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Part 3. Two Terminal Quantum Dot Devices  

 
In this part of the class we are going to study electronic devices. We will examine devices 

consisting of a quantum dot or a quantum wire conductor between two contacts. We will 

calculate the current in these „two terminal‟ devices as a function of voltage. Then we 

will add a third terminal, the gate, which is used to independently control the potential of 

the conductor. Then we can create transistors, the building-block of modern electronics. 

We will consider both nanotransistors and conventional transistors. 

 

We will begin with the simplest case, a quantum dot between two contacts. 

 

Fig. 3.1. A molecule between two contacts. We will model the molecule as a quantum 
dot. 

 

Quantum Dot / Single Molecule Conductors  

 

As we saw in Part 2, a quantum dot is a 0-d conductor; its electrons are confined in all 

dimensions. A good example of a quantum dot is a single molecule that is isolated in 

space. We can approximate our quantum dot or molecule by a square well that confines 

electrons in all dimensions. One consequence of this confinement is that the energy levels 

in the isolated quantum dot or molecule are discrete. Typically, however, the simple 

particle-in-a-box model does not generate sufficiently accurate estimates of the discrete 

energy levels in the dot. Rather, the material in the quantum dot or the structure of the 

molecule defines the actual energy levels.  

 

Fig. 3.2 shows a typical square well with its energy levels. We will assume that these 

energy levels have already been accurately determined. Each energy level corresponds to 

a different molecular orbital. Energy levels of bound states within the well are measured 

with respect to the Vacuum Energy, typically defined as the potential energy of a free 

electron in a vacuum. Note that if an electric field is present the vacuum energy will vary 

with position.  

 

Next we add electrons to the molecule. Each energy level takes two electrons, one of 

each spin. The highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) are particularly important. In most chemically stable 

materials, the HOMO is completely filled; partly filled HOMOs usually enhance the 

reactivity since they tend to readily accept or donate electrons.  
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Earlier we stated that charge transport occurs only in partly filled states. This is best 

achieved by adding electrons to the LUMO, or subtracting electrons from the HOMO. 

Modifying the electron population in all other states requires much more energy. Hence 

we will ignore all molecular orbitals except for the HOMO and LUMO. 

 

Fig. 3.2 also defines the Ionization Potential (IP) of a molecule as the binding energy of 

an electron in the HOMO. The binding energy of electrons in the LUMO is defined as the 

Electron Affinity (EA) of the molecule. 

Fig. 3.2. A square well approximation of a molecule. Energy levels within the molecule 
are defined relative to the vacuum energy – the energy of a free electron at rest in a 
vacuum. 

 

Contacts 

 

There are three essential elements in a current-carrying device: a conductor, and at least 

two contacts to apply a potential across the conductor. By definition the contacts are 

large: each contact contains many more electrons and many more electron states than the 

conductor. For this reason a contact is often called a reservoir. We will assume that all 

electrons in a contact are in equilibrium. The energy required to promote an electron from 

the Fermi level in the contact to the vacuum energy is defined as the work function (F).  

Fig. 3.3. An energy level model of a metallic contact. There are many states filled up 
with electrons to the Fermi energy. The minimum energy required to remove an electron 
from a metal is known as the work function. 

 

E vacuum energy E

HOMO

LUMOIP

EA

EF

vacuum energy

add electrons

energy 

levels
molecular 

orbitals
 

Work 

Function (F)

EF

Contact
E Vacuum energy

manifold

of states

 
 



Part 3. Two Terminal Quantum Dot Devices 

78 

 

HOMO

LUMO
Work 

Function (F)

EF

EF

Contact Molecule

Vacuum energy
Electron 

Affinity

(EA)

Ionization 

Potential (IP)

E

 

Metals are often employed as contacts, since metals generally possess very large numbers 

of both filled and unfilled states, enabling good conduction properties. Although the 

assumption of equilibrium within the contact cannot be exactly correct if a current flows 

through it, the large population of mobile electrons in the contact ensures that any 

deviations from equilibrium are small and the potential in the contact is approximately 

uniform. For example, consider a large metal contact. Its resistance is very small, and 

consequently any voltage drop in the contact must be relatively small.  

 

 

Equilibrium between contacts and the conductor 

 

In this section we will consider the combination of a molecule and a single contact.  

 

In the absence of a voltage source, the isolated contact and molecule are at the same 

potential. Thus, their vacuum energies (the potential energy of a free electron) are 

identical in isolation.  

 

When the contact is connected with the molecule, equilibrium must be established in the 

combined system. To prevent current flow, there must be a uniform Fermi energy in both 

the contact and the molecule.  

 

But if the Fermi energies are different in the isolated contact and molecules, how is 

equilibrium obtained? 

Fig. 3.4. The energy lineup of an isolated contact and an isolated molecule. If there is no 
voltage source in the system, the energy of a free electron is identical at the contact and 
molecule locations. Thus, the vacuum energies align. The Fermi energies may not, 
however. But at equilibrium, the Fermi energies are forced into alignment by charge 
transfer. 
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Since Fermi levels change with the addition or subtraction of charge, equilibrium is 

obtained by charge transfer between the contact and the molecule. Charge transfer 

changes the potential of the contact relative to the molecule, shifting the relative vacuum 

energies. This is known as „charging‟. Charge transfer also affects the Fermi levels as 

electrons fill some states and empty out of others. Both charging and state filling effects 

can be modeled by capacitors.  We‟ll consider electron state filling first. 

 

 (i) The Quantum Capacitance 

 

Under equilibrium conditions, the Fermi energy must be constant in the metal and the 

molecule. We can draw an analogy to flow between water tanks. The metal is like a very 

large tank. The molecule, with its much smaller density of states, behaves as a narrow 

column. When the metal and molecule are connected, water flows to align the filling 

levels. 

Fig. 3.5. An analogy for electron transfer at the interface between a metal and a 
molecule. The size of the water tank is equivalent to the density of states. The Fermi 
level is equivalent to the water level. If the „metal‟ has a sufficiently large density of 
states, then the change in its water level is imperceptible. 

