MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

6.641 — Electromagnetic Fields, Forces, and Motion Spring 2009
Additional Problems - Solutions

Prof. Markus Zahn MIT OpenCourseWare

Problem 1.1
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Figure 1: A diagram of two identical conducting balls suspended by essentially weightless strings of length [.
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Figure 2: A diagram showing the forces on one of the balls (Image by MIT OpenCourseWare).
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Figure 3: A diagram showing two charges, one at the center of another orbiting charge.
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Figure 4: A diagram showing the forces on the orbiting charge (Image by MIT OpenCourseWare).
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Figure 5: A diagram showing a charge ¢ moving at velocity vg ix at a distance L from a screen in an electric
field Epi, moving in a curved path until finally contacting the screen at y = h.
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Screen

Figure 6: A diagram of a cathode-ray tube.
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Initial conditions:

vz (t) = vy cos 7’1“an“ t) 4 vy sin 7‘”‘an 0
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vy(t) = wyocos LFE=0L Vg0 sin | 4220
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Figure 7: A diagram of a mass spectrograph.
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Problem 1.2

Figure 8: A diagram of two parallel plates connected to a power source creating a magnetron.
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C

Figure 9: A diagram of two concentric conducting cylinders connected to a voltage source creating a mag-
netron.

Electrons injected from r = a, ¢ = 0 with zero initial velocity
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Use of hint:
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Check: cylindrical geometry approaches planar geometry of (a) if b = a + s where s << a

(v — a2)2 — ((a + )% — a2)2
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Problem 1.3

By problem:

BT r<b
p:
Pa; b<r<a

Also, no o4 at r = b, but non zero o, such that E=0forr>a

A
By Gauss’ Law:

jQ{ GOE -dd = / pdV ; Sr = sphere with radius r
S, %

s

—

As shown in class, symmetry ensures E has only radial component: £ = E,l,
LHS of Gauss’ Law:
. 2 ™ R R
]f e - di = / / co (). (r?sinododsi,)
S, o Jo

—_— ——

dd in spherical coordinates

47r? Erey  where A is the surface area of a sphere of radius r
A
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RHS of Gauss’ Law:

For r<b:
r 27 T b7

/ pdV = / / / 2 r2sinOdOdedr
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4
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D
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Figure 10: A diagram of a wire with z directed volume current with —z directed surface current at r = a.

(Image by MIT OpenCourseWare).

We are told current in +z direction inside cylinder r < b

Current going through cylinder:

b 27 2
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rot s o Jo b ( ) 3

———
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J

Total current in sheet

K]

- length of sheet (i.e., circumference of circle of radius a)
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Amps
m

Amps
m2

Thus, K’s units are , whereas J’s units are

%J()ﬂ'bQ _ J0b2
2ra 3a

K| =

% Job®
K:_ga (2]

b
)

2

Figure 11: A diagram of the current carrying wire with a contour circle C centered on the z-axis with r < b
(Image by MIT OpenCourseWare).

Ampere’s Law

. . d .

j{H~d§z/J-d(i+ f/eoEVdEi

c s dt Jg
—_———

no E field, term is 0

Choose contour C as a circle and S as the minimum surface that the contour bounds (as shown in

Figure

Now solve LHS of Ampere’s Law

2
j'{ H-ds= / (Hyig) - (rdp)iy = 2mrHy
C 0 S—=—— ———
i ds
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We assumed H, = H, = 0. This follows from the symmetry of the problem. H, = 0 because 555 uoﬁdd' =
0. In particular choose S as shown in Figure [[2h.

z

5 — by
\\\\\‘¥¥1///// \\\\\‘¥¥1/////

(a) (b)

Figure 12: A diagram of the wire with the choice for S as well as a diagram of the wire with the choice of
contour C (Image by MIT OpenCourseWare).

H_ is more difficult to see. It is discussed in Haus & Melcher, Chapter 1. The basic idea is to use the
contour, C' (depicted in Figure ), to show that if H, # 0 it would have to be nonzero even at oo, which
is not possible without sources at co.

