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Part 5. Field Effect Transistors 
 

 

Field Effect transistors (FETs) are the backbone of the electronics industry. The 

remarkable progress of electronics over the last few decades is due in large part to 

advances in FET technology, especially their miniaturization, which has improved speed, 

decreased power consumption and enabled the fabrication of more complex circuits. 

Consequently, engineers have worked to roughly double the number of FETs in a 

complex chip such as an integrated circuit every 1.5-2 years; see Fig. 1 in the 

Introduction. This trend, known now as Moore‟s law, was first noted in 1965 by Gordon 

Moore, an Intel engineer. We will address Moore‟s law and its limits specifically at the 

end of the class. But for now, we simply note that FETs are already small and getting 

smaller. Intel‟s latest processors have a source-drain separation of approximately 65nm.  

 

In this section we will first look at the simplest FETs: molecular field effect transistors. 

We will use these devices to explain field effect switching. Then, we will consider 

ballistic quantum wire FETs, ballistic quantum well FETs and ultimately non-ballistic 

macroscopic FETs.  

 

(i) Molecular FETs 
 

The architecture of a molecular field effect transistor is shown in Fig. 5.1. The molecule 

bridges the source and drain contact providing a channel for electrons to flow. There is 

also a third terminal positioned close to the conductor. This contact is known as the gate, 

as it is intended to control the flow of charge through the channel. The gate does not 

inject charge directly. Rather it is capacitively coupled to the channel; it forms one plate 

of a capacitor, and the channel is the other. In between the channel and the conductor, 

there is a thin insulating film, sometimes described as the „oxide‟ layer, since in silicon 

FETs the gate insulator is made from SiO2. In the device of Fig. 5.1, the gate insulator is 

air. 

Fig. 5.1. A molecular FET. An insulator separates the gate from the molecule. The gate 
is not designed to inject charge. Rather it influences the molecule‟s potential. 
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FET switching 

 

In digital circuits, an ideal FET has two states, ON and OFF, selected by the potential 

applied to the gate. In the OFF state, the channel is closed to the flow of electrons even if 

a bias is applied between the source and drain electrodes. To close the channel, the gate 

must prevent the injection of electrons from the source. For example, consider the 

molecular FET in Fig. 5.2. Here, we follow FET convention and measure all potentials 

relative to a grounded source contact. For a gate bias of VGS < ~6.2V little current flows 

through the molecule. But for ~6.2V< VGS < ~6.4V the FET is ON and the channel is 

conductive.  

Fig. 5.2. The IDS-VGS characteristics of a FET employing the buckyball molecule C60. At 
equilibrium the source and drain chemical potentials are at -5eV, and the molecule‟s 
LUMO is at -4.7eV. The various electrostatic capacitances in the device are labeled. As 
the gate potential is increased, the LUMO is pushed lower. At approximately VGS = 6.3V, 
it is pushed into resonance with the source and drain contacts and the current increases 
dramatically. The width of the LUMO determines the sharpness of the resonance. Note 
„aF‟ is the symbol for atto Farad (10-18 F). 

 

As shown in Fig. 5.3, the transitions are much more gradual if the molecular energy level 

is broader. Similarly, increasing the temperature can also blur the switching 

characteristics. 

 
Fig. 5.3. A comparison between 
the switching characteristics of 
molecular FETs with broad and 
narrow energy levels. Note the 
different current scales. 
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The origin of FET switching is explained in Fig. 5.4. The gate potential acts to shift 

energy levels in the molecule relative to the contact chemical potentials. When an energy 

level is pushed between 1 and 2 electrons can be injected from the source. 

Correspondingly, the current is observed to increase. Further increases in gate potential 

push the energy level out of resonance and the current decreases again at ~ 6.4V. 

Fig. 5.4. The IDS-VDS characteristics of the FET from Fig. 5.2. Outside resonance a 

conductance gap opens because additional source-drain bias is required to pull the 
molecular level between the source and drain chemical potentials. 

Fig. 5.5. The IDS-VDS characteristics of the FET from Fig. 5.2, except this time the width of 

the LUMO is 1000 x broader in energy. The corresponding IV shows more gradual 
transitions, a narrower conductance gap and much higher currents.  
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FET Calculations 

 

Unlike the two terminal case, where we arbitrarily set EF = 0 and shifted the Source and 

Drain potentials under bias, the FET convention fixes the Source electrode at ground. 

There are two voltage sources: VGS, the gate potential, and VDS, the drain potential. We 

analyze the influence of VGS and VDS on the molecular potential using capacitive dividers 

and superposition:  

Fig. 5.6. Analyzing a molecular FET using a capacitive divider and superposition. 
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 (5.1) 

Simplifying, and noting that the total capacitance at the molecule is CES = CS + CD + CG: 

 G D
ES GS DS

ES ES

C C
U qV qV

C C
    (5.2) 

 

We also must consider charging. As before, 

  
2

0C

ES

q
U N N

C
   (5.3) 

Recall that charging opposes shifts in the potential due to VGS or VDS. Thus, if charging is 

significant, the switching voltage increases; see Fig. 5.7. 

