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Practice Problems 

Problem 1 

A perfectly-conducting channel of height D and width 2W is divided into two free-space regions by a very 
thin perfectly-conducting slide as shown below. The ẑ-directed magnetic fields in the left and right regions 
are Hl(t)ẑ and Hr(t)ẑ, respectively. The slide has a mass M per unit length in the ẑ direction, has a variable 
position ξ(t), and makes a frictionless but perfectly-conducting contact with the channel. 

(A) Assume that at t = 0, Hl = Hl0 , Hr = Hr0 , and ξ = ξ0. Determine Hl(t) and Hr(t) in terms of 
Hl0 , Hr0 , ξ0, and ξ(t). 

(B) The very thin slide supports a surface current Kŷ which separates Hlẑ and Hr ẑ. This current interacts 
with the neighboring magnetic fields to produce a force F x̂ on the slide per unit length in the ẑ direction. 
Evaluate F . 

(C) Use the results of (B) to find a function V (ξ) so that 

� �2
d M dξ(t) 

+ V (ξ) = 0. 
dt 2 dt 

dξ (D) At t = 0, dt = 0. Determine the velocity of the slide when it first reaches ξ(t) = 0. 

Figure 1: A perfectly-conducting channel with a perfectly conducting slide. 
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Problem 2 

A conducting plate of thickness Δ, permeability µ0 and conductivity σ moves with velocity U in the ẑ direc­
tion between two perfectly-permeable plates as shown below. At z = 0, B̄ is constrained to be Real 

� 
B0e

jωt 
� 

x̂

by exciter coils. The perfectly-permeable plates confine B̄ to the region 0 ≤ z ≤ L so that B̄ = 0x̂ at z = L. 
Within the region 0 ≤ z ≤ L, B̄ is approximated by B̄ = Bx(z, t)x̂. Ignore fringing fields. 

(A) Derive a differential equation for Bx in the conducting slab for 0 ≤ z ≤ L. 

(B) Determine Bx for 0 ≤ z ≤ L. 

(C) Determine the external force f needed to pull the plate in the ẑ direction at velocity U .

Figure 2: A conducting plate moving between infinitely permeable plates. (Image by MIT OpenCourseWare.) 
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Problem 3 

A simplified model of a Van de Graaff generator is shown below. A belt with permittivity �, conductivity 
σ, thickness δ, and width W travels to the right with velocity U . At x = 0, a charge source maintains the 
charge density ρ0 on the belt. At x = l, a charge collector collects all the charge off the belt. An external 
resistance R is connected from the charge collector to the charge source. Determine the current i through 
the resistor when the generator is in steady state. 

Figure 3: A simplified Van de Graaff generator. 
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Problem 4 

A pair of grounded perfectly-conducting plates of infinite extent in the ŷ and ẑ directions are located at 
x = Δ and x = −Δ as shown below. A fluid having permittivity � and conductivity σ flows with uniform 
velocity U in the ẑ direction between the plates. At t = 0, the fluid has a charge distribution given by 

�

πx 
� 

−ky2 
e z

ρ(x, y, z) = 
ρ0 sin Δ | | ≤ δ 

0 z > δ | |

Determine ρ(x, y, z, t) between the plates for t > 0, |x| ≤ Δ, and all y and z. 

 

Figure 4: A pair of grounded perfectly-conducting plates enclose a moving conductor (Image by MIT Open-
CourseWare.) 
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Problem 5 

A thin sheet having effective surface conductivity σ0 moves in the ẑ direction with velocity U as shown below. 
The sheet is symmetrically located at a distance Δ between two potential sources. The potential sources are 
symmetrically excited as traveling waves with frequency ω and wave number k. Assume kΔ � 1 and make 
appropriate assumptions. 

(A) Find the electric field components Ex and Ez just above and below the thin sheet. 

(B) Find the free surface charge in the thin sheet. 

(C) Find the spatially and temporally averaged ẑ-directed force per y − z area which acts on the sheet. 

Figure 5: A thin sheet (Image by MIT OpenCourseWare.) 
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Final Exam 1998 Solutions 

Problem 1 

Figure 6: A magnetic circuit 

In the magnetic circuit shown above, a current I flows in the N turn coil which is mounted on a material 
of infinite magnetic permeability (µ → ∞) except for a thin gap of width a and height b which has finite 
magnetic permeability µ1. The lower plate has infinite magnetic permeability (µ → ∞) and is at a distance x 

below the upper assembly. The magnetic materials are surrounded by free space with magnetic permeability 
µ0. The entire system has depth D. 

(A) Neglecting fringing field effects, find the magnetic field H0 in the air gap and H1 in the

thin section of the upper magnetic part.

