
MIT OpenCourseWare
http://ocw.mit.edu 

6.641 Electromagnetic Fields, Forces, and Motion
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.641 Electromagnetic Fields, Forces, and Motion, Spring 2009 Prof. Markus Zahn 

Additional Problems – Spring 2009 
 
Problem 1.1 – Coulomb-Lorentz Force Law 
 

i) An electroscope measures charge by the angular deflection of two identical 
conducting balls suspended by an essentially weightless insulating string of length 
l.  Each ball has mass M in the gravity field g and when charged can be 
considered a point charge. 

 

s 

A total charge Q is deposited on the two identical balls of the electroscope when 
they are touching.  The balls then repel each other and the string is at an angle θ  
from the normal which obeys a relation of the form 
 

2tan sin constantθ θ =  
 

a) What is the constant? 
 
 
 

ii) A point charge –Q1 of mass m travels in a circular orbit of radius R about a stationary  
    charge of opposite sign Q2. 

 
 

 
 

a) What is the equilibrium angular speed of the charge –Q1? 
b) This problem describes Bohr’s one electron model of the atom 

if the charge –Q1 is that of an electron and Q2=Ze is a nuclear 
charge, where Z is the number of protons.  According to the 
postulates of quantum mechanics the angular momentum L of the 
electron must be quantized, / 2L mvR nh π= = , n = 1, 2, 3,… 
where 346.63 10h −= ×  joule-sec is Planck’s constant.  What are 
the allowed values of R? 

c) For the hydrogen atom (Z=1), what is the radius of the smallest 
allowed orbit and what is the electron orbital velocity? 
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iii) A charge q of mass m with initial velocity 0v ixv=  is injected at x=0 into a region 
of uniform electric field 0 zE E i= .  A screen is placed at the position x=L.  At what 
height h does the charge hit the screen?  Neglect gravity. 

 

 
 
iv) The charge to mass ratio of an electron e/m was first measured by Sir J. J. Thomson 

in 1897 by the cathode-ray tube device shown.  Electrons emitted by the cathode 
pass through a slit in the anode into a region with crossed electric and magnetic 
fields, both being perpendicular to the electrons velocity.  The end screen of the 
tube is coated with a fluorescent material that produces a bright spot where the 
electron beam impacts. 

 

 
 

a) What is the velocity of the electrons when passing through the slit if their 
initial cathode velocity is ? 0v

b) The electric field 2( / ) yE V s i=  and magnetic field 0 zB B i=  are adjusted so 
that the vertical deflection of the beam is zero.  What is the initial electron 
velocity  in terms of  and m? (Neglect gravity.) 0v 1 2 0, , , , ,V V s B e

c) The voltage V2 is now set to zero.  What is the radius R of the electrons 
motion about the magnetic field in terms of  and m? 1 0 0, , ,V B v e,

d) With , what is e/m in terms of , and R? 2 0V = 1 0 0, ,V B v
 
v) A point charge q with mass m and velocity v  moves in a vacuum through a 

magnetic field H .  Newton’s law for this charge is: 
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  Hvq
dt
vdm oμ×=  

A uniform magnetic field in the z direction is imposed 

zoiHH =  
Solve Newton’s law for the three velocity components , and  for initial 
conditions 

yx vv , zv

zzoyyoxxo ivivivtv ++== )0(  
Note that the velocity magnitude is constant so that a circular motion results in the x-y 
plane. 
a) What is the radius of the circle? 
b)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           

The mass spectrograph uses the circular motion to determine the masses of 
ions and to measure the relative proportions of isotopes. Charges enter 
between parallel plate electrodes with a y directed velocity distribution. 
Gravitational effects are negligible compared to the electric/magnetic forces 
since the ions have so little mass. 
 

