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Part 6. The Electronic Structure of Materials 
 

Atomic orbitals and molecular bonds 

 

The particle in the box approximation completely ignores the internal structure of 

conductors. For example, it treats an insulator such as diamond the same as a conductor 

such as gold. Despite this it can be surprisingly useful, as we have seen in the discussion 

of ballistic transistors.  

 

We are concerned now with more accurate calculations of electronic structure. 

Unfortunately, exact solutions are not usually possible. Determining the energies and 

wavefunctions of multiple electrons in a solid is a classic „many body problem‟. For 

example, to solve for the electrons, we must know the exact position of each atom in the 

solid, and also calculate all interactions between multiple electrons.  

 

Nevertheless, there is much to be learnt from a first principles analysis of electronic 

structure. We‟ll begin at the bottom, with the hydrogen atom. 

 

The hydrogen atom  

 

Hydrogen is the simplest element. There are just two components: an electron and a 

positively charged nucleus comprised of a single proton.  

 

The electron experiences the attractive potential of the nucleus. The nuclear potential is 

spherically symmetric and given by the Coulomb potential 

  
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where r is the radial separation of the electron and the nucleus 0 is the dielectric constant 

and Z is the number of positive charges at the nucleus. For hydrogen there is one proton, 

and Z = 1. 

 

Recall that a general expression for the kinetic energy operator in three dimensions is:  
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where 
2
 is the Laplacian operator. 

 

In rectilinear coordinates (x,y,z) 
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In spherical coordinates (r,) 
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Thus, the Hamiltonian for the hydrogen atom is 

 

2 2
2

0

2 2 2 2

2 2 2 2 2

0

ˆ
2 4

1 1 1 1 1
sin

2 sin sin 4

Zq
H

m r

d d d d Zq
r

m r dr r d r d d r




     

   

 
     

 

 (6.5) 

 

This takes a bit of algebra to solve for the atomic orbitals and associated energies. An 

approximate solution (assuming a box potential rather than the correct Coulomb 

potential) is contained in Appendix 2.  

 

The lowest energy solutions are plotted in Fig. 6.1, below. 

Fig. 6.1. The first five orbitals of the hydrogen atom together with their radial profiles. 

 

Each of the solutions shown in Fig. 6.1 is labeled either s or p. These letters describe the 

angular symmetry of solution. They are the index for the orbital angular momentum of 

the electron. „s‟ orbitals exhibit even symmetry about the origin in every dimension. 

Orbitals that exhibit odd symmetry about the origin in one dimension are labeled „p‟. We 

show in Appendix 1 that the eigenfunctions of an electron restricted to the surface of a 

sphere are characterized by quantized angular momentum. We are only showing the s and 

p solutions but there are an infinite set of solutions, e.g. s, p, d, f… corresponding to 

orbital angular momenta of 0, 1, 2, 3… 

 

The energy of each atomic orbital is also labeled by an integer known as the principal 

quantum number. Thus, the 1s orbital is the lowest energy s orbital, 2p and 2s orbitals 

are degenerate first excited states.  
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Knowledge of the exact atomic orbitals is not necessary for our purposes. Rather, we will 

use the orbitals as symbolic building blocks in the construction of molecular orbitals: 

electron wavefunctions in molecules.  

 

Atoms to Molecules 

 

We now seek to determine the electronic states of whole molecules – molecular orbitals. 

Although we will begin with relatively small molecules, the calculation techniques that 

we will introduce can be extended to larger materials that we don‟t usually think of as 

molecules: like Si crystals, for example.  

Fig. 6.2. The molecule 1,3-butadiene. Clouds of electron probability density are shown 
around each atom. They combine to form molecular orbitals.  

 

In the previous discussion of atomic orbitals, we implicitly assumed that the nucleus is 

stationary. This is an example of the Born-Oppenheimer approximation, which notes that 

the mass of the electron, me, is much less than the mass of the nucleus, mN. Consequently, 

electrons respond almost instantly to changes in nuclear coordinates.  

 

In calculations of the electronic structure of molecules, we have to consider multiple 

electrons and multiple nuclei. We can simplify the calculation considerably by assuming 
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that the nuclear positions are fixed. The Schrödinger equation is then solved for the 

electrons in a static potential; see Appendix 3. Different arrangements of the nuclei are 

chosen and the solution is optimized. 

 
Fig. 6.3. Technique for calculating the electronic structure of materials. 

 
Fig. 6.4. The equilibrium 
internuclear spacing (bond length) 
in a molecule results from 
competition between a close-
range repulsive force typically 
with exponential dependence on 
intermolecular spacing, and a 
longer-range attractive Coulomb 
force. Typically the molecular 
orbitals must be calculated for 
each internuclear spacing. The 
energy minima is the equilibrium 
bond length. Calculating the 
electronic states for fixed nuclear 
coordinates is an example of the 
Born-Oppenheimer approx-
imation.  
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Molecular orbitals 
 

Unfortunately, even when we apply the Born-Oppenheimer approximation and hold the 

nuclear coordinates fixed, the solution to the Schrödinger equation (Eq. (6.5)) is 

extremely complex in all but the simplest molecules. Usually numerical methods are 

preferred. But some conceptual insight may be gained by assuming that the molecular 

orbitals are linear combinations of atomic orbitals, i.e., we write: 

 
r r

r

c   (6.6) 

where   is the molecular orbital and   is an atomic orbital. A filled molecular orbital 

with lower energy than the constituent atomic orbitals stabilizes the molecule and is 

known as a chemical bond. 

 

We can define two types of molecular orbitals built from s and p atomic orbitals: 

 

 molecular orbitals: These are localized between atoms and are invariant with respect 

to rotations about the internuclear axis. If we can take the x-axis as the internuclear axis, 

then both s and px atomic orbitals can participate in  molecular orbitals. py and pz atomic 

orbitals cannot contribute to s molecular orbitals because they each have zero probability 

density on the x-axis. 



 molecular orbitals: Electrons in  molecular orbitals are more easily shared between 

atoms. The probability density is not as localized as in a  molecular orbital. A  

molecular orbital is also not invariant with respect to rotations about the internuclear axis. 

linear combinations of py and pz atomic orbitals form  molecular orbitals.  

Fig. 6.5. Examples of  and  bonds.  bonds are localized between atoms whereas  
bonds are delocalized above the internuclear axis. 
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Linear combination of atomic orbitals (LCAO) 

 

The expansion of a molecular orbital in terms of atomic orbitals is an extremely 

important approximation, known as the Linear combination of atomic orbitals (LCAO). 

The atomic orbitals used in this expansion constitute the basis set for the calculation. 

Ideally, the number of atomic orbitals used should be infinite such that we could re-

express any given wavefunction exactly in terms of a linear combination of atomic 

orbitals. In this case, we say that the basis set is also infinite. But computational 

limitations usually force the basis set to be finite in practice. Choice of the basis set is an 

especially important consideration in numerical simulations; for example we might 

consider s, p and d orbitals, but not f or higher orbitals. 

 

In some cases, we can take good guesses at the weighting coefficients, cr, based on the 

likely nuclear arrangement. However, depending on the nuclear arrangement, it often 

helps to define new atomic orbitals that are linear combinations of the familiar s and p 

atomic orbitals. These are known as symmetry adapted linear combinations (SALCs) 

because they are chosen based on the nuclear symmetry. They are also known as hybrid 

atomic orbitals. We discuss SALCs in Appendix 4.  

