6.641 Electromagnetic Fields, Forces, and Motion Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.641 — Electromagnetic Fields, Forces, and Motion

Spring 2009

Quiz 1 - Solutions - Spring 2009

Prof. Markus Zahn

MIT OpenCourseWare

Problem 1

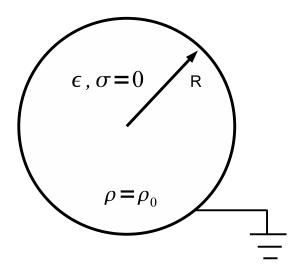


Figure 1: A diagram of a perfectly conducting hollow sphere filled with a perfectly insulating dielectric with a uniform distribution of volume charge (Image by MIT OpenCourseWare).

A perfectly conducting hollow sphere of radius R is filled with a perfectly insulating dielectric ($\sigma = 0$) with a uniform distribution of volume charge:

$$\rho = \rho_0 \qquad \qquad 0 < r < R$$

within a medium with permittivity ϵ . The sphere is grounded at r = R so that the scalar electric potential at r = R is zero, $\Phi(r = R) = 0$. There is no point charge at r = 0 so that $E_r(r = 0)$ must be finite.

\mathbf{A}

Question: What is the EQS electric field $\overline{E}(r)$ for 0 < r < R?

Solution:

$$\nabla \bullet \overline{E} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 E_r) = \frac{\rho_o}{\epsilon} \Rightarrow \frac{d}{dr} (r^2 E_r) = \frac{\rho_o r^2}{\epsilon}$$

$$r^2 E_r = \frac{\rho_0 r^3}{3\epsilon} + C_1 \Rightarrow E_r = \frac{\rho_o r}{3\epsilon} + \frac{C_1}{r^2}$$

$$E_r (r = 0) \text{ is finite } \Rightarrow C_1 = 0$$

$$E_r (r) = \frac{\rho_o r}{3\epsilon} \qquad 0 < r < R$$

 \mathbf{B}

Question: What is the scalar electric potential $\Phi(r)$ where $\overline{E}(r) = -\nabla \Phi(r)$? Solution:

$$\begin{split} E_r &= -\frac{d\Phi}{dr} = \frac{\rho_o r}{3\epsilon} \Rightarrow \Phi = -\frac{\rho_o r^2}{6\epsilon} + C_2 \\ \Phi(r=R) &= 0 = -\frac{\rho_o R^2}{6\epsilon} + C_2 \Rightarrow C_2 = \frac{\rho_o R^2}{6\epsilon} \\ \Phi(r) &= -\frac{\rho_o}{6\epsilon} (r^2 - R^2) \end{split}$$

 \mathbf{C}

Question: What is the free surface charge density $\sigma_s(r=R)$ on the inside surface of the sphere solution:

$$\sigma_s(r=R) = -\epsilon E_r(r=R) = -\frac{\epsilon \rho_o R}{6\epsilon} = -\frac{\rho_0 R}{3}$$

Problem 2

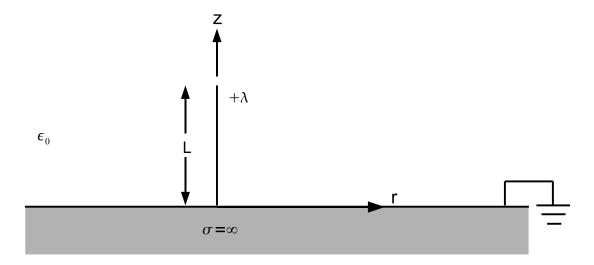


Figure 2: A diagram of a uniform line charge of height L standing perpendicular to the ground plane (Image by MIT OpenCourseWare).

A uniform line charge λ coulombs/meter of height L stands perpendicularly on a perfectly conducting ground plane of infinite extent in free space with dielectric permittivity ϵ_0 .