Solution:


H02x + H1a = NI


µ0H0s�� = D
D µ1H1b�
�

µ0H0s

H1 = 

µ1b 
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µ0sa NIµ1b 
H0 2x + = NI H0 = 

µ1b 
⇒

2µ1bx + µ0sa


NIµ0s

H1 = 

2µ1bx + µ0sa 

(B) Find the self-inductance of the N turn coil. 

Solution: 

NΦ 
L = , Φ = µ0H0sD = µ1H1bD 

I


N2µ0µ1bsD

= 

2µ1bx + µ0sa 

(C) Find the total magnetic energy stored in the system. 

Solution: 

1 1 (NI)2µ0µ1bsD 
LI2 =WM = 

2 2 2µ1bx + µ0sa 

Alternate Method: 

1 1 
µ0H0

2 xsD(�2) + µ1H1
2 abDWM = 

2� 2
� �2


= H0
2 µ0xsD +

1 µ0s

µ1abD 

2 µ1b 

=
(

H

µ1

0
2 

b

D 

)2 
µ0xs(µ1b)

2 +
1

2
µ1ab(µ0s)

2 

H0
2D 1 

= µ0µ1bs xµ1b + 
(µ1b)2 2

µ0as


2 
� �


(NI)2(µ1
� b2� )D 1 

µ0as= 
�(µ�1b

�)2(2µ1bx + µ0sa)2
µ0��µ1�bs xµ1b +

2
1 (NI)2µ1µ0bsD2= 
(2µ1bx+µ0sa) 

(D) Find the magnetic force on the moveable lower plate as a function of x, material prop­
erties, N , I, and geometric dimensions. 

Solution: 

1 
I2 dL 

fx = 
2 dx


1 I2N2µ0µ1bsD

= −

2� (2µ1bx + µ0sa)2
�2µ1b 

(NI)2µ0µ1
2b2sD 

= −
(2µ1bx + µ0sa)2 
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Problem 2 

Figure 7: A sphere with a point magnetic dipole at its center 

A point magnetic dipole with moment m̄ = m0 ̄iz is located at the center of a sphere of radius R. 
The sphere has finite magnetic permeability µ and the sphere is surrounded by free space with magnetic 
permeability µ0. There is no free surface current on the r = R interface. 

(A) What boundary conditions must be satisfied by the magnetic scalar potential and/or 
magnetic field at r = 0, r = R, and r = ∞? 

Solution: 

m0 cos θ 
χm(r = 0) =

4π r2 
, χm(r → ∞) = 0 

Hθ(r = R−) = Hθ(r = R+), Br(r = R−) = Br(r = R+) µHr(r = R−) = µ0Hr(r = R+)⇒

9 
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(B) Find the magnetic field H̄ inside and outside the sphere. 

Solution: 

m0 cos θ + Ar cos θ 0 < r < R4π r2

χm = 

C cos θ r > R
r2 

¯ ∂χm ¯ 1 ∂χm ¯H = ir +−�χm = − 
∂r r ∂θ 

iθ 

m0 (2 cos θīr + sin θīθ) − A [cos θīr − sin θīθ] 0 < r < R4πr3 
= 

r
C 
3 (2 cos θīr + sin θīθ) r > R 

C m0
Hθ(r = R−) = Hθ(r = R+) = + A⇒ 

R3 4πR3 

2m0 2µ0C 
µHr(r = R−) = µ0Hr(r = R+) ⇒ µ 

4πR3 
− A = 

R3


m0 C

+ A = 

4πR3 R3 

2m0 2µ0 

4πR3 
− A = 

µR3
C 

C 2µ0 3m0 C 3m0
1 + = 

R3 µ 4πR3 
⇒ 

R3 
4πR3 1 + 2µ0 

µ 

⎛ ⎞ 
2C m0 m0 

� 
3 

� 
m0 

1 − µ
µ 
0 

⎝ ⎠A = 
R3 

−
4πR3 

=
4πR3 1 + 2µ

µ0 
− 1 =

4πR3 
� 
1 + 2µ

µ 
0 

� 

⎧ 
⎪ m0 ¯ ¯ m0 (1− 

µ

µ 
0 ) ¯ ¯⎨ 

4πr3 [2 cos θir + sin θiθ] − 2πR3 
1+

(cos θir − sin θiθ) 0 < r < R2µ0

H̄ = µ


⎪ 3m0 (2 cos θīr+sin θīθ) 
⎩ 4πr3 2µ0(1+ µ ) 

(C) What is the effective magnetic dipole moment of the sphere seen by an observer for r > R? 

Solution: 

meff 
= C = �� � 

3m0 
� meff 

3m0 

4π
meff 4π 

2µ0 

= 2µ0
⇒

1 +
⇒

�� 1 +4π µ µ 
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Problem 3 

Figure 8: A coaxial cylindrical capacitor (Image by MIT OpenCourseWare.) 