 

But a molecule will not necessarily have a uniform density of states as shown in Fig. 3.5. 

It is also possible that only a fractional amount of charge will be transferred. For 

example, imagine that some fractional quantity n electrons are transferred from the 

contact to the molecule. It is possible for the wavefunction of the transferred electron to 

include both the contact and the molecule. Since part of the shared wavefunction resides 

on the molecule, this is equivalent to a fractional charge transfer.  

 

But if n were equal to +1, the LUMO would be half full and hence the Fermi energy 

would lie on the LUMO, while if n were -1, the HOMO would be half full and hence the 

Fermi energy would lie on the HOMO. In general, the number of charges on the molecule 

is given by  
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EF n/g(EF)

n

E

Density of states [g(E)]
 

    , Fn g E f E E dE





   (3.1) 

where g(E) is the density of molecular states per unit energy. For small shifts in the Fermi 

energy, we can linearize Eq. (3.1) to determine the effect of charge transfer on EF. We are 

interested in the quantity dEF/dn. For degenerate systems we can simplify Eq. (3.1): 

  
FE

n g E dE


   (3.2) 

taking the derivative with respect to the Fermi energy gives: 

  F

F

dn
g E

dE
  (3.3) 

We can re-arrange this to get: 

 
 

F

F

n
E

g E


   (3.4) 

Thus after charge transfer the Fermi energy within the molecule changes by n/g, where 

g is the density of states per unit energy.  

 

Sometimes it is convenient to model the effect of filling the density of states by the 

„quantum capacitance‟ which we will define as: 

  2

Q FC q g E  (3.5) 

i.e. 

 

2

F

Q

q
E n

C
   (3.6) 

If the molecule has a large density of states at the Fermi level, its quantum capacitance is 

large, and more charge must be transferred to shift the Fermi level. 

Fig. 3.6. Transferring charge changes the Fermi level in a conductor. The magnitude of 
the change is determined by the density of states at the Fermi level, and often 
expressed in terms of a „quantum capacitance‟. 

 

We can also calculate the quantum capacitance of the contact. Metallic contacts contain a 

large density of states at the Fermi level, meaning that a very large number of electrons 

must be transferred to shift its Fermi level. Thus, we say that the Fermi energy of the 



Introduction to Nanoelectronics 

81 

 

contact is „pinned‟ by the density of states. Another way to express this is that the 

quantum capacitance of the contact is approximately infinite. 

 

The quantum capacitance can be employed in an equivalent circuit for the metal-

molecule junction. But we have generalized the circuit such that each node potential is 

the Fermi level, not just the electrostatic potential as in a conventional electrical circuit.  

 

In the circuit below, the metal is modeled by a voltage source equal to the chemical 

potential 1 of the metal. Prior to contact, the Fermi level of the molecule is EF
0
. The 

contact itself is modeled by a resistor that allows current to flow when the Fermi levels 

on either side of the contact are misaligned. Charge flowing from the metal to the 

molecule develops a potential across the quantum capacitance. But note that this is a 

change in the Fermi level, not an electrostatic potential. It is also important to note that 

the quantum capacitance usually depends on the Fermi level in the molecule. The only 

exception is if the density of states is constant as a function of energy. Thus, a constant 

value of CQ can only be employed for small deviations between 1 and EF
0
. 

 
Fig. 3.7. A small signal model for the metal-molecule junction. The effects of charging 
are not included. The resistor will be characterized further in later sections. 
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(ii) Electrostatic Capacitance 

 

Unfortunately, the establishment of equilibrium between a contact and the molecule is 

not as simply as water flow between two tanks. Electrons, unlike water, are charged. 

Thus, the transfer of electrons from the contact to a molecule leaves a net positive charge 

on the contact and a net negative charge on the molecule. 

 

Charging at the interface changes the potential of the molecule relative to the metal and is 

equivalent to shifting the entire water tanks up and down. Charging assists the 

establishment of equilibrium and it reduces the number of electrons that are transferred 

after contact is made. 

Fig. 3.8. Electrons carry charge and shift the potential when they are transferred 
between a metal and a molecule. The resulting change in potential is equivalent to lifting 
up the „molecule‟ column of water. The water levels must ultimately match, but now less 
water is required to be transferred. 
 

The contact and the molecule can be considered as the two plates of a capacitor. In Fig. 

3.9 we label this capacitor, CES - the electrostatic capacitance, to distinguish it from the 

quantum capacitance discussed in the previous section.  

 

When charge is transferred at the interface, the capacitor is charged, a voltage is 

established and the molecule changes potential. The change in the molecule‟s potential 

per electron transferred is known as the charging energy and is reflected in a shift in the 

vacuum energy. From the fundamental relation for a capacitor: 

 
ES

Q
C

V
  (3.7) 

where V is the voltage across the capacitor. We can calculate the change in potential due 

to charging: 

 

2
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Fig. 3.9. A contact and a molecule can be modeled as two plates of a parallel capacitor. 
When charge is transferred, this electrostatic capacitance determines the change in 
electrostatic potential, and hence the shift in the vacuum energy. 

 

We will find that n is a dynamic quantity – it changes with current flow. It can be very 

important in nanodevices because the electrostatic capacitance is so small. For the small 

spacings between contact and conductor typical of nanoelectronics (e.g. 1 nm), the 

charging energy can be on the order of 1V per electron. 

 

Summarizing these effects, we find that the Fermi energy of the neutral molecule, 0

FE , is 

related to the Fermi energy of the metal-molecule combination, EF, by 

 

2
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Fig. 3.10. A small signal model for the metal-molecule junction, including the effects of 
charging. The resistor will be characterized further in later sections. 
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Or, in terms of the quantum capacitance: 

 

2 2
0

F F

Q ES

q q
E n n E

C C
     (3.10) 

Fig. 3.11. Changes in energy level alignment when charge is transferred from the metal 
to a molecule. Charging of the molecule corresponds to applying a voltage across an 
interfacial capacitor, thereby changing the potential of the molecule. Consequently, the 
vacuum level shifts at the molecule‟s location, shifting all the molecular states along with 
it. In addition, the transferred charge fills some previous empty states in the molecule. 
Both effects change the Fermi energy in the molecule. 