 

 

 

The tight binding approximation 

 

Each atom in a conductor typically possesses many electrons. We can simplify molecular 

orbital calculations significantly by neglecting all but a few of the electrons. The basis for 

discriminating between the electrons is energy. The electrons occupy different atomic 

orbitals: some electrons require a lot of energy to be pulled out the atom, and others are 

more weakly bound.  

 

Our first assumption is that electrons in the deep atomic orbitals do not participate in 

charge transport. Recall that charge conduction only occurs though states close to the 

Fermi level. Thus, we are concerned with only the most weakly bound electrons 

occupying so-called frontier atomic orbitals. 

 

In this class, we will exclusively consider carbon-based materials. Furthermore, we will 

only consider carbon in the triangular geometry that yields sp
2
 hybridized atomic orbitals; 

see Appendix 4 for a full discussion. In these materials, each carbon atom has one 

electron in an unhybridized pz orbital. The unhybridized pz atomic orbital is the frontier 

orbital. It is the most weakly bound and also contributes to  molecular orbitals that 

provide a convenient conduction path for electrons along the molecule. We will assume 

that the molecular orbitals of the conductor relevant to charge transport are linear 

combinations of frontier atomic orbitals.  
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neighbor

Central atom with 

electron in frontier 

pz orbital

 

For example, let‟s consider the central carbon atom in Fig. 6.6. Assume that the atom is 

part of a triangular network and that consequently it contains one electron in a frontier pz 

atomic orbital. Let‟s consider the effect of the neighboring carbon atom to the right of the 

central atom. 
 
 
Fig. 6.6. One carbon atom with a 
single frontier electron and its 
neighboring nucleus. The 
Hamiltonian of the system 
contains potential terms for each 
of the two nuclei. 

 

 

 

 

 

 

 

Assuming the positions of the atoms are fixed, the Hamiltonian of the system consists of 

a kinetic energy operator, and two Coulombic potential terms: one for the central atom 

and one for its neighbor: 

 1 2H T V V    (6.7) 

Now, consider an integral of the form: 

 
r rH E     (6.8) 

Following Eq. (6.6), the wavefunction in this two atom system can be written as 

 1 1 2 2c c     (6.9) 

We can expand the LHS of Eq. (6.8) as follows: 

 
1 1 1 1 2 1 2 2 2 2 1 2r r r r rH c T V c V c T V c V                (6.10) 

 

The RHS expands as 

 
1 1 2 2r r rE c E c E        (6.11) 

 

The terms in these expansions are not equally important. We can considerably simplify 

the calculation by categorizing the various interactions and ignoring the least important. 

 

 

(a) Overlap integrals 

 

First of all, let‟s define the overlap integral between frontier orbitals on atomic sites s and 

r: 

 
sr s rS   . (6.12) 

These integrals yield the overlap between atomic orbitals at different sites in the solid. 

Spatial separation usually ensures that Ssr << 1 for s ≠ r. Of course, for normalized atomic 

orbitals Ssr = 1 for s = r.  
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Fig. 6.7. The overlap between two 
adjacent atomic orbitals is shaded in 
yellow. In the tight binding 
approximation we will assume that 
the overlap between frontier atomic 
orbitals on different sites is zero. 

 

 

 

(b) The self-energy 

 

Next, let‟s define the self-energy. At a particular atomic site, we have  

 
r r r rT V      (6.13) 

where r is the self energy, i.e.:

 
r r r rT V    . (6.14) 

The self energy, , is defined to be negative for an electron in a positively charge nuclear 

potential. Note that if the interaction between the atoms is weak then the self energy is 

similar to the energy, E, of the combined system. 
 
 
Fig. 6.8. The interaction between a nucleus and 
its frontier atomic orbital is known as the self 
energy. 

 

 

 

 

 

 

(c) Hopping interactions 

 

Let‟s define the hopping interaction between different sites s and r:  

 
sr s s rV    (6.15) 

The hopping interaction, , is defined to be negative for an electron in a positively charge 

nuclear potential. 

 

 
Fig. 6.9. The interaction between a 
nucleus and the neighboring 
frontier atomic orbital is known as 
the hopping interaction. 
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(d) The remaining interactions 

 

The remaining interaction considers the interaction of a frontier orbital on one site with 

the potential on another site. It has the form 

 
r s rV   (6.16) 

where s ≠ r. It may not be immediately evident that this interaction is usually much 

weaker than the hopping interaction of Eq. (6.15). But if the individual frontier orbitals 

decay exponentially with distance as exp[-ka] where a is the spacing between the atoms, 

then this terms behaves as exp[-2ka] whereas the hopping term and overlap integral Ssr 

for s ≠ r both follow exp[-ka]. 

 

Consequently, we will neglect this interaction.  

 

Thus, Eq. (6.8) can be re-written for r = 1 and r = 2 as 

 
1 1 2 12 2 2 12 1 2 12

1 21 1 1 21 2 2 1 21 2

c c c S c E c ES

c c S c c ES c E

  

  

   

   
 (6.17) 

Terms containing only the self energy or energy, E, of the combined system are large. 

The small terms are highlighted below in red: 

 
 
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

 

 

 


 (6.18) 

Next, we note that the difference between the self energies, 1 and 2, and the energy, E, 

of the combined system may be small. Under this limit, we can reduce the equations 

further to 

 
1 1 2 12 1

1 21 2 2 2

c c c E

c c c E

 

 

 

 
 (6.19) 

Written as a matrix, we get 

 
1 12 1 1

21 2 2 2

c c
E

c c

 

 

    
    

    
 (6.20) 

Thus, we can ignore the overlap integrals of separated atoms. 

 

In summary, tight binding theory makes the following approximations: 

 

1. Consider only frontier atomic orbitals 

2. Consider only interactions between the frontier atomic orbitals of nearest 

neighbors. This is the tight binding approximation. 

3. Ignore the overlap integrals of separated atoms, i.e. Ssr = sr. This is valid only 

when 1 ≈ 2 ≈ E. We will assume Ssr = sr generally to simplify the mathematics. 

 

The self energy, , and the hopping interaction, , could be calculated numerically given 

the potential and the frontier atomic orbital. But, in this class, we will not actually 

determine  and . Rather we are interested in the form of the molecular wavefunctions 

and the dispersion relations for their energies. With this information we can determine 

whether the conductor is a metal or an insulator, and its density of states. 
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Solving for the energy 

 

Considering the tight binding matrix of Eq. (6.20), non trivial solutions for the weighting 

factors, c1 and c2 are obtained from 

 
1 12

21 2

det 0
E

E

 

 





 (6.21) 

Let‟s assume that the hopping interactions are equal 12 = 21 = . We‟ll consider two 

cases for equal and different self energies. 