Now for RHS of Ampere’s Law:

r<b
. 27 T JOT/ R R
[da= [ (bz‘z>'(r'dr'd¢iz)
s 0 0 . . ~- ,
J
_ 2Jor3 T
3
a>r>b
27 b / 27 r
- Jor’ - ~ ~ ~
J-dc_i:/ / ( zz>- r'dr'dei, +/ / 0-i, ) - (r'dr'dei,
/. (5 ) - (st )+ [ [ (0-) - (ardez)
0
2
:ghww

Equating LHS & RHS:

%Jor37r ; r<b
2nrHy = §J0b27r ;o oa>r>b
0; r>a
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2
ng i;), r<b
H=1q Job* -
reall a>r>b
; r>a

Problem 1.5

Demos 1.3.1, 1.5.1 Coulombs’s Force Law and Measurements of Charge

e Rubbing of inflated balloons with a dry cloth

— Accumulation of charge on balloon surfaces
— Balloons repel each other because they have been charged to same polarity
— Charges on balloons induce image charges of opposite polarity on conducting surfaces

* Balloons are then attracted to these surfaces
e If we insert balloons in a Faraday cage

— We can measure the charges on the balloons
— It makes no difference to the measurement if balloons make contact with the inner surface

— If balloon is broken in the Faraday cage the charge is not removed when the broken balloon pieces
are removed

Demo 11.7.1: Steady state magnetic levitation

e Demonstrates magnetic forces due to conduction currents

e A pancake coil is excited by 60 Hz current and placed on an aluminum ground plane

Typical currents of 20-30 Amps

e As current is raised, Lorentz force can overcome the coils weight and the pancake coil rises

For ground plate thickness ~ skin depth, the coil rises

For ground plate thickness less than skin depth, the coil lifts up at higher current

For ground plate thickness much less than skin depth, the coil does not lift up, because most of the
magnetic field penetrates through the ground plane.

15
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Problem 2.1
A

The idea here is similar to applying the chain rule in a 1D problem

G- B G- 78

f(z) corresponds to |F —7|. So, by diff. f(x) we get part of the answer to the derivative of Tz But we
can just do it directly too.

F-7l= V@ -y P+ (-7

1 ia 1 +;8 1 +;8 1

So we can apply the trick above by just considering x,y, and z components separately.

ad.,._ 0

5l =7l= o (V=P =)+ - 2P

B z—a

N T O

_x—a

B
. o _ _ y—1y 0 _ z—2

larly, — |7 — 7| = I 7| =
Similarly, ay|7“ | 7] and aZ|7" | 7

9 1\ —ZF-7
ox \[r—-7)  |[F-7)?

and so on for y and z.
FTP = (e (= g+ (o - )

SO:

o { 1 } - [(w —a)ig + (y — ¥ )iy + (2 — 2)i
N S L A OenJ CEEOU R

Denominators = |7 — 7|3/2. Thus,

VL 1 ]_—(r—r’) -1 (F-7)

T—T7| -

CF=TR o F=TR -7
_zr/r

I

B

Follows from (A) immediately by substitution. Remember V is derived in terms of unprimed z,y, z. V does
not affect o', y/, 2’
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C
57) = /V p(F)dV'’

» dmeg|TF — 7|

p(T") = charge density in % We have A in units of % In this sense, p — oo at the ring. We can represent
this in cylindrical coordinates by p(7') = A\gd(2)d(r — a). Then we can evaluate the triple integral

/ / / Xod(2)6(r — a)rdrd¢dz /2“ Noadd
dreg|T — 7| Jo  Admeo|F 7|

But, we can skip that unnecessary work by simply considering infinitesimal charges (ad¢)Ag around the ring.

Figure 13: A ring of line charge with infinitesimal charge elements gd = A\pad¢. (Image by MIT OpenCourse-
Ware).

We only care about z axis in this problem as well, so, by symmetry, there is no field in the z and y
directions.

[ Ao(ade)
o(7) */0 e, (a2 +22)1/2
—————

distance from
the charge
element \gadg
to the point z
on the z-axis

)\0(1

OF) = — 20
() 2e0(a? + 22)1/2

on the z-axis.