Fig. 5.7. IDS-VGS characteristics for the FET of Fig. 5.2 calculated under two different sets 

of capacitances. Charging is more important for the smaller capacitances. The switching 
voltage for this device is observed to increase to ~ 8.1V. 
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Adding the static potential due to VDS and VGS gives, the potential U in terms of the 

charge, N, and bias 

  
2

0
G D

GS DS

ES ES ES

C C q
U qV qV N N

C C C
      (5.4) 

We also have an expression for potential for N in terms of U (see Eq. (3.31)) 

  
   , ,D S S D

S D

f E f E
N g E U dE

   

 






 

  (5.5) 

As before, Eqns. (5.4) and (5.5) must typically be solved iteratively to obtain U. Then we 

can solve for the current using: 

       
1

, ,S D

S D

I q g E U f E f E dE 
 





  
  (5.6) 

 

 

Quantum Capacitance in FETs 

 

Unfortunately, Eqns. (5.4) and (5.5) typically must be solved iteratively. But insight can 

be gained by studying a FET with a few approximations.  

 

Another way to think about charging is to consider the effect on the channel potential of 

incremental changes in VGS or VDS. We can then apply simple capacitor models of 

channel charging to determine the channel potential in Eq. (5.6). 

 

If the potential in the channel changes by U then the number of charges in the channel 

changes by  

  FN g E U    (5.7) 

Note that we have assumed T = 0K, and note also the negative sign – making the channel 

potential more negative increases the number of charges. 

Fig. 5.8. A shift in the channel potential changes the number of charges in the channel. 

 

Substituting back into Eq. (5.4) gives 
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Collecting U terms gives 

 G D
GS DS

ES Q ES Q

C C
U q V q V

C C C C
    

 
 (5.9) 

Where we recall the quantum capacitance (CQ): 

  2

Q FC q g E  (5.10) 

Using the quantum capacitance, we can easily construct a small signal model for changes 

in VGS or VDS. See, for example the small signal VGS model in Fig. 5.9. Note that the value 

of the quantum capacitance depends on the channel potential at the bias point.   

Fig. 5.9. A small signal model for the channel potential. 

 

Using Eq. (5.7) we can also determine a small signal model for the charge in the channel.  
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 (5.11) 

In the next section we will consider FET operation under two limiting cases: (i) when CQ 

is large relative to CES, and (ii) when CQ is small. The two cases typically correspond to 

the ON and OFF states of a FET, respectively. 

   

Simplified models of FET switching 

 

To further simplify the problem, we define two quantities, NS and ND, the charges 

injected into the channel from the source and drain contacts, respectively. Next, we 

assume that  = S + D, where S = D and CG >> CS, CD, Eqs (5.4), (5.5) and (5.6)become 
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Conduction in the FET is controlled by the number of electron states available to charges 

injected from the source. For switching applications, transistors must have an OFF state 

CS CD
VGS

CG

Channel

+
- CQ(U)

 



Introduction to Nanoelectronics 

145 

 

where IDS is ideally forced to zero. The OFF state is realized by minimizing the number 

of empty states in the channel accessible to electrons from the source. In the limit that 

there are no available states, the channel is a perfect insulator.  

 

Switching between ON and OFF states is achieved by using the gate to push empty 

channel states towards the source chemical potential. The transition between ON and 

OFF states is known as the threshold. Although the transition is not sharp in every 

channel material, it is convenient to define a gate bias known as the threshold voltage, VT, 

where the density of states at the source chemical potential g(EF) undergoes a transition. 

 

The Zero Charging limit 

 

As we saw in Part 3, charging-induced shifts in the energy levels of conductors can 

significantly complicate the calculation of IV characteristics. Equation (5.11)

demonstrates that charging can be neglected if the quantum capacitance is much smaller 

than the electrostatic capacitance, i.e. CQ << CES. For example, in Eq. (5.11), if CQ << CES 

then the charging, N → 0. 

 

In the zero charging limit, Eq. (5.12) reduces to  

 GSU qV   (5.17) 

i.e. in this limit the channel potential simply tracks the gate bias.  

 

Thus, in the zero charging limit, we can determine the current directly from Eq. (5.6), 

with the channel potential U = -qVGS.  

 

The zero charging limit almost always holds for insulators and transistors in the OFF 

state because the density of states at the Fermi level is small in both these examples. 

Determining whether a transistor remains in the zero charging limit in the ON state 

requires a comparison of CQ and CES. Bulk devices very rarely operate within the zero 

charging limit in the ON state. But many small conductors contain relatively few states at 

the Fermi level even in the ON state, such that CQ << CES even when significant channel 

current is flowing.  

Fig. 5.10. We consider a channel material with a sharp transition in its density of states. 
In (a) we show a channel which remains in the insulator limit even in the ON regime. In 
(b) the channel states have sufficient density for the channel to be metallic in the ON 
regime.  
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The Strong Charging Limit 

 

In metals and many large transistors in the ON state, the density of states at the Fermi 

level is sufficiently large that adding charges barely moves the channel potential. We say 

that the Fermi level is pinned. In the limit that g(EF) → ∞ then DU → 0.  

 

In terms of the quantum capacitance, we find that if CQ >> CES, Eq. (5.11) reduces to  

 GS Gq N V C   (5.18) 

This limit is also known as strong inversion in conventional FET analysis. The channel 

transforms from an insulator to a metal. The transition occurs when the gate bias equals 

the threshold voltage, VT, which is defined as the gate bias required to push the channel 

energy level down to the source workfunction. 

 

In the strong charging/metallic limit, the gate and channel act as two plates of a capacitor. 

The charge in the channel then changes linearly with additional gate bias. In FETs, the 

channel potential relative to the source, V(x), may also vary with position. Including the 

channel potential and the threshold voltage in Eq. (5.18) yields: 

   G GS TqN C V V V x    (5.19) 

One way to interpret the metallic limit is to consider the difference between the actual 

position of the conduction band edge and its position in the absence of charging. The 

difference is proportional to the amount of charging; see Fig. 5.11. Note that the shaded 

region in the figure does not represent filled electron states below the conduction band. 

