6.641 Electromagnetic Fields, Forces, and Motion Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.641 Electromagnetic Fields, Forces, and Motion

Final Exam May 23, 2006 Spring 2006

Final Exam – Tuesday, May 23, 2006, 9 AM – noon.

The 6.641 Formula Sheet is attached. You are also allowed to bring three $8 \frac{1}{2}$ " x 11" sheet of notes (both sides) that **you** prepare.

Problem 1 (25 points)

A sheet of surface current of infinite extent in the y and z directions is placed at x=0 and has distribution $K_z(x=0,y)=K_0\cos ky$. The surface current flows in the z direction. Free space with no conductivity ($\sigma=0$) and magnetic permeability μ_0 is present for x<0 while for 0< x< s a perfectly insulating medium ($\sigma=0$) with magnetic permeability μ is present. The region for x>s is a grounded perfect conductor so that the magnetic field is zero for x>s. Because there are no volume currents anywhere, $\bar{H}=-\nabla\chi$, where χ is the magnetic scalar potential.

- a) What are the boundary conditions necessary to solve for the magnetic fields for x < 0 and for 0 < x < s?
- b) What are the magnetic scalar potential and magnetic field distributions for x < 0 and 0 < x < s? **Hint:** The algebra will be greatly reduced if you use one of the following forms of the potential for the region 0 < x < s
 - i) $\sin(ky)\cosh[k(x-s)]$

iii) $\sin(ky)\sinh[k(x-s)]$

ii) $\cos(ky)\cosh[k(x-s)]$

- iv) $\cos(ky)\sinh[k(x-s)]$
- c) What is the surface current distribution on the x = s surface?
- d) Use the Maxwell Stress Tensor to find the total force, magnitude and direction, on a section of the perfect conductor at x = s that extends over a wavelength $0 < y < \frac{2\pi}{k}$ and 0 < z < D?

 Assume that μ in the region 0 < x < s does not depend on density so that $d\mu/d\rho = 0$.

Hint:
$$\int \cos^2(ky) dy = \frac{1}{2} y + \frac{1}{4k} \sin(2ky)$$

Problem 2 (25 points)

A lossy dielectric cylindrical shell, $R_I < r < R_2$, having dielectric permittivity ε and ohmic conductivity σ is uniformly charged at time t=0 with free volume charge density $\rho_f(t=0) = \rho_0$. The region for $0 < r < R_I$ is free space with permittivity ε_0 and zero conductivity $(\sigma = 0)$. Assume that the surface charge density at $r = R_1$ is zero for all time, $\sigma_s(r = R_1, t) = 0$.

The $r=R_2$ surface is a grounded perfectly conducting cylinder so that the electric field for $r>R_2$ is zero. The depth d of the cylinder and system is very large so that fringing fields can be neglected.

- a) What is the electric field in the free space region, $0 < r < R_1$, as a function of time?
- b) What is the volume charge density and electric field within the cylindrical shell, $R_1 < r < R_2$, as a function of radius and time?
- c) What is the surface charge density on the interface at $r=R_2$?
- d) What is the ground current i(t)?

Problem 3 (25 points)

A sphere with radius R_p is comprised of a uniformly permanently magnetized material in the z direction, $M_0 \overline{i_z} = M_0 [\overline{i_r} \cos \theta - \overline{i_\theta} \sin \theta]$. The sphere is placed concentric within a free space spherical hole of radius R within a perfect conductor as shown in the cross-sectional drawing in the figure above. The region $R_p < r < R$ is filled with free space with magnetic permeability μ_0 . There are no volume free currents anywhere $(\overline{J}_f = 0)$ and there is no free surface current on the $r = R_p$ interface.

- a) Prove that the magnetic scalar potential χ obeys Laplace's equation for $0 < r < R_{\rm p}$ and $R_{\rm p} < r < R$ where $\bar{H} = -\nabla \chi$.
- b) What are the boundary conditions required to determine the magnetic field in regions $0 < r < R_p$ and $R_p < r < R$.
- c) Find the magnetic field $\bar{H}(r,\theta)$ in regions $0 < r < R_p$ and $R_p < r < R$.
- d) Find the free surface current density \bar{K} on the r=R surface.

A conducting string at r=0 having equilibrium tension T and mass per unit length m is stretched horizontally and fixed at two rigid supports a distance L apart. The elastic string carries a current I_2 and can have transverse displacements $\xi(x,t)$. Another rigid wire is placed at r=a and carries a current I_1 . The region surrounding the string and wire is free space with magnetic permeability μ_0 . Assume that transverse displacements $\xi(x,t)$ of the string centered at r=0 depend only on position x and time t. Gravity is downwards with acceleration g.

- a) To linear terms in membrane displacement $\xi(x,t)$, find the magnetic force per unit length on the string centered at r=0.
- b) What is the governing linearized differential equation of motion of the membrane?
- c) What must I_1 be in terms of I_2 , m and other relevant parameters so that the membrane is in static equilibrium with $\xi(x,t) = 0$.
- d) For small membrane deflections of the form $\xi(x,t) = \text{Re}\left[\hat{\xi}e^{j(\omega t kx)}\right]$ find the ωk dispersion relation. Plot the ω -k relationship showing significant intercepts on the axes and slope asymptotes. Assume that k is real and that ω can be pure real or pure imaginary.
- e) What are the allowed values of k that satisfy the zero deflection boundary conditions at x=0 and x=L?
- f) Under what conditions will the membrane equilibrium with $\xi(x,t) = 0$ first become unstable?