0 0
= _ ~ 0 ~ 0 - 0
E:—Vq)(’f‘)—— sz:x/b(—f—l%é—'—lz(?z@

;9 Aoa
“0z \ 2e0(a? + 22)1/2

&
[
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A aMoz
Iy
2e0(a? + 22)3/2
Using the equation from the Problem 2.2 Statement with z component only (symmetry) and with p(7')dV’ —
Aoadd

E =

™ Noadg cos z
Ez(z):/o Treo(2 + @)’ COSGZW
[T Naz do
7/0 (a2 + 22)3/2 4me

Aoaz

" 2e0(a2 + 22)32
Limit |z| = oo
Va2 + 22 = |z
)\0(1 271')\00, Q
D(z) = ~ ~
2e0(a? + 22)1/2  dmeglz|  Ameolz]

Q@ = 2m)oa (total charge on loop). ®(z) looks like potential from point charge in far field.

5 Aoaz . Aoaz ﬁ z>0
" 2e0(a? + 22)3/2 7 2023 ﬁ 2<0
D
From (C), ® = mﬁ;\% for a ring of radius r. But now we have gg, not Ag. How do we express A\ in

terms of og? Take a ring of width dr in the disk (see Figure . Total charge in the ring =  (r)(27) (dr)oo.
——

circumference

Figure 14: A line charge ring of width dr in the disk (Image by MIT OpenCourseWare).

total charge

Line charge density = Ay = Tongth = oodr
SOZ )\0 = Uod’)"
0D — oordr

2e0(r2 + 22)172

o _ /a oordr 0o /a rdr
total — o 250(7‘2 + 22)1/2 o 280 0 (r2 + Z2)1/2

=20 [V 2| = 2 [Var et e

B 260 r=0 260

—_— (1) 1 1 —

E=-Vo otal — S - z
total 2602{\/22 \/a2+,22]Z
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As z — o0,

(a2+Z2)1/2—>|Z|+L

1
. 2,212 , 1 (4
o ) (
2

E
Tacog
‘I)total —

degm|z|
7ra200 _—

—F1
4%6022 i

just like a point charge of ogma?

F

As a — oo, z in the va? + 22 can be neglected, so

g
(ptotal - TEOO [a’ - ‘ZH

EZ%ULZ i—O _ 2;% z>0
2e0 |Z| 70

e, 2<0
just like a sheet charge.

G

For A\(¢) = Agsing

@:A% A(@)a

dmegva? + 22

27

a

= Ao sin ¢d
4megva? + 22 /0 osin¢dg

27

a/\o

= —+—(—cos
dmegva’ + 22 ( ¢)

=0 along z axis
0

22

The electric potential along the z axis is zero. It is not possible to find the electric field along the z-axis

using the above result for the scalar electric potential value along the z-axis.

H

N —INT 37/
E(F) = / ATy / A iyl
v Ameg|F — 7| I

s Aeo|T — )2

with zero net charge on the hoop.

in Figure [T5]

1.€., dEz|¢ = —dEZ|¢+ﬂ—

shown in Figure

One cannot use Equation (2) from the problem statement to find E in this case.

The charge density along the hoop will have a sinusoidal variation as a function of ¢ as shown in Figure[I0]

Due to odd symmetry of the charge distribution the z component of the E field will cancel out as shown

Similarly due to symmetry with respect to the yz plane, the 2 component of the E field also cancels as

Thus the resulting E field is in —y direction only!
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\ A=

Figure 15: A diagram showing that the E field generated from the hoop of line charge with odd symmetry
in angle ¢ is transverse to the z axis in the —i, direction (Image by MIT OpenCourseWare).

|dE sin 6] gives the magnitude of the E-field on the 2y plane due to small line charge component dq = Aad¢

|3 T

_/\0

Figure 16: A graph showing the line charge density Agsin ¢ along the hoop as a function of ¢ (Image by
MIT OpenCourseWare).
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V‘<

-
| / / ’
Contribution due /

to charge at

- _3m
¢—2and¢>— 2 etc. v

Figure 17: A diagram of the electric field components from hoop charge elements looking down along the
z-axis showing that the x components cancel and the y components add in the —y direction (Image by MIT
OpenCourseWare).