These electrons are in fact all at the bottom of the conduction band. Rather this the same 

graphical tool that we used in Part 3 to analyze charging within conductors.  

 

The metallic or strong inversion limit is only maintained for VGS - VT - V(x) > 0. If V(x) 

crosses the zero charging limit (VGS-VT) then charging decreases to zero. This is known as 

„pinch off‟.  

 
Fig. 5.11. 
Charging 
opposes gate-
induced 
changes in the 
channel 
potential. Here 
we illustrate the 
effect of 
charging in a 
non-ballistic 
FET. In the absence of charging, increasing gate potential lowers the conduction band 
edge (the „zero charging limit‟). Charging pushes the conduction band edge back up 
towards the source workfunction. The red shaded region is the difference between the 
actual channel potential and the zero charging limit. It represents the population of 
electrons in the conduction band. It does not represent filled states below the bottom of 
the conduction band. 
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The temperature dependence of current in the OFF state 

 

Both nanoscale and larger transistors have a small quantum capacitance in the OFF state, 

which is also known as subthreshold since VGS < VT.  

 

But even if the density of states is zero between S > E > D, at higher temperatures, 

some electrons may be excited into empty states well above the Fermi Energy. If the 

density of states is very low at the Fermi Energy, but higher far from the Fermi level, 

then we can model the Fermi distribution by an exponential tail. Recall that this is known 

as a non-degenerate distribution; see Fig. 5.12.  

Fig. 5.12. If only the extreme tail states of the Fermi distribution are filled, then we can 
model the distribution by an exponential. This is common when the density of states at 
the Fermi Energy is small. 

 

Equation (5.14) becomes 
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Now changing the variable of integration to 'E E U    
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Simplifying 
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Similarly,  
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
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Thus, from Eq. (5.14) the current is 
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Equation (5.24) holds in the limit that CG >> CS, CD. In general, we find that the current 

in the subthreshold region is 

 0 exp GS G

ES

qV C
I I

kT C

 
  

 
 (5.25) 

Taking logarithm of both sides we find, 

  10 10 10 0log log logG
GS

ES

Cq
I e V I

kT C
   (5.26) 

The slope, S, of the subthreshold regime is usually expressed gate volts per decade of 

drain current. At room temperature, the optimum, when CG >> CS, CD, is 

 
10

1
60 mV/decade

log

kT
S

q e
   (5.27) 

The slope becomes much sharper at low temperatures; see Fig. 5.13. 

  

 
Fig. 5.13. A comparison of 
the switching characteristics 
of our C60 model FET at 
T = 1K and room 
temperature. In the OFF 
regime, the current varies 
exponentially with gate bias, 
i.e. a straight line on a log-
linear plot. The slope at room 
temperature is 60 mV/decade 
of drain current.  

 

 

 

 

Transconductance 

 

A field effect transistor is a voltage controlled current source. Its input is the gate 

potential, and the output is the source-drain current. In applications, we usually desire 

that the FET amplifies small changes in VGS. Thus, an important figure of merit for an 

FET is the transconductance, defined as 

 ds
m

gs

dI
g

dV
  (5.28) 

In the OFF state, the quantum capacitance is small and the gate‟s only influence on the 

FET is its electrostatic control of the channel potential. From Eq. (5.1), we see that this 

control is maximized when 

 ,G S DC C C  (5.29) 

This is an important design goal for FETs. Under this limit the transconductance is 

commonly expressed as: 
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Good electrostatic control of the channel may be achieved either by increasing the 

dielectric constant of the gate insulator, or by reducing the thickness of the gate insulator.  

 

A good rule of thumb is that the gate must be much closer to the channel than either the 

source or drain contacts. Fig. 5.14 shows the impact of varying CG on our C60 molecular 

transistor. Increasing CG shifts the switching gate voltage much lower. 

 

Interestingly, to obtain this ideal characteristic, we increased CG by three orders of 

magnitude relative to the more practical value used originally. This corresponds to 

increasing dielectric constant or reducing the gate-channel separation by three orders of 

magnitude. 

Fig. 5.14. A comparison of two C60 FETs. In (a) the gate has poor electrostatic control 
over the channel as evidenced by the small CG. In (b) the control is better, and the 

switching voltage is much lower. 

 

For a molecular transistor with source-drain separation of a few nanometers, the gate 

insulator should be only a few Ångstroms – too thin to sufficiently insulate the gate. This 

represents a possibly insurmountable obstacle to 0-d channel devices such as single 

molecule FETs. 

 

 
Fig. 5.15. For high transconductance, 
the gate capacitance must be much 
higher than the source or drain 
channel capacitances. This forces 
impractically small gate-channel 
separations in molecular transistors. 
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(ii) 1d and 2d FETs 
 

The central equation of conduction is 

 
 S Dq N N

I



  (5.31) 

In 0-d the time constant, , was defined as the sum of the interfacial electron transfer time 

S and D, which in turn can be thought of as representations of the interaction energy 

between the 0-d conductor and the source and drain contacts: S S  G  and D D  G , 

respectively. 

Fig. 5.16. (a) Electron transfer times in a 0-d conductor are related to the interaction 

energy G between the contact and the conductor. (b) In higher dimensions, we must 
determine the transit time from the electron velocity.  

 

In higher dimensions, however, the electron transfer times at the contacts are less 

important. Rather,  is the transit time for an electron in the conductor. It is given by 

 x

x

L

v
   (5.32) 

where Lx is the length of the channel, and vx is the velocity component of the electron 

parallel to the source-drain current. It is important to note that in 1-d, 2-d and 3-d 

conductors the transit time is dependent on the energy of the electron since the electron 

velocity, vx, is dependent on energy. 

