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Practice Problems

Problem 1

A perfectly-conducting channel of height D and width 2W is divided into two free-space regions by a very
thin perfectly-conducting slide as shown below. The z-directed magnetic fields in the left and right regions
are H;(t)z and H,(t)z, respectively. The slide has a mass M per unit length in the Z direction, has a variable
position &(¢), and makes a frictionless but perfectly-conducting contact with the channel.

(A) Assume that at ¢t = 0,H; = H,,,H, = H,,, and { = &. Determine H;(t) and H,(t) in terms of
Hy,, H,,,&o, and £(t).

(B) The very thin slide supports a surface current K¢ which separates H;Z and H,.z. This current interacts
with the neighboring magnetic fields to produce a force F'z on the slide per unit length in the Z direction.
Evaluate F'.

(C) Use the results of (B) to find a function V(&) so that

d (M [de@)\?
(¥ () vio) o

(D) Att=0, % = 0. Determine the velocity of the slide when it first reaches £(¢) = 0.
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Figure 1: A perfectly-conducting channel with a perfectly conducting slide.
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Problem 2

A conducting plate of thickness A, permeability jio and conductivity o moves with velocity U in the Z direc-
tion between two perfectly-permeable plates as shown below. At z = 0, B is constrained to be Real{Boej “’t} z
by exciter coils. The perfectly-permeable plates confine B to the region 0 < z < L so that B =0z at z = L.
Within the region 0 < z < L, B is approximated by B = B,(z,t)Z. Ignore fringing fields.

(A) Derive a differential equation for B, in the conducting slab for 0 < z < L.
(B) Determine B, for 0 < z < L.

(C) Determine the external force f needed to pull the plate in the Z direction at velocity U.

/‘@@
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Figure 2: A conducting plate moving between infinitely permeable plates. (Image by MIT OpenCourseWare.)
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Problem 3

A simplified model of a Van de Graaff generator is shown below. A belt with permittivity €, conductivity
o, thickness d, and width W travels to the right with velocity U. At z = 0, a charge source maintains the
charge density pg on the belt. At x = [, a charge collector collects all the charge off the belt. An external
resistance R is connected from the charge collector to the charge source. Determine the current ¢ through
the resistor when the generator is in steady state.

Clr\av1c Sovrce Of ()o Cl/ww‘)t Collcetnr

K=o
R L
a //_' =X
X=o ®=Q

Figure 3: A simplified Van de Graaff generator.
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Problem 4
A pair of grounded perfectly-conducting plates of infinite extent in the § and 2 directions are located at
x = A and £ = —A as shown below. A fluid having permittivity ¢ and conductivity o flows with uniform

velocity U in the Z direction between the plates. At ¢t = 0, the fluid has a charge distribution given by

2
posin (ZZ) e~k 2| <6
p(z,y,2) = (%)
0 |z] > ¢

Determine p(z,y, z,t) between the plates for ¢t > 0, |2| < A, and all y and z.

r=A

B e e
Region ! 4
— — of :
7 =10 até):()i o —U

r=-—A
z=—0 z2=0

Figure 4: A pair of grounded perfectly-conducting plates enclose a moving conductor (Image by MIT Open-
CourseWare.)
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Problem 5

A thin sheet having effective surface conductivity oy moves in the 2 direction with velocity U as shown below.
The sheet is symmetrically located at a distance A between two potential sources. The potential sources are

symmetrically excited as traveling waves with frequency w and wave number k. Assume kA < 1 and make
appropriate assumptions.

(A) Find the electric field components E, and E. just above and below the thin sheet.

(B) Find the free surface charge in the thin sheet.

(C) Find the spatially and temporally averaged Z-directed force per y — z area which acts on the sheet.

® = Real {V e/ (@2}

® = Real {V e/ (@t-k2)}

Figure 5: A thin sheet (Image by MIT OpenCourseWare.)
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Final Exam 1998 Solutions

Problem 1

le—-

Py

el Mo -« —>

depth D

X THO

H—yeo

Figure 6: A magnetic circuit

In the magnetic circuit shown above, a current I flows in the /N turn coil which is mounted on a material
of infinite magnetic permeability (@ — o0) except for a thin gap of width a and height b which has finite
magnetic permeability 11. The lower plate has infinite magnetic permeability (¢ — oc) and is at a distance
below the upper assembly. The magnetic materials are surrounded by free space with magnetic permeability
to. The entire system has depth D.