 

(a) Equal self energies 1 = 2 =  

 

When 1 = 2 = , the energy is 

 E     (6.22) 

Substituting the energy back into Eq. (6.20) to obtain the coefficients c1 and c2 yields two 

normalized solutions: 

 1 2

2

 



 . (6.23) 

These two orbitals can be defined by their parity: their symmetry if their position vectors 

are rotated. For example, we could exchange their coordinates. In this example the 

molecular orbital:

 
 1 2

2

 



  (6.24) 

does not change sign under exchange of electrons. It is classified as having gerade 

symmetry, denoted by g, where gerade is German for even. In contrast, the other orbital: 

 1 2

2

 



  (6.25) 

does change sign under exchange of electrons. It is classified with ungerade symmetry, 

denoted by u, where ungerade is German for odd. 

 

Fig. 6.10. The probability density plotted for the two linear combinations of two frontier 
orbitals. Due to the increased electron density between the nuclei, the Φ1+ Φ2 has lower 
energy. 
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Since the molecular orbital: 

 1 2

2

 



  (6.26) 

has energy, E =  + , below that of the self energy, , of each atomic orbital, the 

molecule is stabilized in this configuration. This is known as a bonding orbital because it 

describes a stable chemical bond. Recall that  and  are defined to be negative for an 

electron in a positively charge nuclear potential. 

 

The other molecular orbital 

 1 2

2

 



  (6.27) 

has energy, E =  - ,  greater than that of the self energy, , of each atomic orbital. 

Thus, this configuration is not stable. It is known as an antibonding orbital. 
 

 
 
Fig. 6.11. Antibonding and bonding molecular potential energy curves. Note that the 
antibonding energy is typically substantially larger than shown.  
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(b) Different self energies 

 

If 1 2     and 1 > 2 then the solutions are: 

 
2 2

1 2

1 2 1 2

,E E
 

 
   

   
 

 (6.28) 

 
Fig. 6.12. The strongest bonds are formed from atomic orbitals with similar energies. In 
these diagrams the constituent atomic orbitals are shown at left and right. The molecular 
orbitals are in the center. 
 

Thus, the splitting increases with the similarity in energy of the participating atomic 

orbitals, i.e. the bonding orbital becomes more stable. This is a general attribute of the 

interaction between two quantum states. The more similar their intial energies, the 

stronger the interaction. 

 

 

Examples of tight binding calculations 

 

Let‟s consider a conductor consisting of four atoms, each of which provides a frontier 

atomic orbital containing a single electron. A molecular equivalent to this model 

conductor is 1,3-butadiene; see Fig. 6.13. Here each carbon atom contributes one electron 

in a frontier atomic orbital.  

Fig. 6.13. (left) A model four atom conductor, where each atom contributes a single 
electron in a frontier atomic orbital. (right) An approximate chemical equivalent is 1,3-
butadiene, where the carbon atoms provide the frontier orbitals. 
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We‟ll ignore the hydrogen atoms, since the frontier electrons are donated by the carbon 

atoms. Let‟s label the four carbon frontier atomic orbitals 1, 2, 3, and 4.  

 

Following Eq. (6.6), we let the molecular orbitals be 

 1 1 2 2 3 3 4 4c c c c         (6.29) 

where the c coefficients are yet to be determined. 

 

Let‟s next consider integrals of the form: 

 
m m mH E E        (6.30) 

Considering m = 1, 2, 3 and 4 in turn, we get four equations: 

 

1 1 1 2 12 1

2 2 2 1 21 3 23 2

3 3 3 2 32 4 34 3

4 4 4 3 43 4

H c c c E

H c c c c E

H c c c c E

H c c c E

   

    

    

   

  

   

   

  

 (6.31) 

You can think of each equation as describing the interactions between a particular carbon 

atom, and itself and its neighbors. Solving these equations gives the coefficients c1, c2, c3, 

and c4. To simplify, we will assume that the self energy at each carbon atom is the same, 

i.e. 

 =  1 =  2 =  3 = 4. 

In addition, we will assume that the hopping interactions between neighboring carbon 

atoms are the same, i.e. 

 =  12 =  21 =  23 = 32 =  34 = 43. 

 

Perhaps the best way to solve the equations systematically is via a matrix. The equations 

can be re-written: 

 

1 1

2 2

3 3

4 4

0 0

0

0

0 0

c c

c c
E

c c

c c

 

  

  

 

    
    
     
    
        

    

 (6.32) 

This equation is of the familiar form 

 H E   (6.33) 

where the Hamiltonian is in the form of a matrix, and the wavefunction is a column 

vector containing the coefficients that weight the atomic orbitals: 

 

1

2

3

4

0 0

0
,   

0

0 0

c

c
H

c

c

 

  


  

 

  
  
   
  
     

   

 (6.34) 

 

Expressing the Hamiltonian and wavefunction in this form is an example of matrix 

mechanics, a version of quantum mechanics formulated by Werner Heisenberg that is 
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convenient for many problems. Apart from this example, we won‟t pursue matrix 

mechanics in this class. 

 

But it‟s worth taking a moment to examine the structure of the Hamiltonian matrix. Each 

row now describes the interactions between frontier orbitals on a carbon atom, and itself 

and its neighbors. The diagonal of the matrix contains the self-energies, and the off-

diagonal elements are the hopping interactions. This particular example is tridiagonal, 

i.e. the matrix elements are zero, except for the diagonal, and its immediately adjacent 

matrix elements. Linear molecules with alternating single and double bonds always 

possess tridiagonal matrices. 

 

After a bit of practice with tight binding calculations you should be able to skip directly 

to writing down the Hamiltonian matrix. For example, consider cyclobutadiene; shown 

below. 

Fig. 6.14. A cyclic four atom molecule and its chemical equivalent, cyclo-butadiene. 

 

Because of its ring structure, cyclobutadiene has additional hopping interactions between 

the carbons #1 and #4 that were on the ends of the chain in 1,3-butadiene. These 

interactions at the 1,4 and 4,1 positions are labeled in red in Eq. (6.35) below. 
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0
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0
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 

  

  





 

 
 
 
 
  
 

 (6.35) 

 

As you can probably imagine, for all but the simplest molecules, these matrices can get 

extremely large and unwieldy. And solving them can be extremely computationally 

intensive. In fact, tight binding calculations are almost never done by hand. But some 

insight can be gained by analytically solving simple linear molecules. 

 

Returning to 1,3-butadiene, rearranging Eq. (6.32), we get: 
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 (6.36) 

To find the non-trivial solution (i.e. solutions other than c1 = c2 = c3 = c4 =0) we take the 

determinant: 

 

0 0

0
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E
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E

E
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  

  

 










 (6.37) 

 

The solutions are: 

 
3 5

2 2
E      (6.38) 

And the eigenfunctions are: 

 sin ,      , 1,2,3,4.
5

jc jn j n
 

  
 

 (6.39) 

These solutions are summarized in Fig. 6.15. The molecular orbitals are similar to the 

standing waves expected for a particle in a box. 

 
Fig. 6.15. The molecular orbitals and their energies for 1,3-butadiene. After „Molecular 
Quantum Mechanics‟, by Atkins and Friedman, 3rd edition, Cambridge University Press, 
1997. 
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Polyacetylene  

 

Next, let‟s consider a longer chain of carbon atoms. Very long molecules are known as 

polymers, and a polymer equivalent of the idealized conductor in Fig. 6.16 is known as 

polyacetylene.  