 

The other important change from the 0-d model concerns the density of states. In 0-d all 

states are accessible to electrons from both the source and drain contacts. But in higher 

dimensional ballistic devices, electrons injected from the source are only able to access 

states with momenta directed away from the source. We call these +k states. Similarly, 

the drain only injects electrons into –k states. Thus, we break the dispersion relation and 

density of states into two pieces, the density of +k states is given by g
+
(E)dE and the 

density of –k states is given by g
-
(E)dE. 

 

To summarize, in 1-d, 2-d and 3-d the fundamental equations for a transistor are: 

  
2

0
G D

ES GS DS

ES ES ES

C C q
U qV qV N N

C C C
      (5.33) 
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 S DN N N   (5.34) 

  S D

q
I N N


   (5.35) 

where 

    ,S SN g E U f E dE






   (5.36) 

    ,D DN g E U f E dE






   (5.37) 

 

 

The ballistic quantum wire FET.
†
 

 

Consider the ballistic quantum wire FET shown in Fig. 5.17.  

Fig. 5.17. A quantum wire FET. The gate is wrapped around the wire to maximize the 
capacitance between the channel and the gate. The length of the wire is L = 100nm, the 
gate capacitance is CG = 50 aF per nanometer of wire length, and the electron mass, m, 
in the wire is m = m0=9.1x10-31 kg. 

 

We will assume that there is only one parabolic band in the wire. 

 

From Eq. (2.37), the density of states in the wire is: 

 

 
Fig. 5.18. The 
bandstructure and 
density of states in a 
single mode quantum 
wire. 

                                                 
†
 This analysis of the ballistic quantum wire FET was introduced to me by Mark Lundstrom at Purdue 

University. For a complete reference see Mark Lundstrom and Jing Guo, „Nanoscale Transistors:  Physics, 

Modeling, and Simulation‟, Springer, New York, 2006. 
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    
2 2

C

C

L m
g E dE u E E dE

h E E
 


, (5.38) 

where L is the length of the wire, and m is the electron mass in the wire. But only half of 

these states contain electrons traveling in the positive direction. Thus, we must divide Eq. 

(5.38) by two to yield: 

    
1 2 2

2
C

C

L m
g E dE u E E dE

h E E

   


 (5.39) 

Given the position of the Fermi Energy, this band is the conduction band. We will label 

the energy at the bottom of the conduction band, EC. Since we model electrons moving 

along the wire as plane waves, within the parabolic band we have 

 
2 2

21

2 2
C

k
E E mv

m
    (5.40) 

We can rewrite Eq. (5.39) in terms of the velocity, v, of the electron: 

  
 

 
1 4

2
C

L
g E dE u E E dE

hv E

     (5.41) 

Now L/v is the transit time of an electron through the wire, thus 

  
 

 
41

2
C

E
g E dE u E E dE

h


    . (5.42) 

We can substitute Eq. (5.42) into the expression for the current density (Eq. (5.31)) to 

obtain 

       
2

, ,C S D

q
I u E E U f E f E dE

h
 





    . (5.43) 

 

 

Quantum dot models of quantum wire transistor channels 

 

Under bias we expect a spatial variation in the potential along a quantum wire. Current 

flow may also vary the charge density along the wire, which in turn affects the potential 

profile. Thus, the potential variation must be determined self consistently with the current 

flow. 

 

We have seen in Part 4 that the conduction band edge in a ballistic conductor is 

determined by the point of maximum potential in the conductor. For electrostatic 

purposes, we will approximate this point on the quantum wire as a quantum dot, and then 

employ our discrete capacitive models of potential to calculate changes in the conduction 

band edge. 
  

 

Usually the highest potential is located next to the source, because application of forward 

bias at the drain pulls the potential down along the channel.  
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Fig. 5.19. An example of a typical 
potential profile along the length of a 
quantum wire as reflected by the 
bottom of the conduction band. The 
point of maximum potential acts as a 
barrier to the flow of current. As the 
gate bias increases, the barrier 
decreases, enhancing current flow. 
The point of maximum potential is 
modeled as a quantum dot with the 
same density of states as the 
quantum wire. The remainder of the 
wire is considered to be part of the 
contacts. 

 
Fig. 5.20. Assuming the 
channel is modeled by a 
quantum dot we model 
the electrostatics of the 
transistor using 
capacitors. 

 

 

 

Ballistic Quantum Wire FET Current-Voltage Characteristics at T = 0K.  

 

The electrostatic capacitances are shown in Fig. 5.20 using the quantum dot model of the 

quantum wire. In this example we ignore source and drain capacitances. The gate 

capacitor was defined in Fig. 5.17 as CG = 1 aF per nanometer of gate length. 

 

We compare quantum and electrostatic capacitances in Fig. 5.21, we find that the single 

mode wire has relatively few states, hence its quantum capacitance is small, and above 

the band edge it operates in the zero charging/insulator regime; even in the ON state 

charging effects are negligible and we can take U = -qVGS.  

 

 
Fig. 5.21. A comparison between the 
electrostatic and quantum 
capacitances shows that that CQ >> 

CES only at the conduction band 
edge. But as the channel fills with 
charge, the wire returns to the 
insulator regime.  
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In forward bias (when the drain potential is lower than the source), there are three 

regimes of operation: 

 

(a) OFF: VGS < VT 

 

Let‟s define the threshold voltage as the potential difference between the source and the 

conduction band minimum. Thus, in this example, VT = 0.3 V. Recall that the gate 

potential is relative to the source potential. So when VGS < VT, electrons cannot be 

injected from the source. Hence no current can flow for positive drain voltages. This is 

the OFF state of the FET. 