\mathbf{A}

Question: Find the electric field at the ground plane surface $\overline{E}(r,z=0_+)$ where r is the cylindrical radial coordinate shown above. See integrals in hint below. Solution:

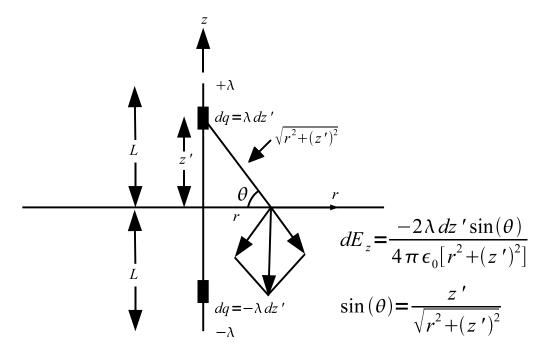


Figure 3: A diagram of the line charge $+\lambda$ in Figure 2 and its image $-\lambda$ and the resulting net -z-directed electric field at z=0. (Image by MIT OpenCourseWare).

$$\begin{split} dE_z &= -\frac{\lambda dz'z'}{2\pi\epsilon_o [r^2 + (z')^2]^{3/2}} \\ E_z(z=0_+) &= -\frac{\lambda}{2\pi\epsilon_o} \int_{z'=0}^L \frac{z'dz'}{\left[r^2 + (z')^2\right]^{3/2}} \\ u &= r^2 + (z')^2 \\ du &= 2z'dz' \\ E_z(r,z=0_+) &= -\frac{\lambda}{2\pi\epsilon_o} \int_{v=v^2}^{r^2 + L^2} \frac{du}{2u^{3/2}} = +\frac{\lambda}{2\pi\epsilon_o u^{1/2}} \Big|_{u=r^2}^{r^2 + L^2} = +\frac{\lambda}{2\pi\epsilon_o} \Big[\frac{1}{\sqrt{r^2 + L^2}} - \frac{1}{r} \Big] \end{split}$$

В

Question: Find the surface charge density on the ground plane surface, $\sigma_s(r, z = 0_+)$. Solution:

$$\sigma_s(r, z = 0_+) = \epsilon_o E_z = +\frac{\lambda}{2\pi} \left[\frac{1}{\sqrt{r^2 + L^2}} - \frac{1}{r} \right]$$

 \mathbf{C}

Question: Prove that the total charge $q_t(z=0_+)$ on the ground plane is $-\lambda L$. Solution:

$$\begin{split} q_t(z=0_+) &= \int_{r=0}^{\infty} \sigma_s(r,z=0_+) 2\pi r dr \\ &= + \int_{r=0}^{\infty} \frac{2\pi \lambda}{2\pi} \Big[\frac{r}{\sqrt{r^2 + L^2}} - 1 \Big] dr \\ &= + \lambda [\sqrt{r^2 + L^2} - r]|_{r=0}^{\infty} \\ &= + \lambda [(r-r)|_{r \to \infty} - L] \\ &= - \lambda L \end{split}$$

Hint for parts (a) and (c): one or more of the following indefinite integrals may be useful:

i
$$\int \frac{xdx}{[x^2+L^2]^{1/2}} = \sqrt{x^2+L^2}$$

ii
$$\int \frac{dx}{[x^2 + L^2]^{1/2}} = \ln[x + \sqrt{x^2 + L^2}]$$

iii
$$\int \frac{dx}{[x^2+L^2]^{3/2}} = \frac{x}{L^2[x^2+L^2]^{1/2}}$$

iv
$$\int \frac{xdx}{[x^2+L^2]^{3/2}} = -\frac{1}{[x^2+L^2]^{1/2}}$$

Problem 3

An infinite slab in the y and z directions carries a uniform current density $\overline{J} = J_0 \overline{i_z}$ for -d < x < d. The current carrying slab has magnetic permeability of free space μ_0 and is surrounded by free space for x > d and x < -d. There are no surface currents on the $x = \pm d$ surfaces, $\overline{K}(x = d) = \overline{K}(x = -d) = 0$ and the magnetic field only depends on the x coordinate.