 

Specifically, let‟s solve for a carbon chain of N atoms. Equation (6.37) is an example of a 

tridiagonal determinant. In general, an N × N tridiagonal determinant has eigenvalues:
†
 

 2 cos ,      1,2,...
1

n

n
E n N

N


 

 
   

 
. (6.40) 

and eigenvectors: 

 sin ,      , 1,2,...
1

jc jn j n N
N

 
  

 
. (6.41) 

Note that Eqns. (6.40)-(6.41) reduce to Eqns. (6.38)-(6.39) by using the identity: 

   cos 2 5 1 4 1 5     

 

Thus, we have solved for the molecular orbitals in a molecule modeled by an arbitrarily 

long chain of frontier atomic orbitals, each containing a single electron.  

 
Fig. 6.16. (left) An infinite chain of atoms each contributing a single electron in a frontier 
orbital. (right) The equivalent polymer polyacetylene. 

 

Next, let‟s re-express our solutions for polyacetylene in terms of a wavevector, k. Note 

that because the atoms are discretely positioned in a chain, k is also discrete. There are 

only N allowed values of k.  

 

Given x = ja0, where a0 is the spacing between carbon atoms, we get: 

    sinc x kx  (6.42) 

and 

  02 cosnE ka    (6.43) 

where 

 
0

,      1,2,...
1

n
k n N

a N


 


 (6.44) 

                                                 
†
 If you are interested and have a few spare hours you can try to prove this. After evaluating the first few 

determinants of simple triadiagonal matrices, N=1, N=2, N=3, etc.. find and solve a difference equation for 

the determinants as a function of the matrix dimension, N.  
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The dispersion relation of polyacetylene is plotted in Fig. 6.17. The energy states are 

restricted to energies E =  ± 2, forming a band, of width 4, centered at . The 

bandwidth (4) is directly related to the hopping interaction between neighboring carbon 

atoms. This is a general property: the stronger the interaction between an electron and the 

neighboring atoms, the larger the bandwidth. And as we shall, the broader the electronic 

bandwidth, the better the electron conduction within the material. 

  

There are N states in the band, each separated by  

 
 0 1

k
a N


D 


. (6.45) 

 

Note that the length of the chain is L = (N-1)a0. Thus for long chains the separation 

between states in the band is approximately 

 k
L


D   (6.46) 

Now each carbon atom contributes a single electron in the frontier atomic orbitals that 

comprise the molecular orbitals. Thus for a N-repeat polymer, there are N electrons. But 

each state holds two electrons, one of each spin. Filling the lowest energy states first, 

only the first N/2 k states are filled; see Fig. 6.17. Thus, the band is only half full, and so, 

if the polymer was connected to contacts we might expect polyacetylene to be a metal.  
 
 

 
Fig. 6.17. The disp-
ersion relation of 
polyacetylene as 
determined by a 
tight binding 
analysis. For N 
atoms, each 
donating a single 
electron in a frontier 
atomic orbital, there 
are N molecular 
orbitals with 
energies arranged 
in a band. Since the 
band of states is 
only half full this 
material might be 
expected to be a 
metal. 
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Crystals and periodic molecules 

 

The particle in a box approximation is too crude for most problems. Tight binding, on the 

other hand, is often quite computationally intensive. But fortunately, we can make 

simplifications when the material is periodic. In this lecture, we are interested in first 

describing 1d, 2d and 3d periodic materials, and then calculating their wavefunctions. 

We‟ll begin with some definitions. 

 

The Primitive Unit Cell 

 

A primitive unit cell of a periodic material is the smallest possible arrangement of atoms  

that can be copied to construct the entire material. 

 

Primitive Lattice Vectors 

 

Given a primitive unit cell, we can construct the periodic material by translating the unit 

cell by multiples of the primitive lattice vectors. 

 

Some examples may help  

 

Polyacetylene (average bond model) 

 

The carbon backbone of polyacetylene consists of alternating single and double bonds. 

Thus, there are two possible configurations: single-double-single-double or double-

single-double-single.  

Fig. 6.18. The simplest model for polyacetylene is an average of the two possible 
alternating single-double bond configurations. 

 

The simplest model assumes that every carbon atom in polyacetylene is identical. The 

carbon-carbon bonds are then an average of single and double, and the unit cell is a single 

carbon atom and its associated hydrogen atom. Under this model, to construct a 

polyacetylene chain, we should translate the primitive unit cell a distance a0. Thus the 

primitive lattice vector is 0a
1

a x , where we arbitrarily positioned the chain parallel to 

the x-axis.  
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Polyacetylene (alternating bond model) 

 

A more accurate model of polyacetylene includes the effects of alternating single and 

double carbon-carbon bonds on the polymer backbone. Since double bonds contain a 

slightly higher electron density than single bonds, they are slightly shorter. Thus, the 

single-double bond alternation establishes a static deformation with twice the period, a0, 

of the average bond model for polyacteylene. The periodic charge density established by 

the deformation is known as a charge density wave. The primitive lattice vector is 

02a1a x .  

Fig. 6.19. A more accurate model for polyacetylene, including the alternating single and 
double bonds. 

 

Graphene 

 

Polyacetylene is a 1d chain of carbon atoms, each contributing one electron in a frontier 

atomic orbital. It is also possible to form 2d sheets of carbon atoms with a single electron 

in their frontier atomic orbitals. See for example graphene in Fig. 6.20.
†
  

 

Fig. 6.20. Graphene is a 2d sheet of hexagonal carbon atoms. Electrons in frontier 
atomic orbitals are found above and below the plane. 

                                                 
†
 In graphene extended  orbitals are formed above and below the plane of a sheet of 

hexagonal carbon atoms, increasing the rigidity of the structure and enhancing charge 

transport.  
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Graphene may also be rolled up into cylinders to form carbon nanotubes – unique 

structures that we will consider in detail later on in the class. 

 

The unit cell of graphene contains two carbon atoms labeled 1 and 2 in Fig. 6.21. The 

lattice is generated by shifting the unit cell with the primitive lattice vectors 

 0 3 2,3 2a 
1

a  and  0 3 2,3 2a
2

a , where a0 is the carbon-carbon bond 

length. 

Fig. 6.21. A graphene lattice showing the unit cell and primitive lattice vectors. 

 

 

 

Simple cubic, face centered cubic and diamond lattices 

 

Fig. 6.22 shows the simplest 3-d crystal structure – the simple cubic lattice. The primitive 

lattice vectors are 0
ˆa

1
a x , 2 0

ˆaa y , 3 0
ˆaa z , where a0 is the spacing between 

neighboring atoms. Very few materials, however, exhibit the simple cubic structure. The 

major semiconductors, including silicon and gallium arsenide, possess the same structure 

as diamond. 

 

As also shown in Fig. 6.22, to describe the diamond structure, we first define the face 

centered cubic (FCC) lattice. Here the simple cubic structure is augmented by an atom in 

each of the faces of the cube. The primitive lattice vectors are: 

 0 ˆ ˆ
2

a
 1a x z ,  0

2
ˆ ˆ

2

a
 a y z ,  0

3
ˆ ˆ

2

a
 a x y , 

where a0 is now the cube edge length. 