 

 

Calculation of the electrostatic capacitance 

 

(i) Isolated point conductors 

 

For small conductors like single molecules or quantum dots, it is sometimes convenient 

to calculate CES by assuming that the conductor is a sphere of radius R. From Gauss‟s 

law, the potential at a point with radius r from the center of the sphere is: 

 
4

Q
V

r
  (3.11) 

where r > R,  is the dielectric constant and Q is the net charge on the sphere. 

If we take the potential at infinity to be zero, then the potential of the sphere is 

4V Q R  and the capacitance is 
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 4ES

Q
C R

V
   (3.12) 

The notable aspect of Eq. (3.12) is that the electrostatic capacitance scales with the size 

of the conductor. Consequently, the charging energy of a small conductor can be very 

large. For example, Eq. (3.12) predicts that the capacitance of a sphere with a radius of 

R = 1nm is approximately CES = 10
-19

 F. The charging energy is then UC = 1.6eV per 

charge. 

 

(ii) Conductors positioned between source and drain electrodes 

 

In general, the potential profile for an arbitrary distribution of charges must be calculated 

using Gauss‟s law. But we can often make some approximations. The source and drain 

contacts can sometimes be modeled as a parallel plate capacitor with 

 
A

C
d


  (3.13) 

where A is the area of each contact and d is their separation. This approximation is 

equivalent to assuming a uniform electric field between the source and drain electrodes. 

This is valid if A >> d and there is no net charge between the contacts. For source and 

drain electrodes separated by a distance l, the source and drain capacitances at a distance 

z from the source are: 

    ,S D

A A
C z C z

z l z

 
 


. (3.14) 

The potential varies linearly as expected for a uniform electric field. 
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
. (3.15) 

 

Fig. 3.12. (a) The capacitance of an isolated 0-d conductor is calculated by assuming 
the potential at infinity is zero. (b) A uniform electric field between the source and drain 
yields a linearly varying potential. The source and drain capacitors can be modeled by 
parallel plates. 
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Current Flow in Two Terminal Quantum Dot/Single Molecule Devices 

 

In this section we present a simplified model for conduction through a molecule. It is 

based on the „toy model‟ of Datta, et al.
†
 which despite its relative simplicity describes 

many of the essential features of single molecule current-voltage characteristics.  

 

The contact/molecule/contact system at equilibrium is shown in Fig. 3.13. At 

equilibrium, 1 = EF = 2. Since there are two contacts, this is an example of a two 

terminal device. In keeping with convention, we will label the electron injecting contact, 

the source, and the electron accepting contact, the drain. We will model the molecule by a 

quantum dot. This is accurate if the center of the molecule is much more conductive than 

its connections to the contacts. 

Fig. 3.13. A two terminal device with a molecular/quantum dot conductor. At equilibrium 
no current flows and the Fermi levels are aligned. 

 

Now, when we apply a potential between the source and drain contacts we shift Fermi 

level of one contact with respect to the other, i.e. 

 D S DSqV     (3.16) 

 

There are two effects on the molecule: 

(i) The electrostatic effect: the potential at the molecule is changed by the electric field 

established between the contacts. The energy levels within the molecule move rigidly up 

or down relative to the contacts. 

(ii) The charging effect: Out of equilibrium, a current will flow and the amount of charge 

on the molecule changes. It may increase if current flows through the LUMO, or decrease 

if current flows through the HOMO.  

                                                 
†
 S. Datta, „Quantum transport: atom to transistor‟ Cambridge University Press (2005). 

F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In Advanced Semiconductors 

and Organic Nanotechniques, ed. H. Korkoc. Academic Press (2003). 
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Unfortunately, these effects are linked: moving the molecular energy levels with respect 

to the contact energy levels changes the amount of charge supplied to the molecule by the 

contacts. But the charging energy associated with charge transfer in turn changes the 

potential of the molecule. 

 

We will first consider static and charging effects independently. 

 

(i) Electrostatics: The Capacitive Divider Model of Potential 

Our two terminal device can be modeled by a quantum dot linked to the source and drain 

contacts by two capacitors, CS and CD, respectively. The values of these capacitors 

depend on the geometry of the device. If the molecule is equi-spaced between the 

contacts we might expect that CS ~ CD. On the other hand, if the molecule is closely 

attached to the source but far from the drain, we might expect CS >> CD. (Recall that the 

capacitance of a simple parallel plate capacitor is inversely proportional to the spacing 

between the plates.)   

Fig. 3.14. Two single molecule two terminal devices accompanied by possible potential 
profiles in the molecular conductor. (a) symmetric contacts, (b) asymmetric contacts. We 
are concerned with the voltage in the center of the molecule. This is determined by the 

voltage division factor, . It can be obtained by from a voltage divider constructed from 
capacitors. Adapted from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in 
molecules‟. In Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. 
Academic Press (2003).  
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These two potential profiles are shown in Fig. 3.14. The voltage is calculated from the 

capacitive divider. Thus, an applied voltage, V, shifts the chemical potentials of both the 

source and drain contacts:
†
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 (3.17) 

It is convenient to use the Fermi energy of the molecule at equilibrium as a reference, i.e. 

if we set EF = 0: 
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We can define a voltage division factor, .
†
 It gives the fraction of the applied bias that is 

dropped between the molecule and the source contact, i.e. 