 

Note that source drain current can flow for T > 0K since the tail of the Fermi distribution 

for electrons in the source overlaps with states in the wire. The current follows Eq. (5.25).  

 

 

 
Fig. 5.22. Energy line up for 
FET in the OFF state. There 
are no channel states 
between the source and 
drain chemical potentials. 

 

 

 

 

 

 

(b) The linear regime: VGS > VT, VDS < VGS-VT 

 

This is known as the linear regime because the current scales linearly with the drain 

source potential. Equation (5.43) reduces to 

 
22

DS DS

q
I V

h
  (5.44) 

Note that the FET exhibits the quantum limit of conduction in this regime. Its 

transconductance, however, is zero. 

 

 
 
Fig. 5.23. In the linear 
regime, the current is limited 
by the source drain potential. 
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(c) Saturation: VGS > VT, VDS > VGS-VT 

 

Once the drain potential exceeds VGS-VT, all the charge in the channel is uncompensated 

and injected into the drain. Thus, the current is limited by the gate potential. This is 

known as saturation. 

  
22

DS GS T

q
I V V

h
   (5.45) 

The transconductance for a single mode wire in saturation is 

 
22

m

q
g

h
  (5.46) 

 

 
Fig. 5.24. In the 
saturation regime, the 
current is limited by the 
gate source potential. 

 

 

 

 

 

 

 

 

Fig. 5.25 plots the forward bias characteristics of the FET both at T = 0K, and room 

temperature. At room temperature, the characteristics were determined numerically since 

the transition from linear to saturation regimes is blurred by thermal activation of 

electrons above the Fermi level.  

 

 

0 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.5

Drain Source bias (VDS) [V]

D
ra

in
 S

o
u

rc
e

 c
u

rr
e
n

t 
(I

D
S
) 

[
A

]

0

5

10

15

20

(a) T=1K
VGS = 0.5V

Q
ua

nt
um

 li
m

ite
d 

co
nd

uc
ta

nc
e

VGS = 0.45V

VGS = 0.4V

VGS = 0.35V

VGS = 0.3V

0 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.5

Drain Source bias (VDS) [V]

D
ra

in
 S

o
u

rc
e

 c
u

rr
e
n

t 
(I

D
S
) 

[
A

]

0

5

10

15

20

(b) T=298K
VGS = 0.5V

Q
ua

nt
um

 li
m

ite
d 

co
nd

uc
ta

nc
e

VGS = 0.45V

VGS = 0.4V

VGS = 0.35V

VGS = 0.3V

 
Fig. 5.25. Forward bias characteristics for a quantum wire FET at (a) T = 0K, and (b) 
room temperature. 
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Ballistic Quantum Well FETs 

 

To analyze the ballistic quantum well FET, let‟s begin with the master equation for 

current. 

 
   S D S D xq N N q N N v

I
L

 
   (5.47) 

We have defined conduction in the x-direction and the transit time is given by x xL v  . 

 

Let‟s begin by considering the product g.vx, which we will integrate to get (NS - ND)vx. In 

k-space and circular coordinates, this is 

    
 

2

1
2

2

x
x

k
g k v k kdkd kdkd

mLW
 


  (5.48) 

Simplifying further gives: 

     2

2
sin

2
x

LW
g k v k kdkd k dk d

m
  


  (5.49) 

Converting the variable of integration back to energy using the dispersion relation 
2 2 2 CE k m E U   , and assuming conduction in just a single mode of the quantum 

well, yields 

        2 2
2 sin

2
x C C

LW
g k v k kdkd m E E U u E E U dE d  


      (5.50) 

Substituting back into Eq. (5.47) and integrating over the +k hemisphere (0 <  < ) gives  

 

         2 2
2 , ,C C S D

qW
I m E E U u E E U f E f E dE 







       (5.51) 

 

Below threshold the density of states is zero. Thus, 

 0

GSU q V   (5.52) 

where we neglect the effect of VDS, and 

 0 G

S D G

C

C C C
 

 
. (5.53) 

The threshold voltage, VT, is defined as the gate-source voltage required to turn the 

transistor ON, i.e. bring the bottom of the conduction band, EC, down to the source 

workfunction. From Eq. (5.52) and requiring the EC + U = S at threshold, we get  

   0

T C SV E q    (5.54) 

Above threshold the density of states and hence the quantum capacitance is constant. 

Thus, the quantum well FET is the rare case where we can model charging phenomena 

analytically. Above threshold we have 

   0

GS T TU q V V qV      (5.55) 

where again we neglect the effect of VDS, and 

 G

S D G Q

C

C C C C
 

  
. (5.56) 

Fom the 2-d DOS in Eq. (2.47), CQ for a single mode quantum well is  
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 2
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1

2
Q

mWL
C q


 . (5.57) 

where we have only considered half the usual density of states (the +k states). This is 

accurate in the saturation region because the drain cannot fill any states in the channel. 

The quantum capacitance increases in the linear region as the drain fills some –k states 

leading to errors in the calculation of the current in the linear regime.  