(A) Neglecting fringing field effects, find the magnetic field Hy in the air gap and H; in the
thin section of the upper magnetic part.
Solution:

H02.’1? + Hla =NI
MOHOSB: /L1Hlbﬂ
_ HoHos

H
1 Jinb
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Losa NIub
Hy|2z2+——|=NI=Hy= —"——~—"—
0{ mb] 7 2uibr + posa
NI
- Nlios
2u1br + posa

(B) Find the self-inductance of the N turn coil.

Solution:
No®
L= T,‘D = /L()H()SD = /LlHlbD
~ N?uopbsD

© 2u1bx + posa

(C) Find the total magnetic energy stored in the system.

Solution:

lsz B E(NI)Q,uO,ulbsD
2 2 2u1bx + ppsa

Alternate Method:

Wy =

1
2

1 oS 2

1
W = E/L()HOQJ?SD(Z) + ~uy HiabD

HgD 2 1 2
= (ub)? {Mofs(ﬂlb) + §M1ab(/l03)
HZD 1
= — b —
()2 op1bs [33,“1 + 2#0118}
(NI (ot D 1
= bt =
Db b+ poma P47 [0 F 30
L(NI)?ppobsD
s rosa)

(D) Find the magnetic force on the moveable lower plate as a function of x, material prop-
erties, N, I, and geometric dimensions.

Solution:

1 ,dL
mszz
! 2

T

_ 1 I’ N?popu1bsD Jyirb
T2 @mba + posa !
(NI)?popib?*sD

(2u1bx + posa)?
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Problem 2

—

Cy

Figure 7: A sphere with a point magnetic dipole at its center

A point magnetic dipole with moment m = myi, is located at the center of a sphere of radius R.
The sphere has finite magnetic permeability p and the sphere is surrounded by free space with magnetic
permeability po. There is no free surface current on the » = R interface.

(A) What boundary conditions must be satisfied by the magnetic scalar potential and/or
magnetic field at r = 0,7 = R, and r = co?
Solution:

mg cos 6
Xm(r=0)= T;TT,Xm(r —00)=0

Hy(r=R_)=Hp(r=R:),B,(r=R_)=B,(r=Ry)=uH.(r=R_) = uoH,(r = Ry)
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(B) Find the magnetic field H inside and outside the sphere.

Solution:

C

%C‘;—ie—&—flrcose O0<r<R
Xm =
TTQCOSG r>R

H =~V = — [riT + r;@}

0 a0
_ [ 25 (2c0s 0i, + sin0ip) — Alcos i, —sinfig] 0<r <R
£ (2 cos 0i, + sin fig) r>R
C mo
Hyfr = R) = Hyfr = R.) = o = 7%
2m 2u0C
pH,(r = R_) = poH,(r = Ry) = p |:47TR03 - A] = ROS
mo - E
47 R3 A= R3
2
mo 2o
4w R3 uR3
C 2110 3mg C 3my
T (Tl = oMo
RS ( i ) R R 47TRS(1+%)
o

R3  4TR3  47R3 2

A:C mo Mo ( 3 _1> mo 2(1_%)

1+ 2o T 4rR3 ( L)
m 1+ 22
_ _ _ ko _ _
H 25 [2 cos 0y + sin Oig] — 54 &_i) (cosBi, —sinbip) 0<r <R
= H

3mg (2cos 0i,.+sin Oig)
4mr3 T (14280
P ()

(C) What is the effective magnetic dipole moment of the sphere seen by an observer for r > R?

Solution:
e 3 3
M G ST B
dm M(l + 2*—) 1+ 20
"

10
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Problem 3

Figure 8: A coaxial cylindrical capacitor (Image by MIT OpenCourseWare.)

A coaxial cylindrical capacitor is dipped into a linearly polarizable fluid with dielectric permittivity € and

mass density p,,. Gravity is directed downwards.

When voltage V; is applied, the dielectric fluid is pulled into the coaxial capacitor to a height = above
the fluid level outside the cylinders. If V) = 0, the fluid level within the cylinders is a distance s from the

lower end of the cylinder. There is no free volume charge in the system .

(A) Neglecting fringing field effects, what is the electric field, magnitude and direction, be-
tween the cylinders (a < r < b) as a function of r in both the upper free space region and in

the lower dielectric fluid?