 

In the diamond lattice, each atom is sp3-hybridized. Thus, every atom is at the center of a 

tetrahedron. We can construct the diamond lattice from a face centered cubic lattice with 

a two atom unit cell. For example, in Fig. 6.22, our unit cell has one atom at (0,0,0), and 

another at a0/4.(1,1,1). 
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Fig. 6.22. A diamond lattice is simply a face-centered cubic lattice with a two atom unit 
cell (outlined in red). 

 

 

Bloch functions: wavefunctions in periodic molecules 
 

Wavefunctions in periodic materials are described by Bloch functions. To better 

understand their properties, it is instructive for us to derive Bloch functions.
†
  

 
First, let‟s consider a periodic molecule, comprised of unit cells translated by multiples of 

the primitive lattice vectors. Let the wavefunction of the unit cell be 0. Under the tight 

Fig. 6.23. The molecular orbitals of periodic molecules are linear combinations of the 
wavefunctions of the unit cells. 

                                                 
†
 Our method follows the derivation of Kittel in „Introduction to Solid State Physics‟, Wiley, 7

th
 Edition, 

1996. 
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binding approximation, the wavefunction of the unit cell is itself constructed from a 

linear combination of frontier atomic orbitals.  

 

Now, the molecular orbitals will be composed of linear combinations of the wavefunction 

of the unit cell, i.e.  

 
0r

r

c   (6.47) 

where once again cr is a set of coefficients. Note that, unlike approximations of molecular 

orbitals using linear combinations of frontier atomic orbitals, Eq. (6.47) is exact. We 

emphasize that 0 in Eq. (6.47) is the exact wavefunction of a unit cell of the complete 

molecule. In molecular orbital calculations 0 is typically calculated using tight binding, 

or another approximate technique. But for the moment we will assume that we know it 

exactly.  

 

The aim of this derivation is to determine the coefficients cr given that the material is 

periodic. Quite generally, we can relate the two coefficients c1 and c2 of the first two unit 

cells by 

 2 1c c  (6.48) 

where  is some constant.  

 

The symmetry of the material allows us to translate indistinguishably and consequently, 

 1r rc c   (6.49) 

where 0 < r < N, where N is the number of unit cells in the material. 

 

Now if we assume periodic boundary conditions, we can compare the identical unit cells 

at r and r + N: 

Fig. 6.24. The application of periodic boundary conditions to an already periodic 
molecule. 
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1 1

N

Nc c   (6.50) 

But since cN+1 = c1,  must be one of N roots of unity, i.e.  exp 2i n N  , where n is 

an integer. Thus, the coefficients are phase factors; the wavefunction corresponding to 

each unit cell is modulated by a phase factor in a periodic molecule. Consequently, if we 

set cN = 1 (which we can do since absolute phase is arbitrary): 

 
2

e
n

i r
N

rc


 . (6.51) 

Alternately, approximating the coefficients by a continuous function, we can write: 

   eikxc x   (6.52) 

where  

 
2 n

k
L


 . (6.53) 

Once again, only certain k values are allowed by the application of periodic boundary 

conditions. After all, standing waves in the molecule can possess only certain 

wavelengths. Recall also that Fourier transforms of periodic signals are discrete; see Fig. 

6.25. Thus, it follows from a Fourier analysis of the coefficients that k must be discrete. 

In addition, the Fourier transform of the coefficients is itself periodic since the 

coefficients are discrete (recall discrete time Fourier series - DTFS).  

 

 

The first Brillouin zone 

 

Since there are only N distinct values of the coefficients (corresponding to one period of 

the Fourier transform), we typically restrict k to the N values in the range 

2 2N n N   , i.e. 

 
0 0

k
a a

 
   . (6.54) 

 

This is known as the first Brillouin zone. Other values of k are either not permitted by 

periodic boundary conditions, or c(x) = exp[ikx] reduces to one of the N solutions. For 

example, consider k = 2(n+N)/L: 

  
   

0
0

22 2 2 2
2

n Nn N n n ni ra i r i r i ri x i x
Na N NL Lc x e e e e e

   





      (6.55) 

where a0 is the spacing between unit cells. 
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Fig. 6.25. A molecular orbital is described by linear combinations of the wavefunction of 
the unit cell. The coefficients, cr, are phase factors. The phase coefficients are discrete – 
there are only N of them. Thus, the Fourier transform of the coefficients contains only N 
unique values (it is periodic). We can restrict the range of k values without losing 

information. Typically, we chose k values in the first Brillouin zone (-/a0 < k ≤ /a0). Note 
also that the application of periodic boundary conditions fixes the spacing between k 

values at 2/L. 
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2-d and 3-d periodic materials 

 

Applying Bloch functions to periodic 2d and 3d molecules follows the same principles as 

in 1d; see Fig. 6.26. 

 

The molecular orbitals in 2-d and 3-d periodic materials are still composed of linear 

combinations of the wavefunction of the unit cell, 0, i.e.  

 
0r

r

c  . (6.56) 

Once again, when we apply periodic boundary conditions the area occupied in k-space 

per k-state is: (for 2-d and 3-d, respectively) 

 
2 3

2 32 2 4 2 2 2 8
,x y x y z

x y x y z

k k k k k k k
L L A L L L V

      
D  D D   D  D D D    (6.57) 

where A is the area of the molecule, and V is its volume.  

 

3-d periodic materials are usually known as crystals. Si and the rest of the common 

semiconductor materials fall into the category of 3-d periodic materials. 

Fig. 6.26. An example of a 2-d periodic material. 
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Tight Binding Calculations in Periodic molecules and crystals 

 

Polyacetylene (average bond model) 

 

We now repeat the polyacetylene calculation, but this time we impose periodic boundary 

conditions and assume molecular wavefunctions of the Bloch form. The solutions are 

almost identical to the previous calculation in the absence of periodic boundary 

conditions, but there are some subtle yet important differences in the dispersion relation. 

 

The unit cell of polyacetylene under the average bond model has only a single carbon 

atom. Let the wavefunction of the jth unit cell be (j), defined as the frontier atomic 

orbital of carbon. Since polyacetylene is periodic, we use a Bloch function to describe the 

molecular orbitals 

    
2

0

n
i j

N

j

x e x ja


    (6.58) 

To derive the energy levels consider  j H x  . Now, 

    j jH x x      (6.59) 

Under the tight binding approximation, this simplifies to 

    
2 2 2 2

exp 1 exp exp 1 exp
n n n n

i j i j i j i j
N N N N

   
   

       
           

       
(6.60) 

where 
1j jH     and 

j jH   . 

 

Simplifying gives (compare Eq. (6.43)) 

 
2

2 cosn

n

N


    . (6.61) 

Re-writing Eq. (6.61) gives 

 
02 cosk ka     (6.62) 

where 

 
0

2 2n n
k

Na L

 
   (6.63) 

 

Once again, we note that each carbon atom contributes a single electron to its frontier 

orbital, thus for a N-repeat polymer, there are N electrons.  

 

We can determine whether polyacetylene is a metal or insulator by counting k states. The 

spacing between k states is 2/L. Thus in the first Brillouin zone, there must be 

2/a0 / 2/L = L/a0 = N states. But each molecular orbital holds two electrons, one of 

each spin. Filling the lowest energy states first, only the first N/2 k states are filled; see 

Fig. 6.27. With only half its k states filled, polyacetylene might be expected to be a metal. 
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Fig. 6.27. Energy states in polyacetylene as determined by a tight binding analysis. 
Since the band of states is only half full this material might be expected to be a metal. 