 

Noting that 0

T CV E q  we can rewrite Eq. (5.55) above threshold as  

  C S GS TE U q V V     . (5.58) 

 

Now, we can simplify Eq. (5.51) to give us 
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2 2
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q V V
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I m E q V V f E f E dE

 

  

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 

     (5.59) 

 

At T = 0K, we can solve Eq. (5.59) in the linear regime ( VDS < (VGS – VT) ): 
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 (5.60) 

and in the saturation regime ( VDS > (VGS – VT) ): 
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. (5.61) 

Fig. 5.26. Forward bias characteristics for a quantum well FET at (a) T = 1K, and (b) 
room temperature. The channel width is W = 120nm, and the electrostatic control over 
the channel is assumed to be ideal. Also, take m = 0.5×m0. 
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Note that the saturation current goes as ~ (VGS-VT)
3/2

 compared to the ballistic nanowire 

transistor, which goes as ~ (VGS-VT). As we shall see, the conventional FET has a 

saturation current dependence of ~ (VGS-VT)
2
. 

 

(iii) Conventional MOSFETs 
 

Finally, we turn our attention to the backbone of digital electronics, the non-ballistic 

metal oxide semiconductor field effect transistor (MOSFET).  

 

The channel material is a bulk semiconductor – typically silicon. Here, we will consider a 

so-called n-channel MOSFET, meaning that the channel current is carried by electrons at 

the bottom of the conduction band of the semiconductor.  
 
Fig. 5.27. An n-channel 
MOSET built on a silicon 
substrate. Phosphorous is 
diffused below the source 
and drain electrodes to form 
high conductivity contacts to 
the silicon channel beneath 
the insulator. 
 
 

 

Now, let‟s consider the various operating regimes of a conventional MOSFET. 

 

(a) OFF: SubthresholdVGS < VT 

 

Similar to the ballistic quantum wire FET, we can model channel current as injection 

over a barrier close to the source electrode.  

 

Once again, let‟s define the threshold voltage as the potential difference between the 

source Fermi energy and the conduction band minimum.
†
  

 

As in the ballistic example, when VGS < VT, only the tail of the Fermi distribution for 

electrons in the source overlaps with empty states in the conduction band. The current 

follows Eq. (5.25). 

 0 exp GS G

ES

qV C
I I

kT C

 
  

 
 (5.62) 

Subthreshold characteristics determine the gate voltage required to switch the FET ON 

and OFF. From Eq. (5.27) the subthreshold slope is ideally 60mV/decade, meaning that a 

60mV change in gate potential corresponds to a decade change in channel current. 

                                                 
†
 Actually, this is an overestimate of the threshold voltage because the density of states at the conduction 

band is so large that the transistor will often turn on when the Fermi level gets within a few kT. It also 

ignores the effect of charge trapped at the interface between the channel and the insulator. 
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Fig. 5.28. Below threshold few electrons can be injected from the source into the 
conduction band, irrespective of the drain source potential. 

 

 

(b) The linear regime: VGS > VT, VDS < VGS-VT 

 

As we shall see, this is known as the linear regime because the current scales linearly 

with the drain source potential. Consider a thin slice of the channel with width W, and 

length x. For this analysis to hold, the length of this slice cannot be much shorter than 

the mean free path of the electron between scattering events. In a silicon transistor, we 

have shown that x > 50 nm (see the analysis associated with Fig. 4.23). Silicon 

transistors with channel lengths shorter than this should be analyzed in the ballistic 

regime.  

 

Since the density of states above the conduction band is very large in a bulk 

semiconductor, a conventional MOSFET will enter the strong charging/metallic limit for 

(VGS – V) > VT, i.e. the number of charges, N, in the slice is 

  G
GS T

C
q N W x V V V

A
     (5.63) 

where A = W.L is the surface area of the channel.  

 

Now the current within the slice is given by 

 
q N

I



  (5.64) 

where  is the lifetime of carriers within the channel slice. 

 

Since scattering is important, we employ the classical model of charge transport to relate 

the charge carrier lifetime to velocity, v, and the length of the slice, x. 

 
v

I q N
x




  (5.65) 

Next we relate the charge carrier velocity to mobility 
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I q N
x
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
  (5.66) 
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Now, we must note that scattering causes the potential in the channel to vary with 

position. We define the channel potential V(x) as a function of position in the channel. 

Thus, expressing the source-drain electric field in terms of the channel potential we have  

 
V

I q N
x x

 


 
  (5.67) 

Next, we substitute Eq. (5.63) into Eq. (5.67), yielding 

  G
GS T

C V
I V V V

L x





    (5.68) 

We solve this under the limit that x << L, by integrating both sides with respect to x. 

Since the current is uniform throughout the channel, we obtain: 

  
0

.

L

G
GS T

C dV
I L V V V dx

L dx
    (5.69) 

where L is the length of the channel. It is convenient to change the variable of integration 

on the righthand side to voltage. In the linear regime, the maximum channel potential is 

VDS, hence: 

  2

0

DSV

G
GS T

C
I V V V dV

L
    (5.70) 

The linear regime requires that the entire channel remains in the strong charging/metallic 

limit. This occurs if the gate to drain potential, VGD, also exceeds VT 

 GD TV V  (5.71) 

or we can re-write this as 

 DS GS TV V V   (5.72) 

Under this constraint, Eq. (5.70) yields 

   2

2

1

2

G
GS T DS DS

C
I V V V V

L


 
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 
 (5.73) 

It is standard to express this in terms of a gate capacitance per unit channel area, COX: 

   21

2
OX GS T DS DS

W
I C V V V V

L


 
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 
 (5.74) 

Fig. 5.29. Application of a gate source potential reduces the injection barrier between 
the source and the channel. The red shaded region represents the population of 
electrons in the conduction band. It does not represent filled states below the bottom of 
the conduction band. 
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(c) Saturation: VGS > VT, VDS > VGS-VT 

 

If the gate to drain potential exceeds threshold then the channel region close to the drain 

enters the zero charging regime, characterized by a high electric field and low density of 

mobile charges. The channel is said to pinch off and the current saturates because it is no 

longer dependent on VDS. The strong charging/metallic region ends when the local 

channel potential V = VGS - VT 

  
0

GS TV V
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W
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

    (5.75) 

which gives 

  
2

2

OX
GS T

CW
I V V

L
   (5.76) 

 

The IV characteristics of a non-ballistic MOSFET are shown in Fig. 5.31. 