Solution:
_1d A
E=—-— ) =0=F, = —
v rdr (rEy) r
b
ErdrfAlnézvoéAflob
a a In 2
Vo . .
E, = b (In both regions between cylinders)
rln 2
a

Note that tangential E is continuous at the dielectric interface

(B) What is the capacitance as a function of z?

Solution:

In free space region: D, = <o¥g.

rin -
a

11
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In dielectric fluid: D, = EVUA .

rIn
Free surface charge on r=a surface:

q= eoET’a27m(l —x—8)+€eE,.| 2ra(x + s)
=E, ‘ 2rra(ep(l — x — s) —i—e(ac:—s))

y“ 27r;z[eol—x—s)+e(:c+s)]

_

~ Int

a

[eo(l —x — s) + e(x + s)]

q 2mleo(l —x —5)+ e(x + 5)]
Vo Int

a

(C) What is the total electric energy stored in the system?

Solution:

mleo(l —x — 8) + e(x + 5)]

1

Alternate Method:

Wg = / —eE2dV = / / / 76E2rdrd<1>dz
r=a z= O

Wg = / §E2rdr [eo(l —x — s) + e(x + s)] 27
r=a

:%[eo(Z—x—s)+e<x+s>]V02/b dr
4 [In(%))” r=a T
7leo(l —z — s) + ez + 5)| V¢
Int

(D) How high will the dielectric fluid rise when a voltage 1} is applied?

Solution:

2 _
1 2@ - 17‘/0 Zr [Eb o] = pmgﬂ(b2 — a2)x

fac:2 deii h’lE

I ()
~ In 3Pm9(b2 —a?)

12
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Problem 4

—
—

€ Gy

€5, 0y T

/ o (t=0)=0,

<+ T— P —

- - l »  Depth D

Figure 9: Two lossy dielectrics

Two lossy dielectrics with respective dielectric permittivities €; and €2 and respective ohmic conductivities
o1 and oy are superposed within a short-circuited capacitor. At t = 0 there is a free surface charge density of
050 % on the interface between the dielectrics. Neglect fringing field effects. The free volume charge density
at time £ = 0 is zero in both dielectrics.

(A) Find the electric fields F;(t =0) and Ey(t = 0) in both lossy dielectrics at time ¢ = 0.

Solution:
pf(t) = 0 in both dielectrics = V - E1 =V -Ey=0= E| = E|(t), By = Es(t)

a+b b a+b El a
Edx = FEodx + E1d$:E2b+E1a:0:>E2:—T
=0 =0 z=b

at t =0:
1B — 2By = 0y

€

By e+ ﬂ = 050

O'Sob Ela gs0Q

1_61b+02a’ 2Ty __61b+62(1

13
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(B) Find the electric fields E;(t) and E»(t) in both lossy dielectrics as a function of time.

Solution:

d
01E1 — O'QEQ + % [61E1 - EQEQ} =0

dE
s G (00 ) S

b b
E =FE(t=0) 77 = %
os0b i
T abtead
E . -,

(C) Find the free surface charge density o4(t) on the interface as a function of time.

Solution:

€2

Js(t) = 61E1 — GQEQ = E1 (61 + 7) = 050€

b

RIGS

(D) Find the short circuit current i(t) that flows in the wire short-circuiting the two elec-

trodes as a function of time.

Solution:

i(t) dBy dE,
ﬁ =025 + EQW =01E + e dt

= (O’l—i) El
T

= (0-1 - a (01b+02a)> Fy

(e1b + 02a)

O €7 + 01620 — £46T0 — €102a
€1b + esa
a(oi€y — €109) e
= o.obe T
(e1b + e2a)2

. abo’so(JlEg — Elgg)ld _
t) =
i(®) (e1b + €2a)? ¢

Qe

14
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Problem 5

Vocosmt

Figure 10: A lossy transmission line

A lossy transmission line is composed of perfectly conducting parallel plates enclosing a lossy medium
with dielectric permittivity €, magnetic permeability p, and ohmic conductivity . The governing equations

for the voltage v(z,t) and current i(z,t) along the transmission line are

0i v
& = —Oa — G’U
ov 0i
A S
0z ot

Where C is the capacitance per unit length, GG is the conductance per unit length, and L is the inductance
per unit length. The transmission line is short circuited at z = 0 and is driven by a voltage source at

z=—lv(z =—I,t) = Vpcos(wt).
(A) What are C,G, and L in terms of ¢, u,0,l, D and s?