A coaxial cylindrical capacitor is dipped into a linearly polarizable fluid with dielectric permittivity � and 
mass density ρm. Gravity is directed downwards. 

When voltage V0 is applied, the dielectric fluid is pulled into the coaxial capacitor to a height x above 
the fluid level outside the cylinders. If V0 = 0, the fluid level within the cylinders is a distance s from the 
lower end of the cylinder. There is no free volume charge in the system . 

(A) Neglecting fringing field effects, what is the electric field, magnitude and direction, be­

tween the cylinders (a < r < b) as a function of r in both the upper free space region and in

the lower dielectric fluid?

Solution:


1 d A¯� · E = 
r dr

(rEr) = 0 ⇒ Er = 
r 

� b b V0 

a 

Erdr = A ln 
a 

= V0 ⇒ A =
ln b 

a 

V0
Er = (In both regions between cylinders) 

r ln b 
a 

Note that tangential E is continuous at the dielectric interface 

(B) What is the capacitance as a function of x? 

Solution: 
In free space region: Dr = 

r
�0
ln 
V0 

b . 
a 

11 
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In dielectric fluid: Dr = �V0 . 
r ln b 

a 

Free surface charge on r=a surface: 

q = �0Er a 
2πa(l − x − s) + �Er�

� 
a 
2πa(x + s) 

= Er a 
2πa(�0(l − x − s) + �(x + s)) 

V0 
= 

b 
2πa� [�0(l − x − s) + �(x + s)] 

a ln � a 

2πV0 
= 

b 
[�0(l − x − s) + �(x + s)] 

ln a 

q 
=

2π [�0(l − x − s
b 

) + �(x + s)] 
C = 

V0 ln a 

(C) What is the total electric energy stored in the system? 

Solution: 

WE =
2

1 2 π [�0(l − x −
ln 

s
b 

) + �(x + s)] 2CV0 = V0 
a 

Alternate Method: 

� � b � 2π � l1 1 
�E2dV = �E2rdrdΦdz WE = 

2 2V r=a Φ=0 z=0

� b
 1 

Er 
2rdr [�0(l − x − s) + �(x + s)] 2π


r=a


WE = 
2 

2π s) + �(x + s)]V 2 b dr � [�0(l − x − 0 = 
r2�

� 
ln(a

b ) 
�2 

r=a 

π [�0(l − x − s) + �(x + s)]V0
2 

= 
ln b 

a 

(D) How high will the dielectric fluid rise when a voltage V0 is applied? 

Solution: 

1 2 dC 1 V0
2
�2π [� − �0]

= ρmgπ(b2 a 2)x=fx = V02 dx �2 ln b 
−

a 

V0
2(� − �0) 

x = 
ln a

b ρmg(b2 − a2) 

12 
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Problem 4 

Figure 9: Two lossy dielectrics 

Two lossy dielectrics with respective dielectric permittivities �1 and �2 and respective ohmic conductivities 
σ1 and σ2 are superposed within a short-circuited capacitor. At t = 0 there is a free surface charge density of 
σs0 m

C 
2 on the interface between the dielectrics. Neglect fringing field effects. The free volume charge density 

at time t = 0 is zero in both dielectrics. 

(A) Find the electric fields E1(t = 0) and E2(t = 0) in both lossy dielectrics at time t = 0. 

Solution: 

¯ ¯ρf (t) = 0 in both dielectrics ⇒ � · E1 = � · E2 = 0 ⇒ E1 = E1(t), E2 = E2(t) 

� a+b b a+b E1a 

x=0 

Edx = 
x=0 

E2dx + 
x=b 

E1dx = E2b + E1a = 0 ⇒ E2 = − 
b 

at t = 0: 

�1E1 − �2E2 = σs0 

�2a 
= σs0E1 �1 + 

b


σs0b E1a σs0a

E1 = , E2 = 

�1b + σ2a 
− 

b 
= −

�1b + �2a 

13 
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(B) Find the electric fields E1(t) and E2(t) in both lossy dielectrics as a function of time. 

Solution: 

d 
[�1E1 − �2E2] = 0σ1E1 − σ2E2 + 

dt 

σ2a �2a � dE1 
+ �1 + = 0E1 σ1 + 

b b dt 

E1 = E1(t = 0)e − 

σs0b −E1 = e 
�1b + �2a 

t
τ

t
τ 

; τ = 
�1b + �2a 

σ1b + σ2a 

E1a σs0a 
−E2 = − 

b 
= −

�1b + �2a
e 

t
τ 

(C) Find the free surface charge density σs(t) on the interface as a function of time. 

