
6.641 Electromagnetic Fields, Forces, and Motion Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.641 Electromagnetic Fields, Forces, and Motion Final Exam 5/20/2009

NOTE: 6.641 Formula Sheets at the end of exam. You are also allowed both sides of two 8½"x11" pages for 6.641 course material that you have prepared yourself.


1. 25 points

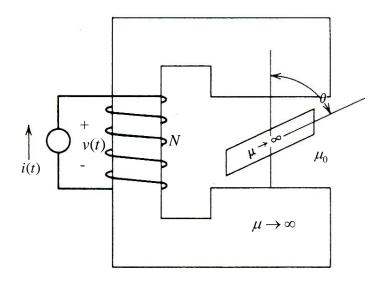
A sheet of surface charge with surface charge distribution $\sigma_s(x,y=0)=\sigma_0\sin kx$ is placed at y=0, parallel and between two parallel grounded perfect conductors at zero potential at y=-b and y=a. The regions above and below the potential sheet have dielectric permittivities of ε_2 and ε_1 . Neglect fringing field effects.

- a) What are the electric potential solutions in the regions $0 \le y \le a$ and $-b \le y \le 0$?
- b) What are the electric field distributions in the regions 0 < y < a and -b < y < 0?
- c) What are the free surface charge distributions at y = -b and y = a?
- d) What is the potential distribution at y = 0?

2. 25 points

A surface current sheet $\overline{K} = K_0 \sin\theta \overline{i_{\!\!\!/}}$ is placed on the surface of a sphere of radius R. The inside of the sphere (r < R) has magnetic permeability μ and the outside region (r > R) is free space with magnetic permeability μ_0 . The magnetic field at $r = \infty$ is zero.

- a) What are the boundary conditions on the magnetic field at r = 0 and r = R?
- b) What are the general form of the solutions for the magnetic scalar potential inside and outside the sphere?
- c) Use the boundary conditions of part (a) and solve for the magnetic scalar potential and the magnetic field \overline{H} inside and outside the sphere.
- d) The scalar magnetic potential for a point magnetic dipole of moment $m\bar{i}_z$ at the origin is:

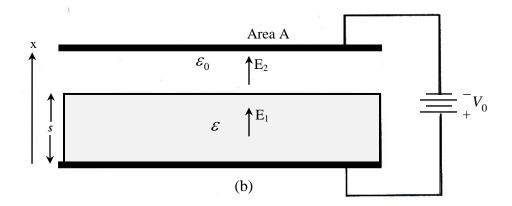

$$\overline{H} = -\nabla \chi$$
, $\chi = \frac{m\cos\theta}{4\pi r^2}$

What is the effective magnetic moment of the sphere and surface current sheet for r > R?

- e) What is the equation for the magnetic field line that passes through the point $(r = R_0, \theta = \frac{\pi}{2})$ where $R_0 > R$.
- f) For the field line in (e), if $R_0 = 2R$, at what angles of θ does the field line contact the sphere?

3. 25 points

A reluctance motor is made by placing a high permeability material, which is free to rotate, in the air gap of a magnetic circuit excited by a current i(t).


The inductance of the magnetic circuit varies with rotor angle θ as

$$L(\theta) = L_0 + L_1 \cos 2\theta, L_0 > 0, 0 < L_1 < L_0$$

where the maximum inductance $L_0 + L_1$ occurs when $\theta = 0$ or $\theta = \pi$ and the minimum inductance $L_0 - L_1$ occurs when $\theta = \pm \frac{\pi}{2}$.

- a) What is the magnetic torque, T_{mag} , on the rotor as a function of the angle θ and current i(t)?
- b) With i(t) a DC current I, a constant positive mechanical stress $T_{mech} > 0$ is applied. What is the largest value of $T_{mech} = T_{max}$ for which the rotor can be in static equilibrium?
- c) If $T_{mech} = \frac{1}{2}T_{max}$, plot the total torque $T_{mag} + T_{mech}$. Use a graphical method to determine the equilibrium values of θ and label which are stable and which are unstable.
- d) If the rotor has moment of inertia J and is slightly perturbed from a stable equilibrium position θ_{eq} at t=0 by an angle position $\theta'(t)$, what is the general frequency of oscillation? What is the oscillation frequency for θ_{eq} found for stable equilibrium in part (c)?
- e) If the initial conditions of the perturbation are $\frac{d\theta'}{dt}\Big|_{t=0} = 0$ and $\theta'(t=0) = \Delta\theta$ what is $\theta'(t)$ for t > 0. Neglect any damping.
- f) If i(t) is a DC current I and a motor drives the rotor angle θ at constant angular speed Ω so that $\theta = \Omega t$, what is the voltage v(t) across the coil?

4. 25 points

A parallel plate capacitor with electrodes of area A has its upper electrode in a free space region in series with a solid dielectric of thickness s and dielectric permittivity ε . The s interface has no free surface charge.

- a) What are the electric fields E_1 and E_2 in the dielectric and free space regions?
- b) What is the free surface charge density on the lower electrode?
- c) What is the capacitance C(x) of the capacitor?
- d) What is the electric force on the upper electrode?