Solution:

C:Ed,L:@,Gzﬂl (Rceéglgc)
d s o 3

S

15
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(B) In the sinusoidal steady state the voltage and current can be written in the form
v(z,t) = Re [0(2)e’*"]
i(z,t) = Re {%(z)ej“’t}

Find 9(z) for this problem.

Solution:
d’)
d% — —(G+ Cjw)d
B Ljisi—- B
dz /  Ljwdz

1 d?*

m@ =+(G + Cjw)d
d?o

CT;; = (GLjw — LOw?)®
0(z) = Ae’P* = —p? = GLjw — LOW?
p=++LCw? — GLjw
p = %£po,po = VLCOW? — GLjw

>

(2) = AqeIP0% 4 AneTiP0?
d(z=0)=0=A; + Ay

tz=-l)=Vy = AjeIpol 4 AyedPol — Al(e_jpol — ejpol) = —2j A1 sin pgl
Vi
A=Ay =———
27 sin pol
’lA)(Z) — ‘/0 ejpoz _ e-jpoz) _ _%Sinpoz
27 sin pgl sin pgl
(C) Find i(z) for this problem.
Solution:
A,( ) 1 do 1 Vopo cos poz Vopo cos poz
nN) == — —_ =
Ljw dz Ljw sin pol Ljw sinpgl

16
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(D)

Now, assuming G = 0 and neglecting fringing field effects, find the Poynting vector

S = E x H as a function of time and position z everywhere along the transmission line for

-1 <z<0.
Solution:
G=0=py=wVLC (real),v(z,t) = Rei(z)e!" — M cos wt
sin pol
% 4 % /C
i(z,t) = Re |+ 0?0 C,Osﬂe]wt — LoPo c?spoz sinwt = 4V} 7c€)sp0z sinwt
Ljw sinpgl Lw sin pgl L sin pgl
2 C . .
t (2, ¢ _ o B )iz, 1) - —Vi5'\/ 7 sin poz cos poz sin wt cos wt
PRI CIL) Ry ICT0) B SO S A L CLL C LN L — i
s d sd sd sin” pol

17
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Solutions to Two More Problems

Problem 1

oo

N turns
- H,
P
v{t)=Vocoswt
+ P ?

¥

Depth D

Hveo

Figure 11: A magnetic circuit with a stationary yoke

A magnetic circuit has a stationary yoke with infinite magnetic permeability with a voltage source v(t) =
Vb cos wt exciting an N-turn perfectly conducting coil. In the air gap of the magnetic yoke of height s there
is an infinitely magnetically permeable tapered wedge of height a (a < s) whose width decreases from w;
to we. The bottom surface of the wedge is a distance z above the lower surface of the magnetic yoke. The
system has depth D. Assume that both air gaps are sufficiently small to neglect fringing fields.

(A) What is the total magnetic flux A(¢) linking the N-turn coil?

Solution:

d \%
v="Vycoswt = — = A\ = —sinwt
dt w

(B) What are the magnetic fields, H;(t) and H,(t), in the air gaps in terms of \(t), o, and
geometric parameters?

18
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Solution:

A
poH1w1 D = poHowe D = N

A
H = ———
! NMQ’U)lD
A
Hy= —"——
2 Nuo’wgD

(C) What is the self-inductance L(z) of the N turn coil as a function of the distance z, po,
and geometric parameters?

Solution:

j{f[-ﬂ:N@':Hl(s—a—x)—l—Hﬂ

A s—a—x+x
7NM0D w1 wo

(D) What is the z-directed force on the tapered wedge in terms of A(t), 1, and geometric
parameters?

Solution:

1 d 1
=% ]

s—a—x €T j|

ea[mEE
2 dr N2poD

B A2 11
- 2N2/,60D wa w1

19
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Problem 5

Figure 12: A current sheet of infinite extent

A z directed current sheet of infinite extent in the y and z directions is located at = 0 and varies with
time as
K(x=0,y,2,t) =i,Kcoswt
This current sheet is located at the interface separating a material of infinite magnetic permeability (@ — 00)
for —oo < z < 0 and a material of finite magnetic permeability p and finite ohmic conductivity o for
0 < z < oco. Note that because the current sheet has no variation with y or z, the magnetic field does not
depend on the y or z coordinates.