 D

S D

C

C C
 


 (3.19) 

 

As shown in Fig. 3.15, the voltage division factor determines in part whether conduction 

occurs through the HOMO or the LUMO. If  = 0, then the molecular energy levels are 

fixed with respect to the source contact. As the potential of the drain is increased, 

conduction eventually occurs through the HOMO. But if the potential of the drain is 

decreased, conduction can occur through the LUMO. The current-voltage characteristic 

of this device will exhibit a gap around zero bias that corresponds to the HOMO-LUMO 

gap.
 †

  

 

If  = 0.5, however, then irrespective of whether the bias is positive or negative, current 

always flows through the molecular energy level closest to the Fermi energy. In this 

situation, which is believed to correspond to most single molecule measurements,
1
 the 

gap around zero bias is not the HOMO-LUMO gap, but, in this example, four times the 

Fermi energy – HOMO separation.
§
  

 

The voltage division factor is a crude model of the potential profile, which more 

generally could be obtained from Poisson‟s equation.  is also likely to vary with bias. At 

high biases, there may be significant charge redistribution within the molecule, leading to 

a change in .
†
  

 

                                                 
†
 F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In Advanced Semiconductors 

and Organic Nanotechniques, ed. H. Korkoc. Academic Press (2003). 
§
 It is possible to experimentally distinguish between  = 0.5 and  = 0 by choosing contact metals with 

different work functions. If the conductance gap is observed to change then it cannot be determined by the 

HOMO-LUMO gap, and hence  ≠ 0 
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Fig. 3.15. The voltage division factor is crucial in determining the conduction level in a 

single molecule device. In this example, when  = 0, conduction always occurs through 
the HOMO when the applied bias is positive, and through the LUMO when the applied 
bias is negative. The conductance gap is determined by the HOMO-LUMO separation. 
Adapted from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. 
In Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. Academic 
Press (2003). 

 

 

Fig. 3.16. When  = 0.5, conduction always occurs through the molecular orbital closet 
to the Fermi Energy. In this example that is the HOMO, irrespective of the polarity of the 
applied bias. Adapted from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in 
molecules‟. In Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. 
Academic Press (2003). 
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(ii) Charging 

 

Previously, we defined the charging energy as the change in the molecule‟s potential per 

additional electron. To calculate the net effect of charging we need the number of 

electrons transferred. 

 

At equilibrium, the number of electrons on the molecule is determined by its Fermi 

energy. 

    0 , FN g E f E E dE





   (3.20) 

Under bias, the electron distribution on the molecule is no longer in equilibrium. We will 

define the number of electrons under bias as N. 

 

Thus, the change in potential at the molecule due to charging is 

  
2

0C

ES

q
U N N

C
   (3.21) 

Fig. 3.17. The effect of charging on a molecule. The addition of electrons shifts the 
molecular potential (and hence all orbitals within the molecule) in order to repel the 
addition of more electrons. Note that although we have shown the expected change in 
the Fermi level, this is only meaningful if the molecule remains in equilibrium. Adapted 
from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In 
Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. Academic 
Press (2003). 
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Summary 

 

The net change in potential at the molecule, U, is the sum of electrostatic and charging 

effects: 

 ES CU U U   (3.22) 

By applying the source-drain voltage relative to a ground at the molecule we have forced 

UES = 0 in Fig. 3.16. But it will not always be possible to ignore electrostatic effects on U 

if the ground is positioned elsewhere. Analyses of transistors, for example, typically 

define the source to be ground. 

  

We model the effect of the change in potential by rigidly shifting all the energy levels 

within the molecule, i.e. 

  g g E U   (3.23) 

 

 

Calculation of Current 

 

Let‟s model the net current at each contact/molecule interface as the sum of two 

components: the contact current, which is the current that flows into the molecule, and 

the molecule current, which is the current that flows out of the molecule. 

 
Fig. 3.18. The net current at a contact/molecule interface can be broken into a contact 
current – the current that flows out of the contact -  and a molecule current – the current 
that flows out of the molecule. At equilibrium, these currents must balance. 
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(i) The contact current 

 

This current is the number of available states in the molecule filled per second. Electrons 

in the contact are filled to its chemical potential. They cannot jump into higher energy 

states in the molecule. The total number of electrons that can be transferred is simply 

equal to the number of states.  

 

At the source contact, we get  

    ,S SN g E U f E dE




   (3.24) 

where g(E-U) is the molecular density of states shifted by the net potential change. 

Similarly, if at the drain contact then the number of electrons, ND, that could be 

transferred level is 

    ,D DN g E U f E dE




   (3.25) 

 

Let‟s define the transfer rate at the source and drain contacts as 1/S and 1/D, 

respectively. Then the contact currents are 

 ,C CS D
S D

S D

N N
I q I q

 
    (3.26) 

Note that we have defined electron flow out of the source and into the drain as positive.  

 

Fig. 3.19. The contact current is the rate of charge transfer from the contact to the 
molecule. Only states in the molecule with energies below the chemical potential of the 

contact may be filled. The transfer rate of a single electron from the contact is 1/S. 
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(ii) The molecule current 

 

Now, if we add electrons to the molecule, these electrons can flow back into the contact, 

creating a current opposing the contact current. The molecule current is the number of 

electrons transferred from the molecule to the contact per second.  

 

Thus, the molecule currents into the source and drain contacts are 

 ,M M

S D

S D

N N
I q I q

 
    (3.27) 

where we have again defined electron flow out of the source and into the drain as 

positive.  

Fig. 3.20. The molecule current is the rate of charge transfer from the molecule to the 
contact. Note that the electrons on the molecule are not necessarily in equilibrium. The 

lifetime of a single electron on the molecule is . 
 

From Eqns. (3.26) and (3.27)  the net current at the source contact is 

  S S

S

q
I N N


   (3.28) 

and the net current at the drain contact is 

  D D

D

q
I N N


   (3.29) 

Note that we have assumed that the transfer rates in and out of each contact are identical. 

For example, let‟s define S
M

 as the lifetime of an electron in the molecule and 1/S
C
 as 

the rate of electron transfer from the source contact. It is perhaps not obvious that 

S
M

 = S
C
, but examination of the inflow and outflow currents at equilibrium confirms that 

it must be so. When the source-molecule junction is at equilibrium, no current flows. 

From Eqns. (3.20), (3.21) and (3.24), we have NS = N. Thus, for IS = 0 we must have 

1
M

 = 1
C
. 