\mathbf{A}

Question: Find the magnetic field $\overline{H}(x)$ everywhere and plot versus x. Solution:

$$\nabla \times \overline{H} = \overline{J} = J_o \overline{i_z} \Rightarrow \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = J_o \qquad -d \le x \le d$$

$$\begin{split} H_y(x) &= J_o x + C & -d \leq x \leq d \quad, \quad C = 0 \text{ by symmetry} \\ H_y(x = d_-) &= H_y(x = d_+) = J_o d \quad, \quad H_y(x \geq d) = J_o d \\ H_y(x = -d_-) &= H_y(x = -d_+) = -J_o d \quad, \quad H_y(x \leq -d) = -J_o d \end{split}$$

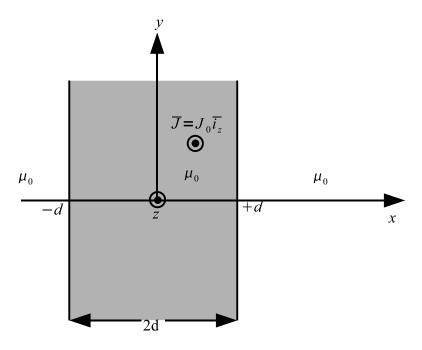


Figure 4: A diagram of an infinite slab in the y and z directions with width 2d carrying a uniform current density $J_0\vec{i}_z$. (Image by MIT OpenCourseWare).

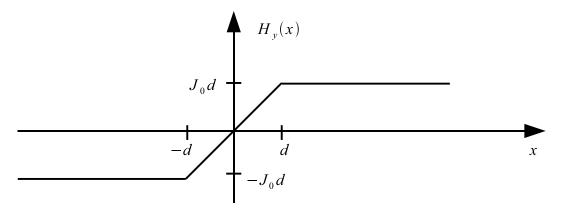


Figure 5: A graph showing the magnetic field versus the x coordinate (Image by MIT OpenCourseWare).

\mathbf{B}

Question:

A small cylindrical hole of radius a and of infinite extent in the z direction is drilled into the current carrying slab of part (a) and is centered within the slab at the origin. The magnetic permeability of all regions is μ_0 . Within the hole for r < a the current density is zero, $\overline{J} = 0$. What is the total magnetic field \overline{H} in the hole?

Hint 1: Use superposition replacing the cylindrical hole by two oppositely directed currents.

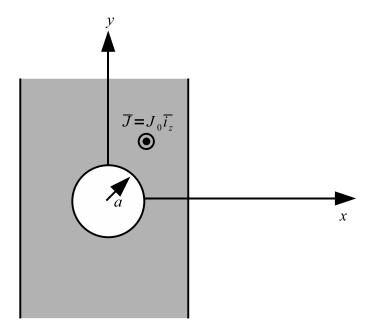


Figure 6: A diagram of an infinite slab in the y and z directions with a cylindrical hole of radius a at the origin with infinite extent in the z direction (Image by MIT OpenCourseWare).

Hint 2: $r\overline{i_{\phi}} = r(-\sin\phi\overline{i_x} + \cos\phi\overline{i_y}) = (-y\overline{i_x} + x\overline{i_y})$ where $r = \sqrt{x^2 + y^2}$ Solution: Step 1: Put current density $J_o\overline{i_z}$ in hole with $J_o\overline{i_z}$ outside hole. Then magnetic field is the same as part (a) with $\overline{J} = 0$ outside

Step 2: Put current density $-J_o \overline{i_z}$ in hole with $\overline{J}=0$ outside hole. Thus net current in hole is zero and net current outside hole is $J_o \overline{i_z}$.

For step 1:
$$\overline{H_1} = J_o x \overline{i_y}$$
 in hole

For step 2:
$$\nabla \times \overline{H_2} = -J_o \overline{i_z} = \overline{i_z} \frac{1}{r} \left[\frac{\partial (rH_{\phi 2})}{\partial r} - \frac{\partial H_{\phi 2}}{\partial \phi} \right]^0$$

