CT
OFF

  and  CG
OFF  be the capacitances, respectively, in the OFF state.  See the figure below. 

Fig. 7.25. Capacitive models of the switch in the ON and OFF configuration. 

 

What is the energy stored in these capacitors in the (a) ON and in the (b) OFF positions 

as a function of VGS  and VTS? 

 

Now connect N switches all wired in parallel.  

                        
 

Fig. 7.26. N switches all wired in parallel. 

 

Each switch has VTS = +1V and resistance, R = 100Ω. Assume all the gate electrodes are 

wired together at a potential VGS. To simplify the analysis assume that CG
ON

 >> CT
ON

 and 

also that CT
OFF

 >> CG
OFF

. Furthermore, take CG
ON

 = CT
OFF

 = C. 

 

(iv) Considering Boltzmann statistics, and the potential energy difference between the 

OFF and ON states, out of the N switches, what is the probable number of switches that 

are ON as a function of C, VGS  and VTS when GS TSV V ?  
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Continued… 

 

(v) Find I for the N switches as a function of VGS and VTS for 0 <  VGS < 5V (for VTS = 1V). 

 

(vi) Does the mechanical switch exhibit any benefit over conventional CMOS? 

 

Q5. (a) Consider two identical balls each 

1cm in diameter and of mass m = 1g. 

One is kept fixed, and the second is 

dropped directly on it from a height of 

d = 10cm. From the uncertainty principle 

alone, what is the expected number of 

times the moving ball bounces on the 

stationary ball before it misses the latter 

ball altogether? Assume the ball is 

dropped from an optimal initial state. 

 

Hint: some parts of this problem can be 

solved classically. 

 

(b) Discuss the implications of (i) for 

billiard ball computers. 

 
Fig. 7.27. An off-center collision 
between the fixed ball and the bouncing 
ball. 

 

 

 

 

Q6. The following question refers to ion channel mechanical switches at T = 300K. 

a) Assume that any given ion channel is either open with conductance G = G0, or closed 

with conductance G = 0. Using Boltzmann statistics, write an expression for the 

conductance of a giant squid axon (with N ion channels in parallel) as a function of the 

applied membrane potential, V. Assume that the number of open channels at V = 0 is N0. 

Hint: Given Boltzmann statistics, the relative populations N1 and N2 of two states 

separated by energy dU are N1/N2 = exp(-dU/kT). 

b) Where possible given the data in Fig. 7.15, evaluate your parameters. 

c) Sketch a representative IV of a single ion channel.  
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