Part 3. Two Terminal Quantum Dot Devices 

94 

 

Equating the currents in Eqns. (3.28) and (3.29) gives
†
 

       
1

, ,S D

S D

I q g E U f E f E dE 
 





  
  (3.30) 

and 

  
   , ,D S S D

S D

f E f E
N g E U dE

   

 






 

  (3.31) 

 

The difficulty in evaluating the current is that it depends on U and hence N. But Eq. 

(3.31) is not a closed form solution for N, since the right hand side also contains a N 

dependence via U. Except in simple cases, this means we must iteratively solve for N, 

and then use the solution to get I. This will be discussed in greater detail in the problems 

accompanying this Part. 

Fig. 3.21. A flow diagram describing an iterative solution to the IV characteristics of two 
terminal molecular devices. Adapted from F. Zahid, M. Paulsson, and S. Datta, 
„Electrical conduction in molecules‟. In Advanced Semiconductors and Organic 
Nanotechniques, ed. H. Korkoc. Academic Press (2003).   

                                                 
†
 F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In Advanced Semiconductors 

and Organic Nanotechniques, ed. H. Korkoc. Academic Press (2003). 
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Analytic calculations of the effects of charging 

 

The most accurate method to determine the IV characteristics of a quantum dot device is 

to solve for the potential and the charge density following the scheme of Fig. 3.21. This is 

often known as the self consistent approach since the calculation concludes when the 

initial guess for the potential U has been modified such that it is consistent with the value 

of U calculated from the charge density. 

 

Unfortunately, numerical approaches can obscure the physics. In this section we will 

make some approximations to allow an analytic calculation of charging. We will assume 

operation at T = 0K, and discrete molecular energy levels, i.e. weak coupling between the 

molecule and the contacts such that   0G   .  

 

Let‟s consider a LUMO state with energy ELUMO that is above the equilibrium Fermi 

level. Under bias, the energy of the LUMO is altered by electrostatic and charging-

induced changes in potential. When we apply the drain source potential, it is convenient 

to assume that the molecule is ground. Under this convention, the only change in the 

molecule‟s potential is due to charging. Graphically, the physics can be represented by 

plotting the energy level of the molecule in the presence and absence of charging. In Fig. 

3.22, below, we shade the region between the charged and uncharged LUMOs. Now 

  
2

0C

ES

q
U N N

C
  , (3.32) 

and at T = 0K, N0 = 0 for the LUMO in Fig. 3.22. Thus, the area of the shaded region is 

proportional to the charge on the molecule. 

Fig. 3.22. Under bias, the energy levels of the molecule can be shifted by electrostatic 
and charging-induced changes in the potential. If we assume the molecule is ground, 
then the electrostatic changes in potential alter the source and the drain. Only charging 
then alters the molecular energy level. The difference between the charged and 
uncharged molecular energy levels is proportional to the charge on the molecule and is 
shaded red. 

S D

No charging Charging

S

D

ELUMO

UC

max

qVDS

qVDS = 0

ELUMO
0ELUMO

0

qVDS >> 0

 



Part 3. Two Terminal Quantum Dot Devices 

96 

 

 

The graphical approach is a useful guide to the behavior of the device. There are three 

regions of operation, each shown below. 

Fig. 3.23. The three regions of operation for a two terminal quantum dot device with 
discrete energy levels at T = 0K. Current flow requires the source to inject carriers into 

the molecular energy levels. The onset of current flow occurs when the chemical 
potential of the source is resonant with the LUMO. Additional drain-source bias charges 
the molecule, and the current increases linearly with the molecular charge. Finally, a 
maximum charge density is reached. Further increases in applied bias do not increase 
the charging energy or the current flow. 

 

(i) No charging 

At T = 0K and VDS = 0 there is no charge in the LUMO. Charging cannot occur unless 

electrons can be injected from the source into the LUMO. So as VDS increases, charging 

remains negligible until the LUMO energy is aligned with the chemical potential of the 

source. Thus, for S < ELUMO the charging energy, UC = 0.  
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In this region, IDS = 0. We define the bias at which current begins to flow as VDS = VON. 

VON is given by 

 
0

LUMO S
ON

E
V

q






  (3.33) 

where 0

LUMOE  is the LUMO energy level at equilibrium. 

 

(ii) Maximum charging 

For S > ELUMO, the charge on the LUMO is independent of further increases in VDS. It is 

a maximum. From Eq. (3.31), the LUMO‟s maximum charge is 

 
2max D

S D

N


 



 (3.34) 

Consequently, the charging energy is 

 
22max D

C

ES S D

q
U

C



 



 (3.35) 

For all operation in forward bias, it is convenient to calculate the current from Eq. (3.29). 

At T = 0K, the charges injected by the drain ND = 0. Consequently,  

 
2max

DS

D S D

qN q
I

  
 


 (3.36) 

Maximum charging occurs for voltages S > ELUMO. We can rewrite this condition as 

   max

DS ON CV V U q   (3.37) 

 

(iii) Variable charging 

Charging energies between 0 max

C CU U   require that S = ELUMO. Assuming that the 

molecule is taken as the electrostatic ground, then S = ELUMO = UC for this region of 

operation. Calculating the current from Eq. (3.29) gives 

 DS

D

qN
I


  (3.38) 

Then, given that 2

C ESU q N C , we can rearrange Eq. (3.38) to get 

 ES C
DS

D

C U
I

q
  (3.39) 

Then, from Eqs. (3.18) and (3.19) and noting that S = ELUMO = UC,  

  ES
DS DS ON

D

C
I V V


  . (3.40) 

This region is valid for voltages 

  0 max

DS ON CV V U q   . (3.41) 

 

 

The full IV characteristic is shown below. Under our assumptions the transitions between 

the three regions of operation are sharp. For T > 0K and   0G    these transitions 

are blurred and are best calculated numerically; see the Problem Set. 
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Fig. 3.24. (a) An example of a single molecule device subject to strong charging effects. 
The coupling between the molecule and the contacts is small relative to the applied 

voltage, i.e. GS/q = GD/q = 1mV. The source and drain capacitances yield a large charging 

potential per electron q2
/CES = 0.8 eV. The voltage division factor is  = 0.5. (b) The offset 

between the LUMO and the contact work functions is 0.3 eV, consequently, 

VON = 0.3/ = 0.6V (c) The current-voltage characteristic. 
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A small signal circuit model 

 

In the discussion of the establishment of equilibrium between a contact and a molecule 

we introduced a generalized circuit model where each node potential is the Fermi level, 

not the electrostatic potential as in a conventional electrical circuit.  