$$\frac{1}{r} \frac{\partial (rH_{\phi 2})}{\partial r} = -J_o r$$

$$rH_{\phi 2} = -\frac{J_o r^2}{2} + C$$

$$H_{\phi 2} = -\frac{J_o r}{2} + \frac{C}{r}$$

$$H_{\phi 2}(r=0) = \text{ finite } \Rightarrow C = 0$$

$$H_{\phi 2} = -\frac{J_o r}{2}$$

$$\overline{H_2} = -\frac{J_o r}{2} \overline{i_\phi} = -\frac{J_o}{2} (-y\overline{i_x} + x\overline{i_y})$$

$$\overline{H_T} = \overline{H_1} + \overline{H_2} \quad \text{(in hole)}$$

$$= J_o x \overline{i_y} - \frac{J_o}{2} (-y \overline{i_x} + x \overline{i_y})$$

$$= \frac{J_o}{2} (x \overline{i_y} + y \overline{i_x})$$

 \mathbf{C}

Question: Verify that your solution of part (b) satisfies the MQS Ampere's law within the hole where $\overline{J}=0$. Solution:

$$\nabla \times \overline{H} = \overline{i_z} \Big[\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \Big] = \frac{J_o}{2} [1 - 1] \overline{i_z} = 0$$

Problem 4

A resistor is formed in the shape of a circular cylindrical half-shell of inner radius b and outer radius a and is composed of two materials with ohmic conductivites and permittivities (σ_1, ϵ_1) for $0 < \phi < \frac{\pi}{2}$ and (σ_2, ϵ_2) for $\frac{\pi}{2} < \phi < \pi$. A DC voltage V_0 is applied to the electrode at $\phi = 0$ while the electrode at $\phi = \pi$ is grounded. The EQS scalar potential is thus imposed as $\Phi(\phi = 0) = V_0, \Phi(\phi = \pi) = 0$. The cylindrical system has a depth d.

\mathbf{A}

Question: The solution for the EQS scalar potential is each conducting material can be written in the form

$$\Phi_1 = A_1 \phi + B_1 \quad 0 < \phi < \frac{\pi}{2}$$

$$\Phi_2 = A_2 \phi + B_2 \quad \frac{\pi}{2} < \phi < \pi$$

In the dc steady state what are the boundary conditions that allow calculation of A_1 , A_2 , B_1 , and B_2 ? Find A_1 , A_2 , B_1 , and B_2 .

Solution: Boundary Conditions

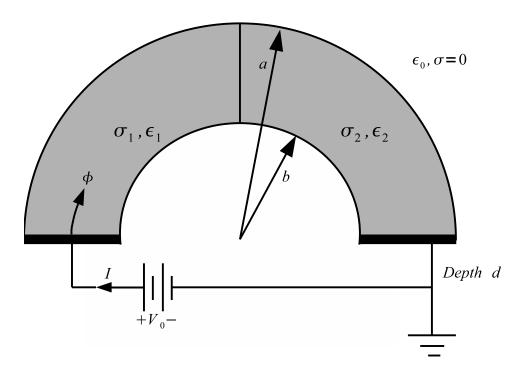


Figure 7: A diagram of a semi-circular shaped resistor formed from two different materials (Image by MIT OpenCourseWare).

$$\begin{split} &\Phi_{1}(\phi=0)=V_{o}=B_{1}\\ &\Phi_{2}(\phi=\pi)=0=A_{2}\pi+B_{2}\\ &\Phi_{1}\left(\phi=\frac{\pi}{2}\right)=\Phi_{2}\left(\phi=\frac{\pi}{2}\right)\Rightarrow A_{1}\frac{\pi}{2}+B_{1}=A_{2}\frac{\pi}{2}+B_{2}\\ &\sigma_{1}E_{\phi1}\left(\phi=\frac{\pi}{2}\right)=\sigma_{2}E_{\phi2}\left(\phi=\frac{\pi}{2}\right),\qquad E_{\phi1}=-\frac{1}{r}\frac{\partial\Phi_{1}}{\partial\phi}=-\frac{A_{1}}{r}\\ &\sigma_{1}A_{1}=\sigma_{2}A_{2} \qquad \qquad E_{\phi2}=-\frac{1}{r}\frac{\partial\Phi_{2}}{\partial\phi}=-\frac{A_{2}}{r} \end{split}$$