Solution: 

�2a 
−σs(t) = �1E1 − �2E2 = E1 �1 + = σs0e 

b 

t
τ 

(D) Find the short circuit current i(t) that flows in the wire short-circuiting the two elec­
trodes as a function of time. 

Solution: 

i(t) dE2 dE1 
= σ2E2 + �2 = σ1E1 + �1

ld dt dt 
�1 

= E1σ1 −
τ 

�1 
= σ1 −

(�1b + σ2a)
(σ1b + σ2a) E1 

�

�� � � 
σ1�

� 
1b + σ1�2a −���1σ1b − �1σ2a 

= E1
�1b + �2a 

= 
a(σ1�2 − �1σ2)

σs0be
− 

(�1b + �2a)2 
t
τ 

i(t) = 
abσs0(σ1�2 − �1σ2)ld 

e − 

(�1b + �2a)2 
t
τ 

14 
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Problem 5 

Figure 10: A lossy transmission line 

A lossy transmission line is composed of perfectly conducting parallel plates enclosing a lossy medium 
with dielectric permittivity �, magnetic permeability µ, and ohmic conductivity σ. The governing equations 
for the voltage v(z, t) and current i(z, t) along the transmission line are 

∂i ∂v 
= −C

∂t 
− Gv 

∂z 
∂v ∂i 

= −L 
∂z ∂t 

Where C is the capacitance per unit length, G is the conductance per unit length, and L is the inductance 
per unit length. The transmission line is short circuited at z = 0 and is driven by a voltage source at 
z = −l, v(z = −l, t) = V0 cos(ωt). 

(A) What are C, G, and L in terms of �, µ, σ, l, D and s? 

Solution: 

�d µs σd � 1 σC 
C = , L = , G = RC = G = = 

s d s σ 
⇒

R � 

15 
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(B) In the sinusoidal steady state the voltage and current can be written in the form 

v(z, t) = Re v̂(z)ejωt
� 

i(z, t) = Re î(z)ejωt 

Find v̂(z) for this problem. 

Solution: 

d̂i 
= −(G + Cjω)v̂ 

dz 

dv̂ 1 dv̂

dz 
= −Ljωî ⇒ î = −

Ljω dz 

1 d2v̂
= +(G + Cjω)v̂ 

Ljω dz2 

d2v̂
= (GLjω − LCω2)v̂ 

dz2 

v̂(z) = Aejpz ⇒ −p 2 = GLjω − LCω2 

p = ± LCω2 − GLjω 

p = ±p0, p0 = LCω2 − GLjω 

v̂(z) = A1e
jp0z + A2e 

−jp0z 

v̂(z = 0) = 0 = A1 + A2 

v̂(z = −l) = V0 = A1e 
−jp0l + A2e

jp0l = A1(e 
−jp0l − ejp0l) = −2jA1 sin p0l 

V0

A1 = −A2 = −

2j sin p0l


v̂(z) = 
V0 

(ejp0z e −jp0z) = 
V0 sin p0z −

2j sin p0l
− − 

sin p0l 

(C) Find î(z) for this problem. 

Solution: 

î(z) = 
1 dv̂ 1 V0p0 cos p0z V0p0 cos p0z
−

Ljω dz 
= −

Ljω 
− 

sin p0l 
= 

Ljω sin p0l


16 
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(D) Now, assuming G = 0 and neglecting fringing field effects, find the Poynting vector 
S̄ = Ē H̄ as a function of time and position z everywhere along the transmission line for × 
−l ≤ z ≤ 0. 

Solution: 

jωt V0 sin p0z 
G = 0 ⇒ p0 = ω

√
LC (real), v(z, t) = Rev̂(z)e − 

sin p0l 
cos ωt 

V0p0 cos p0z jωt V0p0 cos p0z C cos p0z 
i(z, t) = Re + e = sin ωt = +V0 sin ωt 

Ljω sin p0l Lω sin p0l L sin p0l 

2 C sin p0z cos p0z sin ωt cos ωt v(z, t) i(z, t) v(z, t)i(z, t) −V0 L¯ ¯ ¯ ¯ ¯Ex = , Hy = S = E H = ExHyiz = iz = i 
s d 

⇒ × 
sd sd sin2 p0l 

17 
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Solutions to Two More Problems 

Problem 1 

A magnetic circuit has a stationary yoke with infinite magnetic permeability with a voltage source   

Figure 11: A magnetic circuit with a stationary yoke 

v(t) = 
V0 cos ωt exciting an N -turn perfectly conducting coil. In the air gap of the magnetic yoke of height s there 
is an infinitely magnetically permeable tapered wedge of height a (a < s) whose width decreases from w1 

to w2. The bottom surface of the wedge is a distance x above the lower surface of the magnetic yoke. The 
system has depth D. Assume that both air gaps are sufficiently small to neglect fringing fields. 