 

We can extend the model to two terminal, and even three terminal devices. It must be 

emphasized, however, that the model is only valid for small signals. In particular, the 

model is constrained to small VDS. We assume that the density of states is constant and 

the modulation in VDS must be smaller than kT/q so that we can ignore the tails of the 

Fermi distribution. 

 

Let‟s consider current injected by the source 

  S S

S

q
I N N


   (3.42) 

This can be rewritten as 

       , ,S S F

S

q
I g E U f E f E E dE







    (3.43) 

For small differences between the source and drain potentials, and at T = 0K, we get 

 
 Q S F

S

S

C E
I

q






  (3.44) 

Thus, each contact/molecule interface is Ohmic in the small signal limit. Defining 

RS = S/CQ, and RD = D/CQ.We can model the contact/molecule/contact as shown in Fig. 

3.25. 

 

Fig. 3.25. A small signal model for two terminal metal/molecule/metal circuits. Note that 
the potential U must be determined separately (e.g. by using a capacitive divider circuit). 
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The Ideal Contact Limit
†
 

 

Interfaces between molecules and contacts vary widely in quality. Much depends on how 

close we can bring the molecule to the contact surface. Here, we have modeled the source 

and drain interfaces with the parameters S and D. If electron injection is unencumbered 

by barriers or defects then these lifetimes will be very short. We might expect that the 

current should increase indefinitely as the injection rates decrease. But in fact we find a 

limit – known as the quantum limit of conductance. We will examine this limit rigorously 

in the next section but for the moment, we will demonstrate that it also holds in this 

system. 

 

We model ideal contacts by considering the current under the limit that 0S D   . 

Note that the uncertainty principle requires that the uncertainty in energy must increase if 

the lifetime of an electron on the molecule decreases. Thus, the density of states must 

change as the lifetime of an electron on a molecule changes.  

 

Let‟s assume that the energy level in the isolated molecule is discrete. In Part 2, we found 

a Lorentzian density of states for a single molecular orbital with net decay rate 1 1

S D   :  

  
 

   
2 2

0

2 22

2 2

S D

S D

g E U dE dE
E U E

 

  


 

   
 (3.45) 

If we take the limit, we find that the molecular density of states is uniform in energy: 

  
8 1

lim 0
1 1

S D

S D

g E U dE dE
h

 
 

   


 (3.46) 

Substituting into Eq. (3.30) for S = D gives 

    
2

, ,S D

q
I f E f E dE

h
 





   (3.47) 

At T = 0K,  

    ,f E u E    (3.48) 

where u is the unit step function, and the integral in Eq. (3.47) gives 

  
2

S D

q
I

h
    (3.49) 

Note  DS D SqV     , thus the conductance through a single molecular orbital is 

 
22q

G
h

  (3.50) 

The equivalent resistance is G
-1

= 12.9 kΩ. Thus, even for ideal contacts, this structure is 

resistive. We will see this expression again in the next section. It is the famous quantum 

limited conductance. 

                                                 
†
 This derivation of the quantum limit of conductance is due to S. Datta, „Quantum transport: atom to 

transistor‟ Cambridge University Press (2005). 
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Problems 

 

1. (a) A 1nm × 1nm molecule is 30Å away from a metal contact. Calculate the 

electrostatic capacitance using the parallel plate model of the capacitor. Find the change 

in potential per charge added to the molecule, UES/δn.  

 

(b) A 50nm × 50nm molecule is 30Å away from a metal contact. Calculate the 

electrostatic capacitance using the parallel plate model of the capacitor. Find the change 

in potential per charge added to the molecule, UES/δn. 

 

(c) A 100nm × 100nm molecule is 30Å away from a metal contact. Calculate the 

electrostatic capacitance using the parallel plate model of the capacitor. Find the change 

in potential per charge added to the molecule, UES/δn. 

 

 

2.(a) Assume the molecule in problem 1(a) has a uniform density of states of g(E) = 

3×10 
20

/eV  and Fermi level at 0

FE  = -5.7eV in isolated space.  The metal has a work 

function of 5eV.   Sketch all of the energy levels in equilibrium after the metal contact 

and molecule are brought into contact.  Find the number of charges, n, transferred from 

the molecule to the metal (or vice versa.).  

 
Fig. 3.26. A separated contact and molecule. The molecule has a uniform density of 
states. 

 

 

(b) Repeat part (a) for the molecule in problem 1(b) using the same density of states and 

Fermi levels. 

 

(c) Repeat part (a) for the molecule in problem 1(c) using the same density of states and 

Fermi levels. 
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FE

 

3.  Consider the molecule illustrated below with EA = 2eV, IP = 5eV, and 0

F
E = 3.5eV. 

Fig. 3.27. Energy levels within a molecule. 

 

(a) What is CQ  when the electron lifetime is 1 1ps fs , , ? 

 

(b) For each of the lifetimes in part (a), what is the equilibrium Fermi level when 

0 1n  .  charge is added to the molecule. 

 

(c) What is the equilibrium Fermi level when 1 1
HOMO LUMO

ps and ps  . ? 

 

 

4. A quantum well is brought into contact with a metal electrode as shown in the figure 

below.  

 

 
 
Fig. 3.28. The quantum well in contact with a metal surface. 

 

(a) Calculate the DOS in the well between 0 and 2eV assuming an infinite confining 

potential and that the potential inside the well is zero. 

Continued….
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(b) On contact charge can flow between the metal and the quantum well. But assume that 

on contact the well is still separated from the metal by a 0.1nm thick layer with dielectric 

constant 5×8.84×10
-12

 F/m. Calculate the surface charge density at equilibrium, for an 

initial separation of  (i)  0.6eV  and  (ii)  -0.6eV, between the quantum well EF and the 

chemical potential of the metal. Assume T=0. 