$$\begin{split} B_1 &= V_0 \\ B_2 &= -A_2\pi \\ A_1\frac{\pi}{2} + B_1 &= A_2\frac{\pi}{2} - A_2\pi = -A_2\frac{\pi}{2} \Rightarrow A_1\frac{\pi}{2} + V_0 = -A_2\frac{\pi}{2} \\ \sigma_1A_1 &= \sigma_2A_2 \Rightarrow A_2 = \frac{\sigma_1}{\sigma_2}A_1 \\ \frac{\pi}{2}[A_1 + A_2] &= -V_0 \\ A_1\left[1 + \frac{\sigma_1}{\sigma_2}\right] &= -\frac{2V_0}{\pi} \\ A_1 &= -\frac{2\sigma_2V_0}{\pi[\sigma_1 + \sigma_2]} \\ A_2 &= -\frac{2\sigma_1V_0}{\pi[\sigma_1 + \sigma_2]} \\ B_2 &= \frac{2\sigma_1V_0}{[\sigma_1 + \sigma_2]}, \ B_1 &= V_0 \end{split}$$

 \mathbf{B}

Question: What is the electric field in each region of the resistor? Solution:

$$\overline{E_1} = -\frac{A_1}{r} \overline{i_\phi} = \frac{2\sigma_2 V_0}{r\pi(\sigma_1 + \sigma_2)} \overline{i_\phi}$$

$$\overline{E_2} = -\frac{A_2}{r} \overline{i_\phi} = \frac{2\sigma_1 V_0}{r\pi(\sigma_1 + \sigma_2)} \overline{i_\phi}$$

 \mathbf{C}

Question: What are the free surface charge densities on the interfaces at $\phi=0, \ \phi=\frac{\pi}{2}, \ \text{and} \ \phi=\frac{\pi}{2}$

Solution:

$$\begin{split} \sigma_s(r,\phi=0) &= \epsilon_1 E_{\phi 1}(\phi=0) = \frac{\epsilon_1 V_0}{r} \frac{2\sigma_2}{\pi(\sigma_1 + \sigma_2)} \\ \sigma_s(r,\phi=\pi) &= -\epsilon_2 E_{\phi 2}(\phi=\pi) = -\frac{\epsilon_2 V_0}{r} \frac{2\sigma_1}{\pi(\sigma_1 + \sigma_2)} \\ \sigma_s\left(r,\phi=\frac{\pi}{2}\right) &= \epsilon_2 E_{\phi 2}\left(\phi=\frac{\pi}{2}+\right) - \epsilon_1 E_{\phi 1}\left(\phi=\frac{\pi}{2}-\right) \\ &= -\frac{[\epsilon_2 A_2 - \epsilon_1 A_1]}{r} \\ &= \frac{-2V_0}{r\pi(\sigma_1 + \sigma_2)} [-\epsilon_2 \sigma_1 + \epsilon_1 \sigma_2] \\ &= \frac{2V_0}{r\pi(\sigma_1 + \sigma_2)} [\epsilon_2 \sigma_1 - \epsilon_1 \sigma_2] \end{split}$$

 \mathbf{D}

Question: What is the DC terminal current I that flows from the battery? Solution:

$$\begin{split} I &= \int_{r=b}^{a} J_{\phi} ddr = \int_{r=b}^{a} \sigma_{1} E_{1\phi} ddr = \int_{r=b}^{a} \frac{\sigma_{1} 2 \sigma_{2} V_{0} d}{\pi r (\sigma_{1} + \sigma_{2})} dr \\ &= \frac{2 \sigma_{1} \sigma_{2} dV_{0}}{\pi (\sigma_{1} + \sigma_{2})} \ln \frac{a}{b} \end{split}$$

 ${f E}$

Question: What is the resistance between the electrodes at $\phi=0$ and $\phi=\pi$? Solution:

$$R = \frac{V_0}{I} = \frac{\pi(\sigma_1 + \sigma_2)}{2\sigma_1\sigma_2 d\ln\frac{a}{b}}$$