(A) Find the magnitude and direction of the magnetic field H(z,t) everywhere.

Solution:
Hy(x,t) = ReH, (x)e’*"

o - _ Utz 2
Hy(ll':()) :KO:>Hy(1'):K0€ 5 ,5: E

Hy(z,t) = ReKoe Fe™ 5 e/t
= Koe™ 5 cos(wt — %) x>0

20
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Hy(z,t)=0 <0

(B) Find the volume current density J(z,t) everywhere.

Solution:
_ - H.
UxA-J=2 _ 5 g _0a<o
Ox
H Kpe™ %
J, = 88; = 0(65 ’ [— cos(wt — %) + sin(wt — %)

(C) Find the power flow density, S = E x H, everywhere.

z>0:
S:EXﬁ:ZXﬁzﬁHyizxzy
o ag
J :
= —;ZHyzx
Kie %
- _ 0660 ’ {— cos(wt — %) + sin(wt — g)] cos(wt — %)
KZ 2
= 723_27 Cos(wt — %) {cos(wt — %) — Sin(Wt - g)}
S=0,z<0

21
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Final Exam 1995 Solutions

Problem 1

Ugcoswt

Figure 13: A magnetic circuit

The magnetic circuit shown above is modeled as being infinitely permeable except for the three thin
air-gaps, where p = pg. These thin gaps are narrow enough that fringing fields can be ignored. The N turn
coil is driven by the voltage source v(t) = Vj cos wt.

(A) Determine the self-inductance L(z) of the N turn coil.

Solution:

Hyg+ Hyx = Ni

H, [x—i—

Vo coswt

H.,b
poHbd = 2ugHgad = Hy =

gb] — Ni= H, = Lb
‘ =+ 2]

dA bdN?2i

= = Y nwt = NuoH b = M0

dt w [LE—F Q]

2a

22
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2
L(w)zé_:M

a=

(B) Find the total magnetic energy stored in the system as a function of time ¢ in terms of
Vo, w, and given geometric and physical parameters.

Solution:

1 A2 1 VZsin? wt gb
Wm = — = — x —_—
2L(x) 2w?pobdN? 2a

(C) Determine the magnetic force acting on the movable plunger in the z direction as a
function of time ¢ in terms of V;, w, and given geometric and physical parameters.

Solution:

1] V@sin®wt
L  2w?pubd N2

23
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Problem 5

A sphere of magnetic material having radius R is to be magnetized by placing it in a source of uniform
magnetic field intensity. The bulk of the sphere has a constant magnetic permeability p with zero electrical
conductivity, ¢ = 0. The magnetizable sphere is surrounded by a thin spherical shell of material with
thickness A < R having electrical conductivity o and magnetic permeability po. The field source is switched
on at t = 0 so that Hy(t) = Hou(t)i, where u(t) is the unit step function in time.

r

Figure 14: A sphere of magnetic material with a non-magnetic conducting coating (Image by MIT Open-
CourseWare.)

(A) What is the magnetic field intensity H inside the magnetizable sphere for r < R at t = 0%
and at t — o0?

Solution:

24
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) Arcosd 0<r<R
= (C’r+%)cos€ r>R
lim H = Hyi, = Hy [cos 04, — sin ig]

lim y = —Hyz = —Hgrcosf

T—00
C=—-H,
_ —A[cos 0i, — sin Oig] 0O<r<R
H: 2D b D . .
— [(—HO — T&) cos i, — (—Ho + 73) sm929] r>R
D
Hy(r=R_)=Hy(r=Ry)=> A= —Ho—l-ﬁ
2D
pH,(r=R_) = poH.(r = Ry) = —pA = —po <—Ho - Rg>
I 2D
P A g 22
0 0t R3
D
A= —H0+ﬁ
H,
A i
2+ o
3Hy -
H(T<R,t—>00)—2+i z

(B) The radial component of Faraday’s law for this problem is:

— OB 1 0 . 0B,
VXE__E_) rsin@@(smeﬂﬁ)__ ot

Because A < R, the current flow in the conducting spherical shell can be modeled as a surface
current, Ky(r = R). What is the approximate boundary condition at » = R relating the tan-
gential () component of H on either side of the spherical shell to the perpendicular (radial)
component of B?