 
 
Fig. 3.29. Two different energetic alignments between the quantum well and the metal. 

 

(c) Plot the vacuum energy shift at each interface at equilibrium, for part b (i) and (ii), 

above.  

The next question is adapted from an example in „Introductory Applied Quantum and 

Statistical Mechanics‟ by Hagelstein, Senturia and Orlando, Wiley Interscience 2004.  

 

5. In this problem we consider charge injection from a discrete energy level rather than a 

metal. Consider charge transport through a quantum dot buried within an insulator. The 

materials are GaAs|GaAlAs|GaAs|GaAlAs|GaAs with thicknesses 

1000Å|40Å|100Å|40Å|1000Å. The potential landscape of this device is modeled as below 

with V0=0.3 eV, b=50Å, and a=90Å. Let the effective mass of an electron in GaAs and 

GaAlAs be 0.07me, where me is the mass of an electron. 

 

 
Fig. 3.30. The energy levels for a 
quantum dot buried within a 
tunnel barrier.  
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Considering only energies below V0, the wavefunction is piecewise continuous with 
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(a) Match the boundary conditions and find M  such that MC A , where 
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(b) The transmission coefficient is  
22

8T J C  , where 
1

C M A


 . Determine T 

numerically or otherwise. It is plotted below as a function of electron energy, E. Verify 

that the resonant energies where T = 1 are within a factor of two of the eigenenergies of 

an infinite square well with width L=2b. Note that this approximation for the resonant 

energies works better for deeper square wells (V0 big).  

 
Fig. 3.31. Your solution to part (b) should look like this. 
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(b)

E0

(a) V(x) V(x)

E0

-L/2 L/2 -L/2
L/2

x x

qFL

 

(c) Why do the widths of the resonances in the transmission coefficient increase at 
higher electron energy? 

(d) Now suppose we apply a voltage across this device. Electrons at the bottom of the 

conduction band EC in the GaAs on the left side will give net current flow which is 

proportional to the transmission coefficient T.  

Let‟s first consider only one discrete energy level E0 in the dot as shown in part (a) of the 

figure below. Assume the potential drop is linear (electric field F is constant) across the 

whole device, as shown in part (b) of the figure below.  

Fig. 3.32. (a) The Quantum Dot structure at zero bias, and (b) under an applied bias. 
  

Sketch out qualitatively what you think the current-vs-voltage curve will look like. It 

should look quite different to the IV characteristic of a quantum dot with metal contacts. 

Explain the difference. 

 

(e) Approximating E0 as the ground state of an infinite square well, what is the expression 

for the resonant voltage in terms of W2, assuming W1=W3? 

 

(f) Without solving for the wavefunction, sketch qualitatively what the probability 

density of the lowest eigenstate of an infinite well will look like when distorted by an 

electric field. Where in the well has the highest probability of finding an electron? 

 

 
Fig. 3.33. The quantum dot under bias. 
 
   

 

 

 

(g) Now, if we consider the multiple discrete energy levels in the dot, what will the 

current-voltage curve look like?  

(h) Analytically determine the current through the dot at the 0.27eV resonance. Hint: 

consider the width of the resonance. 
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6. Consider the two terminal molecular device shown below. Note that this calculation 

differs from the previous calculation of charging by considering transport through the 

HOMO rather than the LUMO. 

Fig. 3.34. The device structure for an analytical calculation of charging effects. 

 

(a) Estimate the width of the HOMO from S and D. 

 

(b) Assuming that the molecule can be modeled as a point source conductor of radius 

2nm, calculate the charging energy per electron. Compare to the charging energy 

determined from the capacitance values shown in Fig. 3.34. 

 

(c) Assuming that the charging energy is negligible, calculate the IDS-VDS characteristic 

and plot it. 

 

(d) Now consider charging with q
2
/CES = 1eV. How does charging alter the maximum 

current and turn on voltage (the lowest value of VDS when current flows)? 

 

(e) Show that the number of electrons on the HOMO is at least 

 2 D

S D

N


 



  

(f) What is the maximum charging energy when q
2
/CES = 1eV? 

 

(g) Assuming that the charging energy is negligible, plot the energy level of the HOMO 

together with the source and drain workfunctions for VDS = 2V. On the same plot, 

indicate the energy level of the HOMO when q
2
/CES = 1eV and VDS = 2V. What is the 

charging energy at this bias? 

 

(h) Calculate the IDS-VDS characteristic when q
2
/CES = 1eV. Plot it on top of the IDS-VDS 

characteristic calculated for negligible charging.  

EFS D

VDS = 0

+-

source drain

source drain

molecule

CS = 10-19 F

S= 1ps

+-
HOMO               -5.5eV

-5eV

CD = 10-19 F

D = 1ps

VDS

T = 0K

 
 

 



Introduction to Nanoelectronics 

107 

 

7. Consider the two terminal molecular device shown in the figure below. This question 

considers conduction through both the HOMO and LUMO as well as the effect of 

mismatched source and drain injection rates and capacitances. 

 

Note that: T = 0K;  CS = 2CD  ; ηS = 1ps ; ηD = 9ps 

 

Fig. 3.35. A two terminal molecular device. 

              

(a) Estimate the width of the HOMO and LUMO from ηS and ηD. 

(b) If CD = 1pF calculate the charging energy per electron. 

(c) Plot the current-voltage characteristic (IV) from VDS = -10V to VDS = 10V assuming 

that the charging energy equals zero. 

(d) Assume the charging energy is now 1eV per electron. What is CD? 

 

(e) Plot the IV from VDS =  0V to VDS = 10V assuming that the charging energy is 1eV per 

electron. 

(f) Plot the IV from VDS =  -10V to VDS = 0V assuming that the charging energy is 1eV 

per electron. Hint: you should find a region of this IV characteristic in which the HOMO 

and LUMO are charging together, increasing the current but leaving the net charge on the 

molecule unchanged. Consequently, your IV characteristic should exhibit a step change 

in current at a particular voltage. 
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8. A quantum wire with square cross-section with a 1-nm thickness side is bent and fused 

into a circular ring with radius R= 2nm as shown below.   