=

—o 4meo(22 +a2)3/2 7 iy = €08 Pl + sin Gy

27 2 . -
—Aoa” sin ¢ cos ¢pd¢p / .
Ez = = = 0 d _ 0
/¢—0 4men(z? +a2)3/2 A sin ¢ cos ¢pdeg
o 2 sin? 2 2
—Xpa” sin” ¢de —Xoa / L
F, = _ ‘ o
Y /¢>—0 Ameg(22 + a2)3/2  4eg(22 + a2)3/2 ; sin® ¢pdp =

27 : 27
Aoz sin gado / .
E, = ——————— =0 dp =0
/¢—0 dmeo(22 + a?)3/2 < 0 sin oo

_ /27r Ao sin ¢(zi, — ai,)adg
[

Contribution due to
dE|, and dE|,..

< [« >y

Contribution due to
dE‘n_qband dE‘erp

—

\ IB%

Figure 18: A diagram of the electric field components looking down along the z-axis (Image by MIT Open-
CourseWare).

21



6.641, Spring 2009

Additional Problems - Solutions

—_ /\0a2 1 -— )\0(12 —
E=-— Ty = | ——————575ly
dey (a2 + 22)3/2 deg(a? + 22)3/2
— Aoa? — =Xpa® — —
lim E(r=0,z) = lim — 0 iy & 0= 7. = Py
z—00 z—r00 a2\ 32 4eo|z|? dmeg|z|3
~—~—~ 4egz3 (1 + (;)

z>>a o
P = Aoma?i, — acts like field due to a dipole charge with dipole moment p,,.

I

Surface charge density o(¢) = o sin ¢
We can use the method of superposition using the result obtained in part (a)

dA=odr'=0singpdr’

Figure 19: A diagram showing the method of superposition using discretized rings of line charge to approx-
imate a surface charge distribution (Image by MIT OpenCourseWare).

U(¢) T/d(de/

a 2T
b = I S
/o /0 dmeg/(17)? + 22
a 27 :
g sin ¢ ’ogt
= —— do¢r' dr
/0 /0 dmeg/(r')? + 22 ¢

0

=0 along z axis
So it is not possible to use Equation (2) in the problem statement to find the electric field along the

z-axis.

J

Again using method of superposition with the result of part (b) for a hoop of radius 7’

2 _ IN2 0!
JE = dXo(r") - o(r')dr 7,
deo ()2 +22)*2 7 deo((r)? +22)%2
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0'0(7'/)2

:>F:/ —
r=0  deg ((1")2 + 22)%/?

= _&7 _ r' +1n [r'+ (,r./)2 +2’2]
4eg ¥ (r')2 + 22 o

Z—ZTOOE (—\/GQGW—I-IH [a—l— a2+z2} —1In {@})

__90 LM_HH [a+ (a)2+1] 7
oo \ ()2 +1 ] ||

- /
iydr

a

a+ Va2 + 22

||

—0y a3 - —0'003 -
= iy = i
deg 3|23V 12¢0]23 7Y

—Dy —oga’

dreg|z3 12¢02)3

0'07Ta3

Py = 3
Problem 2.2
A

By the divergence theorem:

/v-(vaT)dvzf(vaY)-da’
1% s
where S encloses V. By Stokes’ Theorem:

ii

Suppose S is as in Figure

and S is as in Figure
i.e. S is the same as S, except for the curve C, which makes S slightly unclosed. Now consider limit as

C — 0 (Figure [22)
In limit C' — 0,8 — S. If C'is 0, then §, A-dl = 0. By equation (ii), §4(V x A4) - da@ = 0. By equation

i), [, V- (V x A)dV = 0. Since V can be any volume, argument of integral must be identically 0.

-,

V- (VxA)=0
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Figure 20: Closed surface S (Image by MIT OpenCourseWare).

/

S

C

Figure 21: Open surface S' (Image by MIT OpenCourseWare).

L7 7>

Figure 22: Limit as C' — 0 (Image by MIT OpenCourseWare).