(A) What is the total magnetic flux λ(t) linking the N-turn coil? 

Solution: 

dλ V0 
v = V0 cos ωt = λ = sin ωt 

dt 
⇒

ω 

(B) What are the magnetic fields, H̄1(t) and H̄2(t), in the air gaps in terms of λ(t), µ0, and 
geometric parameters? 

18 



� 

� � 

= � � 

� � 

� � 

Final Review Packet 6.641, Spring 2005 

Solution: 

λ 
µ0H1w1D = µ0H2w2D = 

N


λ

H1 = 

Nµ0w1D


λ

H2 = 

Nµ0w2D 

(C) What is the self-inductance L(x) of the N turn coil as a function of the distance x, µ0, 
and geometric parameters? 

Solution: 

H̄ dl = Ni = H1(s − a − x) + H2x· 

= 
λ s − a − x 

+ 
x


Nµ0D w1 w2


λ N2µ0D 
L(x) = 

i s−a−x + x 
w1 w2 

(D) What is the x-directed force on the tapered wedge in terms of λ(t), µ0, and geometric 
parameters? 

Solution: 

1 
λ2 d 1


fx = −
2 dx L(x)


λ2 d 
s−

w
a
1 

−x + w
x 
2 

= −
2 dx N2µ0D


λ2 
� 

1 1 
�


= −
2N2µ0D w2 

−
w1 

19 
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Problem 5 

A z directed current sheet of infinite extent in the y and z                   

Figure 12: A current sheet of infinite extent 

directions is located at x = 0 and varies with 
time as 

K̄(x = 0, y, z, t) = īzK0 cos ωt 

This current sheet is located at the interface separating a material of infinite magnetic permeability (µ → ∞) 
for −∞ < x < 0 and a material of finite magnetic permeability µ and finite ohmic conductivity σ for 
0 < x < ∞. Note that because the current sheet has no variation with y or z, the magnetic field does not 
depend on the y or z coordinates. 

(A) Find the magnitude and direction of the magnetic field H̄(x, t) everywhere. 

Solution: 

Hy(x, t) = Re Ĥy(x)ejωt 

− 
δĤy(x = 0) = K0 Ĥy(x) = K0e 

(1+j)x 

, δ =
2 ⇒ 

ωµσ 

x jx 
−Hy(x, t) = ReK0e 

− 
δ e δ ejωt 

x x 
= K0e 

− 
δ cos(ωt − ) x > 0 

δ

20 
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Hy(x, t) = 0 x < 0 

(B) Find the volume current density J̄(x, t) everywhere. 

Solution: 

¯ ¯ ∂Hy�× H = J ⇒ 
∂x 

= Jz, Jz = 0, x < 0 

∂Hy K0e
− 

x
δ x x − cos(ωt − ) + sin(ωt − )

δ δ
Jz = = 

∂x δ 

Jz ¯H i− y x
σ 

x
δ 

(C) Find the power flow density, S̄ = Ē H̄, everywhere. × 

Solution: 

x > 0 : 

¯
¯ ¯ ¯ J ¯ Jz ¯ ¯S = E H = × 

σ 
× H = 

σ
Hyiz × iy 

= 

2

K0
2e− x x x − 
δσ 

x
δ

= 

2

− cos(ωt − ) + sin(ωt − ) cos(ωt − )
δ δ δ

x x x 
cos(ωt − ) cos(ωt − ) − sin(ωt − )

δ δ δ

K2 
0 − = e 

σδ 

S̄ = 0, x < 0 

21 
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Final Exam 1995 Solutions 

Problem 1 

The magnetic circuit shown except for the three thin 
air-gaps, where µ = µ0. These thin gaps are narrow enough  

 

Figure 13: A magnetic circuit 

above is modeled as being infinitely permeable 
that fringing fields can be ignored. The N turn 

coil is driven by the voltage source v(t) = V0 cos ωt. 

(A) Determine the self-inductance L(x) of the N turn coil. 

Solution: 

Hgg + Hxx = Ni


Hxb

µ0Hxbd = 2µ0Hgad Hg = ⇒

2a 

gb Ni 
Hx x + 

2a 
= Ni ⇒ Hx = � 

x + gb 
�


2a


dλ V0 µ0bdN2i

V0 cos ωt = 

dt 
⇒

ω 
sin ωt = Nµ0Hxbd = � 

x + gb 
�λ = 

2a 

22 
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λ µ0bdN2 

L(x) = 
i gb x + 2a 

(B) Find the total magnetic energy stored in the system as a function of time t in terms of 
V0, ω, and given geometric and physical parameters. 