 

 

                                                
Fig. 3.36. A quantum wire bent into a ring. 

 

 

(a) Plot the DOS in the wire from E = 0 to E = 0.8eV. Assume an infinite confining 

potential and that the potential in the ring is V = 0. 

 

(b) Next the ring is placed between contacts as shown. What is the charging energy? 

 
Fig. 3.37. The ring between contacts. 

                                               

 

(c) Plot the current versus voltage for V from 0 to 1.1V.  

 

(d) A magnetic field is applied perpendicular to the ring. Sketch the changes in the IV. 
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The next three questions have been adapted from F. Zahid, M. Paulsson, and S. Datta, 

„Electrical conduction in molecules‟. In Advanced Semiconductors and Organic 

Nanotechniques, ed. H. Korkoc. Academic Press (2003). 

 

9. (a) Numerically calculate the current-voltage and conductance-voltage characteristics 

for the system shown in Fig. 3.38 with the following parameters: 

 = 0.5 

EF = -5.0 eV 

HOMO = -5.5 eV 

GS = GD = 0.1 eV 

T = 298K 

Set the charging energy to zero, i.e. take CES . 

Fig. 3.38. The two terminal molecular device for this problem. 

 

Hints 

(1) Despite the statement that GS = GD = 0.1 eV, the HOMO in this problem is assumed to 

be infinitely sharp. Simplify Eqns. (3.30) and (3.31) for g(E-U) = 2(E-U-), where  
is the energy of the HOMO.  

(2) You will need to implement the flow chart shown in Fig. 3.21. If your solution for U 

oscillates and does not converge, try setting 

 old calc oldU U U U   , 

where Ucalc is the solution to Eq. (3.21), Uold is the previous iteration‟s estimate of U 

and  is a small number that may be reduced to obtain convergence.  

 

(b) Repeat the numerical calculation of part (a) with q
2
/CES = 1 eV.  

 

(c) Explain the origin of the conductance gap. What determines its magnitude? 

 

(d) Write an analytic expression for the maximum current when q
2
/CES = 0. 

 

(e) Explain why the conductance is much lower when the charging energy is non-zero. 
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V=0
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source drain

molecule
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molecule

G=0.1eV G=0.1eV

+-

= 0.5

HOMO             -5.5eV

-5eV
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Fig. 3.39. Your solution should look like this.  

 

 

10. Next, we add a LUMO level at -1.5 eV.  

Fig. 3.40. The two terminal molecular device for this problem. 

  

(a) Numerically calculate the current-voltage and conductance-voltage characteristics for 

q
2
/CES = 1 eV  and EF = -2.5 eV. 

 

(b) Repeat the numerical calculation for q
2
/CES = 1 eV  and EF = -3.5 eV. 
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(c) Repeat the numerical calculation for q
2
/CES = 1 eV  and EF = -5.0 eV (same as Q8.b). 

Fig. 3.41. Your solution should look like this. 

 

(d) Why are the current-voltage characteristics uniform? Hint: what would happen if 

  0.5? Identify the origin of the transitions in the IV curve. 

 

(e) Why is the effect of charging absent when EF = -3.5 eV? 

 

 

11. Next, we consider a Lorentzian density of states rather than simply a discrete level.  

  
   

2 2

1

2
g E dE dE

E 

G


  G
 (51) 

where G = GS + GD  and  is the center of the HOMO. Ignore the LUMO, i.e. consider the 

system from problem 9. 

Fig. 3.42. The two terminal molecular device for this problem. 
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(a) Numerically compare the current-voltage and conductance-voltage characteristics for 

a discrete and broadened HOMO with q
2
/CES = 1 eV. 

 

(b) How would you expect the IV to change if GS > GD? Explain. 

Fig. 3.43. Your solution should look like this. 

 

12. The following problem considers a 2-terminal conductor under illumination. The light 

produces an electron transfer rate of NH from the HOMO to the LUMO. The light also 

causes an electron transfer rate of NL from the LUMO to the HOMO, where  is 

proportional to the intensity of the illumination, and the electron populations in the 

LUMO and HOMO are NL and NH, respectively.  

 

Assume CS = CD, that the LUMO and HOMO are delta functions, and T = 300K. Also, 

assume that under equilibrium in the dark, the Fermi Energy is midway between the 

HOMO and LUMO. 

 
Fig. 3.44. A model of a single molecule solar cell. 
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Next, imagine that the contacts are engineered to have the following characteristics: 

Transfer rate between Drain and HOMO = 1/.  
Transfer rate between Drain and LUMO = 0. 

Transfer rate between Source and HOMO = 0. 

Transfer rate between Source and LUMO = 1/. 
 

(a) Determine the short circuit current for this system. (i.e. let VDS = 0, what is the current 

that flows through the external short circuit?) 

 

(b) Determine the open circuit voltage for this system. (i.e. Disconnect the voltage 

source, what is the voltage that appears across the terminals of the molecule?) 

 

(c) Repeat (a) and (b) with the addition of an additional electron transfer rate NL from 

the LUMO to the HOMO, where  is independent of the intensity of the illumination. 

 

 

13. This problem refers to the 2 terminal molecular conductor below. 

 
Fig. 3.45 Equilibrium between a molecule and a contact requires charge transfer. 

 

(a) When 10 fs, 5 fsS D   , calculate the actual molecular density of states versus 

energy. Determine the full width half maximum of HOMO and LUMO.  

 

(b) Based on the actual density of states calculated in part c), find the number of electrons 

and the charging energy when the molecule is brought into contact with the metal 

electrode and reached equilibrium (no applied voltage). Also sketch the energy diagram 

at equilibrium. Assume that the charging energy per electron is 1eV and 

10 fs, 5 fsS D   .  

Hint: You will need your calculator to solve this. You might use 1

2

1
tan ( )

1
dx x

x




. 
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