B
. - - - -0 -0 -0
A=Ay, +Ayiy+Asi, V=i, * 5 —l—zya —|—zzaz
VxA= Z@ % Z@ i Oa 2N i (Pam P a )i (Za, - O
% 9y 0z T gytE 97 Y Y\oz"" o0z \ox™Y oy "
A, A, A

0 (0A, 04, 0 (0A, O0A, 0 (04, 0A,
V- (VxA) = m(ay 72 )+ay(az‘ax>+az(ax‘ay>

vl _ox vul ol ox vs_

= /@/(“)y /85: 5 /5;{/82 ;‘3/8;10 7 (“)x ﬁ/ y 0 using interchangability of partial derivatives

V- (V x A) =0 in spherical coordinates
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Problem 2.3

A
Cartesian Cylindrical Spherical
hy =1 h.=1 h.-=1
hy =1 he =1 hg =r
h,=1 h,=1 he = rsind
B
of of of
df = 8ud u + (%d +awd
=Vf-di
=Vf- [hudua + hydviy, + hwdwm
1 9f. _19f _1of
(VF)u = hy Ou (Vo = hy OV’ (VF)w = Ny Ow
1 0f— 10f— 1 0f—
VI = hou™ o Ty o™
C
dSy, = hyhydvdw; dS, = hyhydudw; dS,, = hyhydudv
dV = hyhyhydudvdw
D

b = % A-dS :/Auhq,hwdvdw—/ Ay hyhydvdw
S u u—Au

1 1/

—|—/ Avhuhwdudw—/Avhuhwdudw
v+Av v

2 2/

—|—/ Awhuhvdudv—/ A hyhydudv
w+Aw w

3 3

Auh'uhw| - Auhuhw‘ —A Avhuhw‘ +Av Avhuhw| Awhuh'u‘ +Aw Awhuhw|
— u u u v v v w w w A A A
{ Au + Av + Aw } uAvAw
— A-dS A-dS

V-A= lim Is = Is
Au — 0 AV hohohow AuAvAw
Av — 0
Aw — 0
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_ 1 8(hvthu) + 8(huthv) + 8(huthw)
B huhvhw ou ov ow

Curl

— 1, Av —p

h,Aw

. v

(v, w) L

Figure 23: A diagram depicting how to calculate Curl for generalized right-handed orthogonal curvilinear
coordinates (Image by MIT OpenCourseWare).

— A-dl
(VxA= fm A
Av — 0 hohwAvAw
Aw — 0
A-dl = [AyhyAv|, — AphyAv] o ay] + [ AwhwAw], A, — AvhwAw],]
L
A Avhv - Avhv Awhw — Awhw
(v % A)u _ lim 1 [ |w |w+Aw] + [ |U+Av |'u]
Av— 0 whw Aw Av
Aw — 0
_ 1 Jo(hwAy)  O(hyAy)
B hvhw ov ow
Similarly
- _ 1 [0(hAy)  O(hwAy)
(V X A)v - huhw |: 8’LU — au
- _ 1 [0(hyAy)  O(huAu)
(V X A)w huhv |: ou 9

oo op o L [D (hhwOfY | O (hbwOFY O (huhoOf
V=90 = e [ (e ) 2 (e 2 (ke )
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Problem 2.4
Demo 4.7.1: Charge Induced in Ground Plane by Overhead Conductor
e This problem is analogous to high voltage power line over earth problem.

e We can use image charge assumption to determine the induced charge on ground plane.

e We make use of a plane probe, insulated from the ground plane, to measure the charge induced on it
by the cylindrical conductor.

The surface charge density distribution is proportional to the voltage applied to the cylinder.

Because the probe voltage is time derivative of the applied voltage, the probe signal is 90° out-of-phase.

As the probe is moved out from below the conductor cylinder, charge induced on its surface decreases.
e Flectric field at low frequencies do not penetrate conducting body.
Demo 10.2.1: Edgerton’s Boomer
e [llustrates induction of a current in a conductor, subjected to a time varying magnetic field.
e Illustrates the interplay of laws of Faraday, Ampere, and Ohm.
e MQS conditions apply.
e 4kV capacitor voltage.
e Use of a coil probe to determine voltage induced by time varying magnetic field.
e Magnetic field produced by the coil is non-uniform, similar to that of a dipole.
e Prediction of an arc due to high electric field intensity between almost touching wires.
e Can be used to chape materials.

e Or shoot up metal plates.