Solution: 

1 λ2 1 V0
2 sin2 ωt gb 

= x +Wm = 
2 L(x) 2 ω2µ0bdN2 2a 

(C) Determine the magnetic force acting on the movable plunger in the x direction as a 
function of time t in terms of V0, ω, and given geometric and physical parameters. 

Solution: 

1 
λ2 d 1 V0

2 sin2 ωt 
f = −

2 dx L(x)
= −

2ω2µ0bdN2 

23 
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Problem 5 

A sphere of magnetic material having radius R is to be magnetized by placing it in a source of uniform 
magnetic field intensity. The bulk of the sphere has a constant magnetic permeability µ with zero electrical 
conductivity, σ = 0. The magnetizable sphere is surrounded by a thin spherical shell of material with 
thickness Δ � R having electrical conductivity σ and magnetic permeability µ0. The field source is switched 
on at t = 0 so that H̄0(t) = H0u(t)īz where u(t) is the unit step function in time.

Figure 14: A sphere of magnetic material with a non-magnetic conducting coating (Image by MIT Open-
CourseWare.) 

(A) What is the magnetic field intensity H̄ inside the magnetizable sphere for r < R at t = 0+ 

and at t → ∞? 

Solution: 

H̄(t = 0+) = 0 r < R 

¯ ¯: H̄ = = 
∂χ 1 ∂χ 

t → ∞ −�χ − 
∂r 

ir + 
r ∂θ 

iθ 

2� χ = 0 

24 
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Ar cos θ 0 < r < R 
χ = � �


Cr + r
D 
2
 cosθ r > R 

lim H̄ = H0īz = H0 [cos θīr − sin θīθ] 
r→∞ 

lim χ = −H0z = −H0r cos θ 
r→∞ 

C = −H0 

¯ −A [cos θīr − sin θīθ] 0 < r < R 
H = �� � � � �

¯ ¯− −H0 − 2
r
D cos θir − −H0 + r

D sin θiθ r > R 3 3 

D 
Hθ(r = R−) = Hθ(r = R+) A = −H0 + 

R3
⇒

2D 
µHr(r = R−) = µ0Hr(r = R+) ⇒ −µA = −µ0 −H0 −

R3 

µ 2D −
µ0 

A = H0 + 
R3 

D 
A = −H0 + 

R3 

3H0
A = −

2 + µ 
µ0 

H̄(r < R, t → ∞) =
3H0 

īz
2 + µ 

µ0 

(B) The radial component of Faraday’s law for this problem is: 

∂B 1 ∂ ∂Br 
=�× E −

∂t 
→ 

r sin θ ∂θ
(sin θEφ) = − 

∂t 

Because Δ � R, the current flow in the conducting spherical shell can be modeled as a surface 
current, Kφ(r = R). What is the approximate boundary condition at r = R relating the tan­

¯gential (θ) component of H on either side of the spherical shell to the perpendicular (radial) 
¯component of B? 

Solution: 

¯
¯ ∂B 1 ∂ ∂Br �× E = −

∂t 
⇒ 

r sin θ ∂θ 
(sin θEφ) = − 

∂t 

In spherical shell: 

Kφ 1 
Jφ = σEφ = = [Hθ(r = R+) − Hθ(r = R−)] 

Δ Δ 

At r = R : 

1 ∂ ∂Br 

σΔR sin θ ∂θ 
[sin θ (Hθ(r = R+) − Hθ(r = R−))] = − 

∂t 

25 



� � 

� � � � 

� � � � 

Final Review Packet 6.641, Spring 2005 

(C) What is the approximate magnetic diffusion time τm for this configuration? 

Solution: 

D 
Hθ(r = R+) − Hθ(r = R−) = −H0 + 

R3 
sin θ − A sin θ 

2D 1 µ D 
µHr(r = R−) = µ0Hr(r = R+) ⇒ −µA = −µ0 −H0 −

R3 
−

2 µ0 
A + H0 = 

R3 

D 1 µ H0
Hθ(r = R+) − Hθ(r = R−) = sin θ −H0 − A + 

R3 
= sin θ −H0 − A −

2 µ0 
A − 

2 
� � � ��� 

1 d 3H0 1 µ ∂A 
+ 1 = µ

σΔR sin θ dθ 
sin2 θ − 

2 
− A 

2 µ0 ∂t 
cos θ 

� � �� � � 
2 3H0 1 µ ∂A dA 2A 1 µ 3H0


σΔRµ 
− 

2 
− A 

2 µ0 
+ 1 = 

∂t 
⇒ 

dt 
+ 

σΔRµ 2 µ0 
+ 1 = −

σΔRµ


σΔRµ

τm = � � 

µ + 2 µ0 
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Final Exam 2000 Solutions 

Problem 1 

The magnetic circuit shown above is modeled as being infinitely permeable         

Figure 15: A magnetic circuit with a gap 

except for the gap g1 of 
material with magnetic permeability µ1, and the free space gap partially filled with material with magnetic 
permeability µ2. The two gaps are sufficiently narrow that fringing fields are negligible. The N turn coil is 
driven by the voltage source v(t) = V0 cos ωt. 