 

Question: Why does the spacing between k states under periodic boundary conditions 

differ from that calculated for an isolated strand of polyacetylene – see Eq.(6.46)? 

 

Answer: In the previous section, we analyzed the allowed k states in a periodic linear 

molecule, polyacetylene. We did not employ periodic boundary conditions, thus we 

would expect that the solutions would only be comparable as the number, N, of unit cells 

increases, proportionately reducing the impact of the differing boundary conditions. But 

for N→∞ we still find Dk(isolated polyacetylene) = ½ Dk(polyacetylene in periodic 

boundary conditions).  

 

The answer to this conundrum is that isolated polacetylene (i.e. actual polyacetylene – 

not polyacetylene with infinite copies to the left and right) can only support standing 

waves; there are no contacts that can inject charge, hence no solely left or right-

propagating waves.  Thus, considering both positive and negative values of k in isolated 

polyacetylene makes no sense. Rather, k ranges from 0 to /a0. There must be N states in 

this range, and we obtain Dk=/L. 

 

Given periodic boundary conditions, the polymer has infinite length. A wave could 

propagate to the left or right indefinitely. So we must consider both positive and negative 

values of k, i.e. k ranges from –/a0 to /a0. There must be N states in this range, and we 

obtain Dk=2/L.  
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Interestingly, we are almost never interested in a completely isolated electronic material. 

For example, practical systems must have contacts to inject charge! Thus, periodic 

boundary conditions that allow for propagating waves often come closer to modeling 

practical systems.  

 

 

 

Polacetylene (alternating bond model) 

 

Next, let‟s see what happens to the dispersion relation under the alternating bond model. 

Now each unit cell has two carbon atoms; see Fig. 6.19. We‟ll model the unit cell with a 

linear combination of two frontier atomic orbitals because the contributions of each 

atomic orbital to the unit cell could vary. 

 

Let the wavefunction of the jth unit cell be 

      1 1 2 2j c j c j     (6.64) 

where 1(j) and 2(j) are the frontier atomic orbitals of the first and second carbon atom 

in the jth unit cell, respectively. 

 

We must define two hopping integrals. For single bonds we have 

    1 21S j H j     (6.65) 

and for double bonds 

    1 2D j H j   . (6.66) 

As before,        1 1 2 2j H j j H j      . 

 

Assuming a wavefunction of the Bloch form (Eq. (6.58)) we take 

    
2

02
n

i j
N

j

x e x j a


   , (6.67) 

where we note that the spacing between unit cells is now 2a0. 

 

Let‟s now consider two overlap equations 

 
   

   

1 1

2 2

j H j

j H j

    

    




. (6.68) 

Under the tight binding approximations, the LHS of Eq. (6.68) expands to 
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    
       
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    
      

    

 (6.69) 

 

The RHS of Eq. (6.68) expands to 
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 (6.70) 

The solution for non-trivial c1, c2 is given by 

 

2
exp

0
2

exp

S D

S D

n
i

N

n
i

N
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
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 (6.71) 

i.e. 

 2 2

02 cos2S D S D ka          (6.72) 

 

In the alternating bond model, the period of polyacetylene is 2a0. Thus the number of 

distinct k values is 2/2a0 / 2/L = N/2, where N is the number of carbon atoms in the 

polymer backbone.  

 

But there are two solutions for the energy at each k value (i.e. there are two energy 

bands), so the total number of states is N. Since each state holds two electrons, we find 

that the bottom band is completely full and the top band is completely empty. Thus, the 

periodic potential formed by alternating single and double bonds opens a band gap at 

k = /2a0, completing transforming the material from a metal to an 

insulator/semiconductor! Obviously, the accuracy of the DOS calculation is critical. 

   
Fig. 6.28. A periodic perturbation with twice the interatomic spacing introduces a gap at 
the Fermi energy, transforming a metal into an insulator (wide bandgap semiconductor). 
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Graphene 

 

Like polyacetylene in the alternating bond model, in graphene we have a unit cell with 

two carbon atoms. Let the wavefunction of the unit cell be 

 1 1 2 2c c     (6.73) 

where 1 and 2 are the frontier atomic orbitals of the first and second carbon atom in the 

unit cell, respectively. 

 

We assume a wavefunction of the Bloch form (Eq. (6.58)) but we re-write it in terms of a 

sum over all lattice vectors R: 

    ie   k R

R

x x R . (6.74) 

 

Next we define the hopping integral 

 
1 2H    (6.75) 

As before, j jH   . 

 

Let‟s now consider two overlap equations 
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. (6.76) 

 

Under the Hückel/tight binding approximations, the LHS of Eq. (6.76)expands to 
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R x
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. (6.77) 

 

The RHS of Eq. (6.76) expands to 
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 (6.78) 

The solution for non-trivial c1, c2 is given by 

 
 
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1
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1

i i

i i

e e
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k a k a
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 (6.79) 

i.e. 

       2 23 2cos 2cos 2cos       
1 1

k a k a k a a  (6.80) 

 

This is plotted in Fig. 6.29, where we have arbitrarily set  = 0. 
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Fig. 6.29. The bandstructure of graphene. 

 

Each unit cell contributes an orbital to a band; given N unit cells, each band has N states, 

or including spin, 2N states. Graphene, with two electrons per unit cell has two bands and 

2N electrons. Thus, the lower band of graphene is completely filled. 

 

We might therefore expect that graphene is an insulator, but the lower band touches the 

upper band at values of k known as the K points 
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Thus, in these particular directions graphene conducts like a metal. 

 

 

 
 
 
 
Fig. 6.30. The K points in graphene. 
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Carbon Nanotubes 

 

Carbon nanotubes are remarkable materials. They are perhaps the most rigid materials 

known, and they have excellent charge transport properties. 

 

Fig. 6.31. An example of a carbon nanotube – composed of a rolled up graphene sheet. 
This particular tube is known as an armchair – you may be able to identify armchairs in 
the hexagonal lattice. 

 

We will treat carbon nanotubes as rolled-up graphene sheets. The construction of a 

nanotube from a sheet of graphene can be imagined as in Fig. 6.32. We first draw the 

wrapping vector from one unit cell to another. When the tube is formed both ends of the 

wrapping vector will be connected. The wrapping vector is written 

  ,n m n m  1 2w a a  (6.81) 

The length of the wrapping vector determines the circumference of the tube, and as we 

shall see the vector (n,m) characterizes its electronic properties.  

 

Next two parallel cuts are made perpendicular to the wrapping vector and the remaining 

piece is rolled up; see Fig. 6.33.
†
 

 

Fig. 6.32. Carbon nanotubes can be imagined to be constructed from rolled up pieces of 
graphene. In the example above, a wrapping vector, w, is drawn between two unit cells 
that will be connected when the tube is rolled up. The graphene sheet is cut 
perpendicular to w.  

                                                 
†
 Of course, carbon nanotubes are not actually made from graphene like this. There are many techniques 

including chemical vapor deposition using a catalyst particle that defines the width of the tube. 
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After the tube is rolled up, periodic boundary conditions are established on the 

circumference of the tube. Thus, only certain values of the wavevector, k, are allowed 

perpendicular to the tube axis, i.e. 