Solution:

_ OB 1 9 . 0B,
VXE__E: rsin@@(smeﬂﬁ)__ ot

In spherical shell:

K 1
Jo=0Ey =" = 1 [Hy(r = Ry) — Hy(r = R-)]
Atr=R:

! 9 s OB,
—RRang g 0 (He(r = Ry) — Hylr = R_))| = ——

25
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(C) What is the approximate magnetic diffusion time 7,, for this configuration?

Solution:

DY .
Hy(r=Ry)— Hyo(r=R_) = (—Hg + R3> sinf — Asin6

. D .
Ho(r=Ry) — Hp(r = R_) =sinf {—HO —A+ R?’] =sinf {—HO A5 2}

1 d[. s 3H, 1 DA
ocARsin6 df [sm 0( 2 A<2u0 +1)>] Dot cost

2 3H, 1 p _% % 2A 1 B 3H,
{ 2 A( +1)]_3t$dt+0ARu<2u0+l - ocARp

26
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Final Exam 2000 Solutions

Problem 1

\r T,

V,coswt

B~
depth d

Figure 15: A magnetic circuit with a gap

The magnetic circuit shown above is modeled as being infinitely permeable except for the gap g1 of
material with magnetic permeability 1, and the free space gap partially filled with material with magnetic
permeability po. The two gaps are sufficiently narrow that fringing fields are negligible. The N turn coil is
driven by the voltage source v(t) = Vj cos wt.

(A) What is the magnetic flux A\ through the N turn coil in terms of the terminal voltage?

Solution:

dA
v="Vycoswt = — => A= Esinu)t
dt w

(B) What are the magnetic fields H; and H; in the two gaps in terms of the magnetic flux,
A, magnetic permeabilities, and geometric factors?
Solution:

A
b = N = ,ulHlald = H2d (,U/Zx + /1'0(0’2 - ZC))

A
Nd [pzx + po(az — )]

A
Hy = —Npjaid, Hy =
a

27
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(C) What is the coil current i?

Solution:

Ag1 Ag2

Higi + Hags = Ni = +
191 292 Nujard — Nd[pzx + po(az — z))

_ A 9 92
N2d [prar  [pew + po(az — )]

(D) What is the self-inductance L(z) of the N turn coil where z is the penetration distance
of the material with magnetic permeability po into the free space gap?

Solution:

A N2d

2 g g
[M(lll T [H2I+H02(a2*1)]}

(E) What is the magnetic stored energy?

Solution:

1, 1N

(F) Determine the magnitude and direction of the magnetic force on the movable slab with
magnetic permeability po.

f 1 ,dL A2 d 1
= -7 — = —— —
T2 dx 2 dx \ L(z)
g1 + 972}
1 ma [n2z+4po(az—)]
L(z) N2d
P —(u2 —po)  _ Ngo (12 — po)

_ 9 -
2N [pow + po(as — )] 2N2d [pya + po(az — )]
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Problem 2

— 8 N a >—
Area A
E, E;
—_ —>
60 go
X
-~

Figure 16: Short circuited parallel plate electrodes

Two parallel plate electrodes of area A in free space are a distance 2a apart and are short circuited
together. A third electrode at potential v with respect to the other two electrodes and with negligible
thickness is placed at a distance = to the right of the midpoint position of the two short circuited electrodes.

(A) Find the electric fields F; and E; on either side of the middle electrode. Neglect fringing
field effects.

Solution:

E, =

(B) What is the total charge on the middle electrode?

Solution:

1 1 2¢gvA
Gmid = €0(E2 — E1)A = guA < + ) _ _ctovAaa

a—2x a+x (a? — 22)
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(C) What is the capacitance of the middle electrode with respect to the short circuited elec-
trodes?

Solution:

C = dmid o 2€OQA

v a? — x?

(D) If the voltage v = v(t) and position = = z(t) are functions of time, what is the current ¢
flowing in the short circuit?

Solution:

. AdE1 A 1 dv v dx €A dv v dx
i=€eA—— = —¢ — - — == _— -
0t Na+adt (a+a)?dt (a+z) \dt (a+x)dt

(E) What is the electric force on the middle electrode as a function of z,v,¢,, and geometric
parameters a and A?

Solution:

o= 11)2@ B 1@2 1(—2x) ) _ 2epaAxv?

