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Problem 3.1
A

Figure 1: Addition of potential contributions from 2 point charges that form an electric dipole. (Image by
MIT OpenCourseWare.)

We can simply add the potential contributions of each point charge:
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p = qd. We must make some approximations. As r — oo, 74, 7—, and 7 become nearly parallel. Thus,
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Figure 2: Differences in lengths between 7, 7_, and 7 (Image by MIT OpenCourseWare.)

Similarly,
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Figure 3: The equi-potential (dashed) and field lines (solid) for a point electric dipole calibrated for 4meq/p =
100. The equi-potential lines and the electric field lines are perpendicular to each other.
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Plots of Equipotential and Field Lines

E Field Lines

1= 0.25

Figure 4: Polar plot of dipole electric field lines o sin? 8 for 0 < § < 7 and for o = 0.25, 0.5, 1, and 2 meters
with 4”% =100 volt~'-m~2 (Image by MIT OpenCourseWare.)

P =.0025 Equipotential
Lines

Figure 5: Polar plot of equipotential lines ® = 28 for 0 < 9 < 7, ® = 0, 40.0025, £0.01, +0.04, £0.16,

4meqr?

and £0.64 volts with 47;% =100 volt~'-m~2 (Image by MIT OpenCourseWare.)
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-+—— Equipotential Lines

Field Lines

Figure 6: The superposition of the previous two plots of perpendicular equipotential and field lines (Image
by MIT OpenCourseWare.)

Problem 3.2
A

We can think of the bird as a perfectly conducting small sphere. When it lands on the uninsulated wire,
it must become the same potential as the wire. This forces it to acquire a charge. When it flies away, the
charge stays with it because air is a poor conductor.

B, C

For B and C, use the method of images. We can use superposition to get the total potential for a charge ¢
at height h moving in the x direction at velocity U.

q 1 1

TS ([(w— U2+ (=R + 2 [(w— D02+ (y+ h)? + 22

where ¢ is the charged bird modeled as a point charge.

D

By boundary condition found using Gauss’ Law

- (saﬁa — sbﬁb) = 0, at the y = 0 ground plane boundary where Eb =0.
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+q | bird at (Ut, h, 2)

d=0
on xz-plane

........... @z

-g image at (Ut,-h, 2)

Figure 7: Figure for 3.2 B, C. Method of Images for charged bird taken as a point charge flying over a ground

plane (Image by MIT OpenCourseWare.)

@
GiNE.

Figure 8: Figure for 3.2 D. Field lines from point charge above a perfectly conducting ground plane (Image

by MIT OpenCourseWare.)

Because we can consider the ground plane to be a perfect conductor, 7 - E' =

€0

B, = q (y—h)

os
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Evaluate at y = 0 and substitute into above:
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For w very small, o, does not change significantly from z = 0 to z = w, so integral in z becomes just

multiplication at z = 0.
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Figure 9: Representative shape of total charge @ on the electrode versus Ut. The dashed curves are the first
(2) and second (1) terms for Q and (3) is the sum (1) + (2). (Image by MIT OpenCourseWare.)
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Figure 10: Voltage V versus time across small electrode resistance R (Image by MIT OpenCourseWare.)

Problem 3.3
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Figure 11: Magnetic field at centerpoint of rectangular line current (Image by MIT OpenCourseWare.)
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Figure 12: Line current in circular coil (Image by MIT OpenCourseWare.)
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Figure 13: Line current with semi-circular bump (Image by MIT OpenCourseWare.)

C

Contributions from left and right straight line segments are each zero because J(7') X iy = Tiy X iy =
Iy % (£0,) = 0
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Figure 14: Line current with rectangular bump (Image by MIT OpenCourseWare.)

As in part (c), contributions from segments I and V are zero (see Fig.[14). Segments II, III, and IV are
just like part (a), except integrals in y are from 0 to a and only one integral in 2 and (5) — a.
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Problem 3.4
A
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Any term with an odd power of sin or cos in ¢ integrates to 0 in ¢ because integral is over one period.
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This requires us to integrate an infinite number of infinitesimal current shells of the type in (a) from r = Ry
to RQ.
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Problem 3.5
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Image
Figure 15: Line current above perfectly conducting plane at y = d with image current at y = —d (Image by

MIT OpenCourseWare.)
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Let £ =2/ — 2z = d¢ = dz’. Both mtegrands are even functions in &.
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Force comes from the image current

F = (1i.) x (uoH (x = 0,y = d))
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