Problem 3.1

Demo 8.4.1: Surface used to define flux linkage

e Copper wires were wound on a circular wooden rod, and coil inductances are measured.
e If number of turns is doubled, the measured inductance value is quadrupled
e When number of coils is doubled as well as the length, the inductance value is doubled

e Results agree well with the theoretical equation: L = %f\[z

Demo 8.2.1: Field of circular cylindrical solenoid

e Magnetic field of a large cylindrical solenoid is measured using magnetometer probe and transverse
probe

e Field insude is uniform and in the axial direction, the field outside the solenoid is close to 0.
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e Circular cylindrical solenoid is analogous to plane parallel capacitors for having uniform B-field inside
and zero B-field outside

e A transverse probe (which measures B-field intensity transverse to its surface) is used to determine
that the B-field inside is axial.

e Through a slit cut on the cylindrical solenoid, the transverse probe is used to observe the discontinuity
of the magnetic field intensity between inside and outside.

Demo 8.2.2: Field of square pair of coils

e 2 square coils 45cm apart, each has 50 turns and size of 45cm length.
e Axial magnetometer probe is used to measure the intensity of axial magnetic field

e Theoretical curve is well matched (see Figure

Same direction Opposite direction
currents | currents
|
\ \
_d da
0

Figure 24: Two graphs showing current along the x-axis of the coil with same direction current and opposite
direction current (Image by MIT OpenCourseWare).

Problem 4.1
A

Linear media = J = ¢ F , by symmetry E is only in z direction, thus current density J is also in z direction

E=E;i, , J=Jsi, o=oc(z) — a function of x

Conservation of charge V Tf + %Ltf =

0
In DC steady state % =0
€

- d
:>V~Jf:0:>%szoészJozconstant
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Depth d

Figure 25: A diagram of parallel plate electrodes enclosing a lossy dielectric with x dependent conductivity
(Image by MIT OpenCourseWare).

_ — I J Ji
J=0cFE=J,=0c(x)E, => F, = —— = ag _£(1+§)
O'(Ll?) I+Z go S

200V,
= Bp(o) = 220 (14+2) = 20 (14 2)

Total current = I = Jy(Area) = Jold = %

Vi 3
= Resistance = 70 = 20(;Sld

— dE,  d (2V} @
VP =er ==y, —edx(?)s(“s))

— 62V0
Pf = 352

Boundary conditions at x = 0 and z = s will provide the surface charges densities (see Figure .
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i

X

D,
++T++++++T+++++++++++++++

1o

Figure 26: A diagram showing the parallel plate electrodes with displacement field vectors showing the
sources of the surface charge densities (Image by MIT OpenCourseWare).

- (Dy— D) = 04y

2eVy
= at 1 =0 055 = €Fylo—0 = 3s
46V0
at x =0 Osf = _eEm‘mzs == 3s
C
° 26Vp 2eVpld

Qtotal volume — ld/o pfd(E = ld3?s = T

at x =0 Gsurface = ld05f|x:[) = % QEVOZC[

= T = — — — .
at T =5 Qurface = ldUsf\m:s _ _463‘)/;)[(1 Qtotal surface 3s Gtotal volume

Gsurface (.E = O) + qsurfacc(x = S) + Gtotal volume = 0

Problem 4.2
A

ps = 0 inside the dielectric media = use Gauss’ Laws for (a < r < b)

= V-D =0 (due to symmetry only radial D component exists)

— 10
= V.-D=0=——(2D,)=0= 12D, = c = constant = | D, = —
r2 Or r2
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Figure 27: Concentric spherical electrodes enclose a dielectric with permittivity that varies with r with no
volume charge in the dielectric (Image by MIT OpenCourseWare).
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B

Using B.C. at r=a and at r =b:

ﬁ~(D727D71):O'SR

Figure 28: The surface charge at r =

a is Do (r = a) and at » = b is —Ds,.(r = b) (Image by MIT
OpenCourseWare).
1 Voer Voer
atr=a USf:Dr|r:a:§1 1, 11,0 a2
E—E—i—gng (l77+a1nba
1 Voer —Voer
atr=2> Usf:_DT|T:b:_b2%_%+%lng:%_b_;r_%ln%
C

Total charge on inner electrode

dra?Vyer

4
q = 0s|p—adma® = ——— capacitance = - %
a—F +talng Vi g talng
Problem 4.3
2
pPor
— O<r<a
prt=0)=1 a2 ’
0 r > ag
Charge relaxation
_ 0 0
Conservation of charge: V- Jy + % =0= % F+ % =0
5 il pf
Gauss LawV~E:? o - oy = pf(t)zpf(t:())e_t/Tv T=:
f=0 =0~
_ _ €
Linear Media Jy = o F
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2
Figure 29: An infinitely long cylinder of radius ag with initial charge density ps(t = 0) = po72” for r < ag

ag

and zero for r > ag (Image by MIT OpenCourseWare).