(A) What is the magnetic flux λ through the N turn coil in terms of the terminal voltage? 

Solution: 

dλ V0 
v = V0 cos ωt = λ = sin ωt 

dt 
⇒

ω 

(B) What are the magnetic fields H1 and H2 in the two gaps in terms of the magnetic flux,

λ, magnetic permeabilities, and geometric factors?

Solution:


λ 
Φ = = µ1H1a1d = H2d (µ2x + µ0(a2 − x)) 

N


λ λ

H1 = Nµ1a1d, H2 = 

a Nd [µ2x + µ0(a2 − x)] 
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(C) What is the coil current i? 

Solution: 

λg1 λg2
H1g1 + H2g2 = Ni = + 

Nµ1a1d Nd [µ2x + µ0(a2 − x)] 

λ g1 g2
i = + 

N2d µ1a1 [µ2x + µ0(a2 − x)] 

(D) What is the self-inductance L(x) of the N turn coil where x is the penetration distance 
of the material with magnetic permeability µ2 into the free space gap? 

Solution: 

λ N2d 
L(x) = 

i g1 + g2

µ1a1 [µ2x+µ0 (a2−x)]


(E) What is the magnetic stored energy? 

Solution: 

1 1 λ2 

L(x)i2 =Wm = 
2 2 L(x) 

(F) Determine the magnitude and direction of the magnetic force on the movable slab with 
magnetic permeability µ2. 

Solution: 

1 
i2

dL λ2 d 
� 

1 
� 

=fx =
2 dx 

−
2 dx L(x) 

1 µ
g

1

1 
a1 

+ [µ2x+µ
g

0

2 
(a2−x)] 

= 
L(x) N2d


λ2 −(µ2 − µ0) λ2 (µ2 − µ0)
g2

fx = −

2N2d
g2 

[µ2x + µ0(a2 − x)]
2 = 2N2d [µ2x + µ0(a2 − x)]

2
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Problem 2 

Two parallel plate electrodes of area A in free space                

Figure 16: Short circuited parallel plate electrodes 

are a distance 2a apart and are short circuited 
together. A third electrode at potential v with respect to the other two electrodes and with negligible 
thickness is placed at a distance x to the right of the midpoint position of the two short circuited electrodes. 

(A) Find the electric fields E1 and E2 on either side of the middle electrode. Neglect fringing 
field effects. 

Solution: 

v v 
E1 = , E2 =−

a + x a − x 

(B) What is the total charge on the middle electrode? 

Solution: 

1 1 2�0vAa 
qmid = �0(E2 − E1)A = �0vA 

a − x 
+ 

a + x 
=

(a − x2)2 
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(C) What is the capacitance of the middle electrode with respect to the short circuited elec­
trodes? 

Solution: 

qmid 2�0aA 
C = = 

2 2v a x−

(D) If the voltage v = v(t) and position x = x(t) are functions of time, what is the current i 
flowing in the short circuit? 

Solution: 

dE1 1 dv v dx �0A dv v dx 
i = �0A 

dt 
= −�0A

a + x dt 
−

(a + x)2 dt 
= −

(a + x) dt 
−

(a + x) dt 

(E) What is the electric force on the middle electrode as a function of x, v, �o, and geometric 
parameters a and A? 

Solution: 

1 2 dC 1 
v 2(�2�0aA) 

� 
1(−2x) 

� 

=
2�0aAxv2 

fx = 
2 
v 

dx 
= 

�2 
−

(a2 − x2)2 (a2 − x2)2 

30 
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 σf ��2πR1 

��
0 r > R22πr�0 

� 

Final Review Packet 6.641, Spring 2005 

Problem 4 

Figure 17: An infinitely long surface charged cylinder 

An infinitely long cylinder with dielectric permittivity � and ohmic conductivity σ has outer radius R2 

and free space hole of radius R1. The cylinder is surrounded by free space for r > R2. At time t = 0 a 
uniform surface charge distribution is placed at r = R1 so that σf (r = R1, t = 0) = σf0 . At time t = 0 the 
free surface charge distribution at r = R2 is zero. 

(A) What is the electric field in the regions r < R1, R1 < r < R2 and r > R2 at time t = 0? 

Solution: At t = 0:

⎪

⎪

⎩

(B) Find the electric field in the regions r < R1, R1 < r < R2, and r > R2 as a function of time. 