Fig. 5.30. As the drain-source potential increases, the channel near the drain enters the 
zero charging regime. The current is dependent only on the charge in the strong 
charging region, not on VDS. The red shaded region represents the population of 

electrons in the conduction band. It does not represent filled states below the bottom of 
the conduction band. 

 

 

 
Fig. 5.31. The IV 
characteristics of a non-
ballistic MOSFET with 

 = 300 cm2/Vs, L = 40nm, 
W = 3 × L, VT = 0.3V, and 
CG = 0.1 fF. Note that the use 

of the classical model for a 
transistor with such a short 
channel is inappropriate. 
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Comparison of ballistic and non-ballistic MOSFETs. 

 

If we calculate the IV of a conventional MOSFET with a channel length in the ballistic 

regime, we obtain IV curves that are qualitatively similar to the ballistic result. For 

example, the classical model of a MOSFET with a channel length of 40 nm is shown in 

Fig. 5.31. It is qualitatively similar to Fig. 5.26. Both possess a linear and a saturation 

regime, and both exhibit identical subthreshold behavior. But the magnitude of the 

current differs quite substantially. The ballistic device exhibits larger channel currents 

due to the absence of scattering.  

 

Another way to compare ballistic and non-ballistic MOSFETs is to return to the water 

flow analogy.
†
 As before, the source and drain are modeled by reservoirs. The channel 

potential is modeled by a plunger. Gate-induced changes in the channel potential cause 

the plunger to move up and down in the channel. The most important difference between 

the ballistic and non-ballistic MOSFETs is the profile of the water in the channel. The 

height of the water changes in the non-ballistic device, whereas water in the ballistic 

channel does not relax to lower energies during its passage across the channel.  

 

Fig. 5.32. The water flow analogy for the operation of ballistic and classical MOSFETs. 
Conduction in the channel is controlled by a plunger that models the channel potential. 
The transistors are turned ON by lowering the gate potential. Then, as the height of the 
drain reservoir decreases (corresponding to increased VDS), the channel first enters the 
linear regime (where current flow is limited by VDS) and then the saturation regime where 
the current is controlled only by the gate potential. 

                                                 
†
 For a more detailed treatment of the water analogy to conventional FETs see Tsividis, „Operation and 

Modeling of the MOS transistor‟, 2
nd

 edition, Oxford University Press (1999). 
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Problems 

 

1. Buckyball FETs  

Park et al. have reported measurements of a buckyball (C60) FET. An approximate 

model of their device is shown in Fig. 5.33. The measured conductance as a function of 

VDS and VGS is shown in Fig. 5.34. 

Fig. 5.33. The geometry of a C60 FET. In addition take the temperature to be T = 1K, 

and the molecular energy level broadening, G = 0.1eV. The LUMO is at -4.7 eV and the 
Fermi Energy at equilibrium is EF = -5.0 eV 

  

(a) Calculate the conductance (dIDS/dVDS) using the parameters in Fig. 5.33. Consider 

5V < VGS < 8V calculated at intervals of 0.2V and -0.2V < VDS < 0.2V calculated at 

intervals of 10mV. 

 

(b) Explain the X-shape of the conductance plot. 

 

(c) Note that Park, et al. measure a non-zero conductance in the upper and lower 

quadrants. Sketch their IDS-VDS characteristic at VGS ~ 5.9V. Compare to your calculated 

IDS-VDS characteristic at VGS ~ 5.9V. Propose an explanation for the non-zero 

conductances measured in the experiment in the upper and lower quadrants. 

 

 
Fig. 5.34. The 
conductance (dIDS/dVDS) 
of a C60 FET as 
measured by Park et al. 
Ignore the three arrows 
on the plot. From Park, et 
al. “Nanomechanical 
oscillations in a single 
C60 transistor” Nature 
407 57 (2000). 
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Courtesy of Nature Publishing Group. Used with permission.
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(d) In Park et al.‟s measurement the conductance gap vanishes at VGS = 6.0V. Assuming 

that CG is incorrect in Fig. 5.33, calculate the correct value. 

 

Reference 

Park, et al. “Nanomechanical oscillations in a single C60 transistor” Nature 407 57 

(2000) 

 

2. Two mode Quantum Wire FET 

 

Consider the Quantum Wire FET of Fig. 5.17 in the text. 

 

Assume that the quantum wire has two modes at EC1 = -4.7eV, and EC2 = -4.6eV. 

Analytically determine the IDS-VDS characteristics for varying VGS at T = 0K. Sketch your 

solution for 0 < VDS < 0.5, at VGS = 0.3 V, 0.35 V, 0.4V, 0.45V and 0.5V. 

 

Highlight the difference in the IV characteristics due to the additional mode. 

 

Fig. 5.35. A quantum wire FET with two modes. The length of the wire is L = 100nm, the 
gate capacitance is CG = 50 aF per nanometer of wire length, and the electron mass, m, 
in the wire is m = m0=9.1x10-31 kg. Assume CS and CD = 0. 