/)07'2 e—t/T
= pf(T, t) = ag
0 > ag

;0<r<ag

Using Gauss’ Law

Gaussian contour

length L

Figure 30: An infinitely long cylinder showing a Gaussian Contour for ag < r < a1 (Image by MIT Open-
CourseWare).

}{efdaz/ prdV
S 14

2nr LE,.e = charge enclosed
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s 1 T

2711V E€ :2‘71’// pr(r’, )r'dr’ = E, = —/ pr(r' t)r'dr’
0 re Jo

—_—

charge enclosed

1 r 2 1 4 3
7/ Me%/ﬂ“’dr’ = — (Poet/ﬂ“> = &B%/T ;0<r<ag
0

re a? re \ a2 4 ) dade

= - 1 [ po(r)? _ 1L (po _yrag)  poag _

E,=i{ — %e el gy = = —e t/r20 ) = B0 —t/7 g < < ay
€ Jo ag re \ aj 4 4er

T€o Jo ag T€o

T > an

1 0 po(T’)Qr,dr, _ i @aé _ poag
az 4

 deor

Using B.C., to find surface charge at r = a,

Figure 31: An infinitely long cylinder showing vectors D, and D, that determine the surface charge density
oss (Image by MIT OpenCourseWare).

n- (bg —ﬁﬁ = Osf

2 2
POas  poad iy
Tsslr=an = 0Bl ot = €Brlimar = €oq o — G e

2
= |05 = oo (1—€t/T)

Problem 4.4

Goal: Place an image charge (or image charges) inside the cylinder such that cylinder remains an equipotential
surface. This simplifies the problem to that of infinitely long line charges.
Figure [33| shows the F field due to a line charge A

EO%E-daz/pdv
s 1%
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Figure 32: A diagram of an infinitely long line charge A a distance D from the center of an infinitely long
cylinder of radius R with charge per unit length A. (Image by MIT OpenCourseWare).

—

-~ ~ C

7 N
, N

Gaussian Contour

/ \

N\ /
N e

~~ -

——

Figure 33: A diagram of the Gaussian Contour at radius r around an infinitely long line charge (Image by
MIT OpenCourseWare).

coE 21l = A\

A
E,. =
2meqr

Potential due to a line charge:

_ d A
EFE=-Vd=FE.=——0=
dr 2mwegr

Inr + constant

4
&
[
!
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Equipotential surfaces due to two line charges of magnitude A and —A are cylinders. See Figure 2.24 in
Zahn’s book.

Figure 34: A pair of opposite polarity line charges have circular cylindrical equipotential surfaces (Image by
MIT OpenCourseWare).

Thus, if an image charge — is placed inside the cylinder at %2 (see Zahn p. 98) distance from the center,
the condition for an equipotential surface at the cylinder will be satisfied.

Figure 35: A diagram showing an image line charge —\ a distance R2/D away from the center of the cylinder
and another line charge A a distance D away from the center. (Image by MIT OpenCourseWare).

In order to satisify the condition that the surface of the cylinder holds a charge per unit length \., and
maintaining that the surface is equipotential, another image charge must be placed at the center of the
cylinder. This image charge has value A 4+ A. to keep the total cylinder charge at ..

Problem reduces to (see figure :
= Force on cylinder is due to the force on the two image line charges —A and \ + A,
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Figure 36: A diagram showing the locations of all the line charges and cylinder giving the total line charge
on the cylinder as A. (Image by MIT OpenCourseWare).