Solution: 

∂Er(r = R1+)
σEr(r = R1+) + � = 0 

∂t 
t 

Er(r = R1+, t) = Er(r = R1+, t = 0)e − 
τ ; τ = 

σ 

t 
τσf (r = R1) = �Er(r = R1+, t) = �Er(r = R1+, t = 0)e − 

t 
τ= σf0 e 

− 

⎧ 
⎪0 r < R1 
⎨ 

tσf0 R1 − 
τEr(r, t) = 

�r e R1 < r < R2 
⎪ 
⎩σf0 R1 r > R2�0r 

31 



� �

� � 

�

� � 

� � 

� � 

Final Review Packet 6.641, Spring 2005 

(C) Find the free surface charge distributions as a function of time at r = R1 and r = R2. 

Solution: 

σf (r = R1, t) = σf0 e 
− 

t
τ 

∂σf (r = R2, t) −σEr(r = R2−, t) + = 0 
∂t 

∂σf (r = R2, t) σ σf0 − = +σEr(r = R2−, t) = + R1e 
∂t � R2 

t
τ 

σ σf0 R1
σf (r = R2, t) = + (−τ )e 

� R2 

t
τ + C 

σ R1�σf0 �� − 
t
τ + C= − e 

R2 σ 

−σf0 R1 
e − 

t
τ + C= 

R2 

σf (r = R2, t = 0) = 0 = 
−σf0 R1 

+ C = 0 C = 
σf0 R1 

R2 
⇒

R2 

σf0 R1 −t/τσf (r = R2, t) = 1 − e 
R2 

Another Way: 

σf (r = R2, t) = �0Er(r = R2+, t) − �Er(r = R2−, t) 

σf0 R1 σf0 R1 − = e 
R2 

− 
R2 

t
τ 

= 
σf0 R1 

R2 

Another way: 

1 − − e 
t
τ 

σf (r = 2πR1 + σf (r = 2πR2 = σf0 (��R1, t)�� R2, t)�� 2πR1) 

σf0 R1 R1
σf (r = R2, t) = − σf (r = R1, t)

R2 R2 

σf0 R1 
1 − − e 

t
τ= 

R2 
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Problem 5 

A z directed surface current sheet of infinite extent in the y and z directions is located at x = 0                   

Figure         18: A surface current sheet at x = 0 (Image by MIT OpenCourseWare.)

and 
varies with coordinate y as K̄(x = 0, y) = īzK0 cos ky. This current sheet is located at the x = 0 interface 
separating a material of infinite magnetic permeability (µ → ∞) for x < 0 and free space for 0 < x < s. At 
x = s there is another material of infinite extent for x > s with infinite ohmic conductivity (σ → ∞). There 
is no variation with the z coordinates and free space for 0 < x < s is perfectly insulating (σ = 0). 

¯(A) What are the boundary conditions on the magnetic field H(x, y) at x = 0 and x = s? 

Solution: 

Hy(x = 0+) = Ko cos ky 

Hx(x = s−) = 0 

(B) Find the magnetic field H̄(x, y) everywhere. 

Solution: 

χ(x, y) = sin ky(Ae−kx + Ce+kx) 0 < x < s 
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⎧ 
⎪0 x < 0 
⎨ 

H̄ = = 0 x > s−�χ 
⎪ � � � � 
⎩ − −kAe−kx + kCe+kx sin kyīx − k cos ky Aekx + Ce+kx īy 0 < x < s 

Hx(x = s−) = kAe−ks + � =0 ⇒ −� kCeks 0


Hy(x = 0+) = K0��� = cos ky(A + C)
cos ky −k���


K0

A + C = −

k


A = Ce2ks ⇒ C(1 + e 2ks) = − K
k 

0


K0


C = k
−
(1 + e2ks) 

K0e 
2ks


A =
 −
k(1 + e2ks) 
⎧ 
⎪0 x < 0 
⎨ 

H̄ = 0 x > s 
⎪ � � � � � � 
⎩ − K

2
0 

ks) 
sin(ky) e−kxe2ks − ekx īx − cos(ky) e−kxe2ks + ekx īy 0 < x < s

(1+e

0 < x < s 

2K0e 
ks


H̄ = −
(1 + e2ks)

[sin(ky) (− sinh(k(x − s))) īx − cos(ky) cosh(k(x − s))īy]


= 
K0 

[sin(ky) (sinh(k(x − s))) īx + cos(ky) cosh(k(x − s))īy]
cosh(ks)

Check: 

Hx(x = s) = 0 

Hy(x = 0) = K0 cos(ky) 

(C) What is the surface current on the x = s surface? 

Solution: 

K0 cos(ky)
Kz(x = s) = −Hy(x = s) = 

cosh(ks) 
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