 2 ,l l k w  (6.82) 

 

If the allowed k-states include the K points of graphene then the carbon nanotube will be 

a metal, otherwise it is a semiconductor. For example, consider a (4,4) armchair nanotube 

as shown below. We also plot the K points for graphene in k space. 

Fig. 6.33. Three types of nanotubes. The first two, armchair and zigzag are special 
cases with wrapping vectors (N,N) and (N,0) or (0,N), respectively. The third is the 
general case or chiral form with wrapping vector (n,m). 
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Fig. 6.34. At left, a (4,4) armchair nanotube. At right, the K points of graphene. 

 

Let‟s begin by decomposing k into a component perpendicular to the tube axis, k , and a 

component parallel to the tube axis, k . For a (4,4) tube 0
ˆ12aw y . Thus, the allowed 

values of k are given by 

 
06

y

l
k

a


 . (6.83) 

As shown in Fig. 6.34, this set of allowed k values includes the K points. Thus (4,4) 

tubes are metallic.  

 

Next, let‟s examine a (0,4) zigzag tube. 

 

For a (0,4) tube 
0 0
ˆ ˆ2 3 6a a w x y . Thus, the allowed values of k  are given by 

Fig. 6.35. At left, a (0,4) zigzag nanotube. At right, the K points of graphene. 
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
  . (6.84) 

As shown in Fig. 6.35, this set of allowed k values does not include the K points. Thus 

(0,4) tubes are insulating/semiconducting.  

 

 

Analytic approximations for the bandstructure of graphene and carbon nanotubes 

 

Since the conduction properties of graphene are dominated by electrons occupying states 

at or near the K points, it is convenient to linearize the energy at  κ k K . 

 

The exact tight binding solution from Eq. (6.80)is: 

 

       2 23 2cos 2cos 2cos       
1 1

k a k a k a a  (6.85) 

 

We substitute  k K κ  and expand the cos(K+) terms as a Taylor series to second 

order in . This yields: 
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 (6.86) 

 

Next, we note some identities: 

       2 1 2

1
cos cos cos

2
    1K a K a K a a  (6.87) 

       2 1 2sin sin sin    1K a K a K a a  (6.88) 

From these identities Eq. (6.86) reduces to 
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22 2

1 2 2

1 1 1

2 2 2
      1κ a κ a κ a a  (6.89) 

Solving this (see the Problem Set) gives the approximate dispersion relation for graphene: 
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3

2
a    κ  (6.90) 

 

Since the speed of the charge carrier is given by the group velocity: 
1v k   , we get 

 03

2

a
v


  (6.91) 

 

For a0 = 1.42Å and  = 2.5 eV, v = 10
6
 m/s. 
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Now, for carbon nanotubes, the periodic boundary condition on the circumfrence is 

   2 ,l l  κ K w  (6.92) 

 

Let‟s consider each K point in turn: 
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 (6.93) 

Rearranging gives: 
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 (6.96) 

The other K points follow by symmetry, and we can conclude that 
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where we have separated  into two components parallel, κ , and perpendicular, κ to 

the tube axis. From Eq. (6.90) we get  
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22

03

3 2

da n m
l

d


 

    
       

    

κ
. (6.98) 

where the tube circumference is  dw . Interestingly, Eq. (6.98) predicts that tubes are 

metallic when   3n m    . Assuming that n and m are generated randomly, we 

expect that 1/3 of tubes should be metallic. Indeed, this seems to be the case in practice. 

Note also that for semiconducting tubes the band gap is inversely proportional to the tube 

diameter. 

 
Fig. 6.36. Approximate band structures for metallic and semiconducting zigzag tubes. 
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Bandstructure of bulk semiconductors 

 

As stated above, most of the common semiconductors are constructed from sp
3
-

hybridized atoms assembled in the diamond crystal structure.  

 

Unfortunately, sp
3
-hybridization makes the bandstructure calculation much harder. In our 

earlier sp
2
-hybridized examples, we were able to ignore all of the atomic orbitals 

involved in  bonds, and we considered only the -bonding electrons from the 

unhybridized p atomic orbital. Since sp
3
-hybridized materials only contain  bonds, we 

can no longer employ this approximation and our calculation must include all four sp
3
-

hybridized atomic orbitals. In fact, to obtain reasonable accuracy, bandstructure 

calculations usually include the next highest unfilled orbital also. 

 

For a diamond structure, with a two atom unit cell, this means that we must consider 10 

atomic orbitals per unit cell (one set of five per atom in the unit cell). 

 

The calculation itself follows the procedures we described for graphene. But now we 

must solve a 10x10 matrix. We will draw the line here in this class.  

 

 

Band Gaps and Conduction and Valence bands 

 

As shown in Fig. 6.37, if the Fermi energy separates two bands of allowed electron states, 

the upper band is empty and the lower band is full. The energy difference between the top 

of the filled band and the bottom of the empty band is known as the band gap. Empty 

bands that lie above the Fermi energy are known as conduction bands. Filled bands that 

lie below the Fermi energy are known as valence bands. In this class, we have mostly 

considered charge transport through the conduction band. Charge may also move through 

vacancies in the normally full valence band. These vacancies are known as holes. Holes 

are effectively positively charged 

because the semiconductor no longer has 

its full complement of electrons. 

Consequently, a MOSFET that conducts 

through its valence band is known as p-

channel MOSFET. It requires a negative 

VGS to turn on. 

 

 
Fig. 6.37. The energy difference 
between the top of a filled (valence) 
band and the bottom of an empty 
(conduction) band is known as the band 
gap.  
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Band diagrams 

 

Often the dispersion relation is simplified to show just the bottom of the conduction band, 

and the top of the valence band. This simplification is useful because usually the density 

of states is sufficiently large in a bulk semiconductor that the gate is prevented from 

pushing the Fermi level into the band. Plots showing the band edges as a function of 

position are known as a band diagrams. 

Fig. 6.38. An example of a band diagram. Here two insulators with different band gaps 
are connected. Note that the Fermi level must be constant in the two materials in 
equilibrium. 

 

Semiconductors and Insulators 

 

We have seen that insulators do not conduct because there are no uncompensated 

electrons. Considering both the conduction and valence band in the form shown in Fig. 

6.38, it is evident that the material is an insulator when the Fermi energy lies in the 

bandgap. But if we introduce electrons to the conduction band, or remove electrons from 

the valence band, what was once an insulator can be transformed into a conductor. In fact 

if the Fermi energy is close to either band edge, then even a small movement in the Fermi 

energy can significantly modulate the conductivity. Such materials are known as 

semiconductors because it is easy to modulate them between the metallic and insulating 

regimes. 

 

Sometimes, it can be difficult to distinguish between insulators and semiconductors. But 

insulators tend to have band gaps exceeding several electron-Volts and a Fermi energy 

close to the center of the band gap. 
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Problems 

 

1. Consider the interaction of two carbon atoms each with one electron in a frontier 2pz 

atomic orbital. Assuming the positions of the atoms are fixed, the Hamiltonian of the 

system consists of a kinetic energy operator, and two Coulombic potential terms: one for 

the central atom and one for its neighbor: 

 

 1 2H T V V     

 

Assume the wavefunction in this two atom system can be written as 

 

 1 1 2 2c c      

 

where 1 and 2 are the 2pz atomic orbitals on the first and second carbon atoms, 

respectively, and c1 and c2 are constants. 