Problem 4.5

1.4.1 Magnetic field of line current

e Ampere’s law predicts B-field intensity is inversely proportional to radial distance r.
e Hall effect probe is used to measure B-field intensity.
e Hall effect proble measures B-field intensity perpendicular to its flat surface.

e Magnetic field due to a wire is non-zero only in ¢ direction.

H

A?

e

> 7

Figure 37: A graph showing the B-field radial dependence of 1/r for a long line current as predicted by
Ampere’s Law (Image by MIT OpenCourseWare).

1.6.1 Voltmeter Reading Induced by Magnetic Induction

e Contour C is given by the coil shown in Figure

e Use the coil shown in Figure to find the magnetic field associated for a current carrying wire.
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- 2lcem >

8cm 70 turns

Figure 38: A diagram showing Contour C (Image by MIT OpenCourseWare).

e Faraday integral law shows how a voltmeter reading induced by magnetic induction provides a mea-
surement of magnetic flux density.

e Observe a change in phase as coil is moved from below the wire to above the wire.
e Coil voltage is 90° out of phase with wire current.

6.6.1 An Artificial Dielectric

e Artificial dielectric is constructed of an array of conducting spheres (ping-pong balls with conductive
coating). See Figure

2R

OOQOQOOﬁ
OO000O0O00
OO0000O0O0 .

Figure 39: A diagram showing an artificial dielectric constructed of an array of conducting spheres (Image
by MIT OpenCourseWare).

e Application of voltage v to the electrodes results in the spheres acquiring negative and positive charges
on their poles.
e Insertion of dielectric array between the plane parallel conductors increases the capacitance.

9.4.1 Measurement of B-H Characteristic

e Magnetizable material

Polycrystalline and ferromagnetic materials at domain level have randomly oriented magnetic moments
that tend to cancel in the absence of applied field.

Those domains align with the applied magnetic field.

However phase delay develops between magnetization and applied field resulting in power dissipation.

Hysteresis loop
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Figure 40: A magnetization hysteresis loop (Image by MIT OpenCourseWare).

Problem 5.1

[x2+ (y —d)?] [x2+ (y +d)?] = Const

Figure 41: A diagram showing the magnetic field lines from a line current I of infinite extent in free space
above a plane of material of infinite magnetic permeability.

Line current I of infinite extent above a plane of material of infinite permeability, yu — co.

>

B = ,uﬁ = for 4 — o0, in order to have B finite, we need H zero = continuity of normal B and tangential

—

H at the surface.

B

Using method of images to satisify boundary conditions at y = 0 for medium where p — oo requires
=H,=H,=0at y=0
For a line current at origin (see Figure
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Ho

=

U— 00

@ Y

image current

Figure 42: A diagram showing how to apply the method of images for a line current I in free space above
an infinite magnetic permeability material (¢ — co)(Image by MIT OpenCourseWare).

- =~
y \C Gaussian Contour
\
\ /
\ /
N

Figure 43: A diagram depicting a Gaussian Contour to determine the magnetic field from an infinitely long
line current I (Image by MIT OpenCourseWare).

L I
jl{H~dl:]:>H¢:—
C 2

wr
G v ie A _Im
éBfQWrz(z,,smce B=VxA= o = 2y
I
:Azz—ﬂlnr—&— constant
2
= for line currents I at z =d and I at z = —d
AZ:—I;O{ln{ x2+(y—d)2]+ln[ x2+(y+d)2”
T
g 2 2] [ 2 2
= Az——ﬂln{[l‘ +(y—d) } [3: + (y + d) H
C
. S g, -~ 0, =
BZVXA:*%AZZ?JAF@AZZQ:
7%% x2+(y+d)2} + 2z [:c2+(y—d)2}filﬂ2(y—d) [m2+(y+d)2} +2(y + d) [m2+(y—d)2}f
- Y x
Am [x2+(y—d)2} [a:2+(y+d)2} 4 [x2+(y—d)2} {x2+(y+d)2}
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—

Ino | (y — d)ig — @iy (y+d)iz — @iy

5o _lmo
2 | P F(y—dP | P+ (y+d?

D

Force is applied on the line current due to the image line current

Force per unit length:

F =T x B + field due to image charge at (z =0,y = —d)

— _Z_':L'_a X NLI il_’
i o ) 2d°
pol? ~
47d by

so line current is attracted to the surface
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