 

 

3. 2-d ballistic FET 

 

(a) Numerically calculate the current-voltage characteristics of a single mode 2-d ballistic 

FET using Eq. (5.51) and a self consistent solution for the potential, U. Plot your solution 

for T = 1K and T = 298K. In each plot, consider the voltage range 0 < VDS < 0.5, at 

VGS = 0.3 V, 0.35 V, 0.4V, 0.45V and 0.5V. In your calculation take the bottom of the 

conduction band to be -4.7 eV, the Fermi Energy at equilibrium EF = -5.0 eV, L = 40nm, 

W = 3 × L, and CG = 0.1 fF. Assume CD = CS = 0. Take the effective mass, m, as 

m = 0.5 × m0, where m0 = 9.1x10
-31

 kg. 

 

You should obtain the IV characteristics shown in Fig. 5.26.  

 

 Continued on next page…. 
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(b) Next, compare your numerical solutions to the analytic solution for the linear and 

saturation regions (Eqns (5.60) and (5.61)). Explain the discrepancies.  

 

(c) Numerically determine IDS vs VGS at VDS = 0.5V and T = 298K. Plot the current on a 

logarithmic scale to demonstrate that the transconductance is 60mV/decade in the 

subthreshold region.  

 

(d) Using your plot in (c), choose a new VT such that the analytic solution for the 

saturation region (Eq. (5.61)) provides a better fit at room temperature. Explain your 

choice.  

 

 

4. An experiment is performed on the channel conductor in a three terminal device. Both 

the source and drain are grounded, while the gate potential is varied. Assume that 

CG >> CS, CD. 

 

 
Fig. 5.36. Measuring the surface potential of a transistor channel. 

 

The transistor is biased above threshold (VGS > VT).  Measurement of the channel 

potential, U, shows a linear variation with increasing VGS > VT. 

 

Under what conditions could the conductor be: 

 

(i) a quantum dot (0 dimensions)? 

(ii) a quantum wire (1 dimension)? 

(iii) a quantum well (2 dimensions)? 

 

Explain your answers. 
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5. Consider a three terminal molecular transistor.  

 

(a) Assume the molecule contains only a single, unfilled molecular orbital at energy D 

above the equilibrium Fermi level. Assume also that CG >> CS, CD and D >> kT. 

Calculate the transconductance for small VDS as a function of T and VGS for VGS << D.  

 

Express your answer in terms of IDS. 

 

 

 
Fig. 5.37. A molecular transistor with discrete energy 
levels in the channel. 

  

 

 

 

 

 

 

 

 

 

(b) Now, assume that the density of molecular states is  

  
1

( ) exp
T T

E
g E u E

E E

 D
 D 

 
 

where ET >> kT. Calculate the transconductance for small VDS as a function of T and VGS 

for VGS << D. Assume GC  . 

 

Express your answer in terms of IDS. 

 

 

 
Fig. 5.38. A molecular transistor with an exponential DOS 
in the channel. 

 

 

 

 

 

 

 

 

 

 

(c) Discuss the implications of your result for molecular transistors. 
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6. Consider the conventional n-channel MOSFET illustrated below: 

 

 

 
Fig. 5.39. The structure of a 
conventional MOSFET. 

 

 

 

Assume VT = 1V and V2 = 0V. Sketch the expected IV characteristics (I vs. V1) and 

explain, with reference to band diagrams, why the IV characteristics are not symmetric. 

 

 

7. Consider a ballistic quantum well FET at T = 0K.  

 

 
Fig. 5.40. A quantum well FET below threshold. 

 

Recall that the general solution for a quantum well FET in saturation is: 

   
3 2

2 2

8

9
DS GS T

qW m
I q V V


   

(a) In the limit that CQ >> CES, the bottom of the conduction band, EC, is „pinned‟ to μS at 

threshold. Show that under these conditions η → 0. 

 

(b) Why isn‟t the conductance of the channel zero at threshold in this limit? 

(c) Given that COX = CG/(WL), where W and L are the width and length of the channel, 

respectively, show that the saturation current in this ballistic quantum well FET is given 

by 

 

   
3 28

3
DS OX GS T

W
I C V V

m q
   (5.77) 

Hint: Express the quantum capacitance in the general solution in terms of the device 

parameters m, W, and L. 
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8. A quantum well is connected to source and drain contacts. Assume identical source 

and drain contacts. 

                                              

                             
Fig. 5.41. A quantum well with source and drain contacts. 

 

(a) Plot the potential profile along the well when VDS = +0.3V. 

Now a gate electrode is positioned above the well. Assume that , except very 

close to the source and drain electrodes. At the gate electrode ε = 4×8.84×10
-12

 F/m and 

d = 10nm. Assume the source and drain contacts are identical.  

 

                            
Fig. 5.42. The quantum well with a gate electrode also. 

 

(b) What is the potential profile when VDS = 0.3V and VGS = 0V. 

 

(c) Repeat (b) for VDS = 0V  and VGS = 0.7V. Hint: Check the CQ. 

 

(d) Repeat (b) for VDS = 0.3V  and VGS = 0.7V assuming  ballistic transport. 

 

(e) Repeat (b) for VDS = 0.3V  and VGS = 0.7V assuming  non-ballistic transport. 
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9. This problem considers a 2-d quantum well FET. Assume the following: 

 

 T = 0K, L = 40nm, W = 120nm, CG = 0.1fF , CS = CD = 0 

 

 
Fig. 5.43. A 2-d quantum well FET. 
 

(a) Compare the operation of the 2-D well in the ballistic and semi-classical regimes.  

Assume CQ→∞ >> CES in both regimes.   

Take  = 300 cm
2
/Vs in the semi-classical regime.  

 

Plot IDS vs VDS for VGS = 0.5V and VDS = 0 to 0.5V. 

 

(b) Explain the difference in the IV curves. Is there a problem with the theory? If so, 

what? 
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