 

The self energy is defined as 

 

 r r r rT V      

 

The hopping interactions are defined as 

 

 sr s s rV     

 

Earlier, we assumed that the overlap integral between frontier orbitals on atomic sites s 

and r could be approximated as 

 

 sr s r srS     .  

 

Do not make that assumption here and show that the electron energies of the system 

satisfy 

 

  det 0H ES   (6.99) 

  

where H is a 2×2 Hamiltonian matrix and S is a 2×2 overlap matrix and E is a constant.  

 

 

(a) Write each matrix in Eq. (6.99) in terms of the self energies, hopping integrals and 

overlap integrals. 

 

(b) Under what conditions can you safely ignore the overlap integrals? 
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2. (a) Consider the potential    0V x V x  , sketched below.    

 

 
 
Fig. 6.39. A delta function potential.  

 

(i) Show that the wavefunction is given by
1( )

k x
x ke


  where 0

2

mV
k    

(ii) Show that the energy of the bound states (E<0) is 
2

0
1 22

mV
E   . 

 

(b) Now add a second delta function potential at x = a.  

i.e. if the previous Hamiltonian was  
2 2

1 022

d
H V x

m dx
   , the new Hamiltonian is 

1H H V   where  0V V x a    

 

 

 

 

 

 

 

 
 
Fig. 6.40. Two delta function potentials. 

 

Let the wavefunction of the new system be approximated by 1 1 2 2c c     where 

 2 1 x a    and c1 and c2 are constants. 

 

  

The self energy is
1 1 1H    

The hopping interaction is 
2 1V    

In addition, define the overlap integral
1 2S   , and 

1 1V    

 

By evaluating the expressions 

1 1H E     

and 

2 2H E     

 V x

x
0

 0V x

 0V x  0V x a 

a 

 V x

x
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show that 

1 1

2 2

1

1

c cS S
E

c cS S

   

   

        
      

       
 

 

Now show that 
2

0

22

mV



 , 

2

0

2

kamV
e 

 , (1 ) kaS ka e  , and 
2

20

2

kamV
e 

  

Dropping terms containing e
-2ka

, show that the matrix reduces to E      

 

 

3. For molecules where each carbon atom contributes at least one delocalized electron to 

a  orbital, we can use the perimeter free electron orbital theory approximation, which is 

described below.  

 

Assume that the molecule in question is a circular ring of atoms and assume an infinite 

square well potential. 

 

(a) Show that the energy levels of a molecule under this approximation are 

 

2 2

22

l

e

h m
E

m L
 ,  

where where ml is an integer, and L is the perimeter of the molecule. 

 

Hint: The Hamiltonian in polar coordinates is given by:  

  
2 2 2

2 2 2

1 1ˆ
2 e

d d d
H

m dr r dr r d

 
   

 
 

 

(b) According to the perimeter free electron orbital theory approximation, the energy 

level structure of anthracene is shown in Fig. 6.41, below. 

 
Fig. 6.41. The molecular and energetic structure of anthracene. 
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Continued on next page…. 

(i) Why is there a solution for ml = 0 in anthracene but no solution for n = 0 in the infinite 

quantum well? 

(ii) Why are there solutions for negative ml in anthracene but no solutions for negative n 

in the infinite quantum well? Hint: consider the Pauli exclusion principle. 

 

(c) Calculate the molecular orbitals and HOMO-LUMO gap of anthracene. Take 

a = 1.38Å as the C-C bond length.  Assume each C atom donates 1 electron to the 

frontier orbitals. 

 

 

4. Consider the periodic molecule consisting of two different alternating atom types 

illustrated below (frontier orbitals are shown).   

 

 
  
Fig. 6.42. A periodic array of two different atoms. 

 

(a) How many atoms are in the unit cell in this molecule?   Using periodic boundary 

conditions and assuming molecular wavefunctions of the Bloch form, find the energy 

levels. 

 

(b) Find the density of states. 

 

 

5. The band structure of molecular crystals 
 

Let   r  be the HOMO of a typical molecule. As in most stable molecules,   r  is fully 

occupied and contains two electrons.  

 

Unlike conventional crystalline semiconductors such as Si, the unit cells in a molecular 

crystal are held together by weak van der Waals forces. A typical value for the interaction 

between nearest neighbors in a van der Waals bonded solid is 

    10 meVH     r R r  

where H is the Hamiltonian for the interaction between nearest neighbors and R is the set 

of lattice vectors connecting the molecule at r to its nearest neighbors. 

 

 

(a) Calculate the „valence‟ band structure of a cubic molecular crystal of this molecule. 

Let    H  r r . (See Fig. 6.43 below). 

 

Continued on next page…. 

2s 2s 2s 
1s 1s 1s 

a0 
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Fig. 6.43. The structure of a simple cubic molecular crystal 

 

(b) Show that all molecular crystals with filled HOMOs are insulators. 

 

 

6. Consider the following polymer: 

 
Fig. 6.44. A polymer. 

 

Assume the spacing between atoms on the linear backbone is a0, as shown. Also, assume 

all atoms are the same element, β1 and β2 are the hopping interactions between atoms as 

shown, the self energy at each atom is α, and assume each atom contributes one electron. 

(a) What is the primitive unit cell and primitive lattice vector? 

(b) Show that the dispersion relation is given by  

       2 2 2

2 0 2 0 1 0cos cos 2 1 cosE ka ka ka        . 

 

(c) Is the polymer metallic or insulating? 

1

2
a0
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7. Graphene and carbon nanotube transistors 

 

(a) With reference to the bandstructure of graphene shown below, explain why graphene 

when rolled up into nanotubes can be either metallic or semiconducting? 

 

(b) Using the k-space plot shown below, determine whether the following (n,m) 

nanotubes are metallic or semiconducting. Recall that nanotubes are rolled-up graphene 

sheets with wrapping vector  1 2 ,w na ma n m   . 

 

i) (0,6) 

 

ii) (N,N) 

 

iii) (3,9) 

 

iv) (3,5) 

 
 
Fig. 6.45. The K points in graphene. 

 

(c) At present, there is much interest in using graphene (as opposed to carbon nanotubes) 

as the channel material for field effect transistors. The idea is to fabricate entire chips on 

a single sheet of graphene.  

 

First the graphene is deposited somehow (this is a technological challenge at present). 

Next, the graphene is cut up. 

Finally, contacts and gate insulators are deposited. 

 

Why is the graphene cut up? Explain with reference to particle in a box models of 

conductors. 
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8. Carbon Nanotubes 

 

(a) Prove the identities in Eq. (6.87) and Eq. (6.88). 

 

(b) Derive Eq. (6.90) from Eq. (6.89). 

 

 

9. This question relates to the molecule shown below. 

 
a) Write the Hamiltonian matrix for this molecule in terms of the tight binding 

parameters α, and β. 

 

b) Write the energy for this molecular orbital in terms of α and β. 

 

c)  Compare the density of states of the HOMO and LUMO of the previous molecule to 

the one below. 
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