2 dex 2 (Zeoad) (_ (a2 —22)2 ) (a2 — 22)2
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Problem 4

_’\'C
Q
-
g
Il
=
1l
£
|
S

Figure 17: An infinitely long surface charged cylinder
An infinitely long cylinder with dielectric permittivity e and ohmic conductivity o has outer radius Ro
and free space hole of radius R;. The cylinder is surrounded by free space for r > Rs. At time t = 0 a

uniform surface charge distribution is placed at r = Ry so that o;(r = Ry,t = 0) = oy,. At time ¢t = 0 the
free surface charge distribution at » = Ry is zero.

(A) What is the electric field in the regions r < Ry, R; <7 < Ry and r > Ry at time t = 07?

Solution: At ¢ = 0:

0 r< Ry
E, = Uf/o%@ Ri<r< Ry
70.%?/77;31 r > Ro

T€Q

(B) Find the electric field in the regions » < Ry, Ry < r < Ry, and r > R, as a function of time.

Solution:

aET(T = R1+)
ot

E.(r=Rit)=E.(r =R, t =0 7;7 =

oE.(r=Riy)+e =0
<
o

Uf(T‘ =Ry) =€E,(r=Riy,t) =eb.(r = Ry, t = 0)872

t

:o'foe T
0 r< R
R
Ep(rt)={ 20 e=r Ry <7 <Ry
2l r> Ry

€T
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(C) Find the free surface charge distributions as a function of time at » = Ry and r = Rs.

Solution:

_t
p

Uf(T = R17t) =0fo€

Oof(r = Ry, t)

ot =0

—0E,(r=Ro_,t)+

Jdoy(r = Ry, t) . o0y, s
T - +O—ET(T - RQ*at) — +;ER16
— — gofoRl t
Uf(T—Rmt)——f-e s (—7)er +C
f"ﬁﬂl( %) _t
=7 —=)e 7 +C
¢ R e
_UfoRl -t
= e +C
Ry
O'.f(T:R%t:O):O:%_FC:O:C:%
2 2

or(r =Ry, t) = L;){Rl (1 — eft/T)

Another Way:

of(r = Ra,t) = eEp(r = Ray,t) — B, (r = Ro_, )
gty opkl

Ry Ry

Another way:

Jf(T = Rl,t)%Rl + Jf(r = RQ,t)%RQ = Ufo(%Rl)

R R
op(r=Bo,t) = P —os(r = Rut) -
o sl ( 4)
= 1— T
R, €
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Problem 5

v

Figure 18: A surface current sheet at = 0 (Image by MIT OpenCourseWare.)

A z directed surface current sheet of infinite extent in the y and z directions is located at x = 0 and
varies with coordinate y as K(z = 0,y) = i, Ko cosky. This current sheet is located at the x = 0 interface
separating a material of infinite magnetic permeability (@ — o0) for z < 0 and free space for 0 < x < s. At
x = s there is another material of infinite extent for x > s with infinite ohmic conductivity (¢ — o0). There
is no variation with the z coordinates and free space for 0 < x < s is perfectly insulating (o = 0).

(A) What are the boundary conditions on the magnetic field H(r,y) at x =0 and z = s?

Solution:

(B) Find the magnetic field H(z,y) everywhere.
Solution:

x(z,y) = sinky(Ae k4 Cer?) 0<z<s
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0 z <0
H=-Vx=<0 > s

— [—k‘Ae_k‘” + k;C’e‘H“] sin kyi, — k cos ky [Aek’c + C’e“”] iy 0<z<s
Hy(x=s5_)=0= —FAe 4 JCer* =0

Hy(z = 04) = Kocosky = —keosky(A + C)

Ko
A+C = —?
A=Ce* = O + ) = —%
Ko
-k
(1 + e2ks)
A Koe2ks
k(1 + e2ks)
0 <0
H=10 r> s
—(HIZ% [sin(ky) (e7hre2ks — ko) 1y — cos(ky) (e7F=e?Fs + eb*)iy] 0<z<s
O<e<s
H= —M [sin(ky) (— sinh(k(x — 5))) i, — cos(ky) cosh(k(x — s))i,]
= (0 + %) Y z Y y
KO . . - =
= coh(hs) [sin(ky) (sinh(k(z — s))) iz + cos(ky) cosh(k(z — s))iy]
Check:
Hy(x=s)=0

H,(z =0) = Ky cos(ky)
(C) What is the surface current on the z = s surface?

Solution:

_ Kycos(ky)
~ cosh(ks)
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