To pick out those charges with a particular magnitude of velocity, perpendicular 
electric and magnetic fields are imposed so that the net force on a charge is  
 
 )( HvEqf oμ×+=  
 
For charges to pass through the narrow slit at the end of the channel, they must 
not be deflected by the fields which require this force to be zero. For a selected 
velocity oy vv = , what is the required applied electric field and thus the necessary 
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voltage V for a given magnetic field zoiHH =  so that an ion will make it through 
this slit undeflected? The plate electrodes have a spacing, s, as shown in the 
figure. 
 

 

c) Note that the charge circular path diameter d depends on the ion mass, and so can 
be used to detect different isotopes that have the same number of protons but a 
different number of neutrons. The isotopes thus have the same charge but 
different masses. Typically V 100= −  volts across a s =1 cm gap with a magnetic 
field of oμ H=1 tesla. The mass of a proton and neutron are each about m=1.67 x 

kg. Consider the three isotopes of magnesium 12 , and 
, each deficient of one electron. At what positions d will each isotope hit 

the photographic plate? 

2710 − 2524 12, MgMg
2612Mg

 
Problem 1.2 
 

A magnetron is essentially a parallel plate 
capacitor stressed by constant voltage V  
where electrons of charge -e are emitted at 
x=0, y=0 with zero initial velocity. A 
transverse magnetic field 

o

o zB i  is applied. 
Neglect the electric and magnetic fields due to 
the electrons in comparison to the applied 
field. 

(a) What is the velocity and displacement of 
an electron, injected from the cathode with zero initial velocity at t=0? 

(b) What value of magnetic field will just prevent the electrons from reaching the other 
electrode? This is the cut-off magnetic field.  

(c) A magnetron is built with coaxial electrodes where electrons are injected from 
, r a= 0φ =  with zero initial velocity.  Using the relations 

cos sinr x yφ φ= +i i i  

sin cosx yφ φ φ= − +i i i  

show that 
i i ir vd d

dt dt r
φ

φ φ
φ

= =  
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i
i ir r

d vd
dt dt r
φ φφ
= − = −  

What is the acceleration of a charge with velocity 
v= i ir rv vφ φ+ ? 

(d) Find the velocity of the electron as a function of radial position. 

Hint: 21
2

r r r
r r

dv dv dvdr dv v
dt dr dt dr dr

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 

  r

dv dv dvdr v
dt dr dt dr

φ φ φ= =  

(e) What is the cutoff magnetic field?  Check your answer with (b) in the limit b a  
where . 

s= +
s a

 

Problem 1.3 
 
In a spherically symmetric configuration, the region r < b has the non-uniform charge 
density ρbr/b  and is surrounded by a region b < r < a having the uniform charge density 

aρ .  At r = b there is no surface charge density, while at r = a there is a perfectly 
conducting sheet with surface charge density that assures E = 0 for r > a. 

(a) What is the total charge in the regions 0< r< b and b < r < a? 
(b) Determine E in the two regions r < b and b < r < a. 
(c) What is the surface charge density at r = a? 
(d) What is the total charge in the system for 0< r≤ a. 

 
Problem 1.4 
 
In polar coordinates, a non-uniform current density 0 /J r b zi  exists over the cross-section 
of a wire having a radius b.  The total current in the wire is returned in the -z direction as 
a uniform surface current at the radius r = a where a> b. 

(a) What is the surface current density at r = a? 
(b) Find the magnetic field in the regions 0 < r < b, b < r < a, and r > a. 

 
 
 
Problem 1.5 
Write a brief paragraph of what you saw and what you learned from viewing each of the 
assigned video demonstrations. 
 
Demos: 1.3.1 and 1.5.1, and 11.7.1. 
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Problem 2.1  

The superposition integral for the electric scalar potential is 

 ( )( )
4 oV

r dVr
r r

ρΦ
πε′

′ ′
=

′−∫         (1) 

The electric field is related to the potential as 

 )()( rrE Φ−∇=         (2) 

Figure 4.5.1 from Electromagnetic Fields and Energy by Hermann A. Haus and James R. Melcher. Used 
with permission. 

The vector distance between a source point at Q and a field point at P is: 

 zyx izziyyixxrr )()()( ′−+′−+′−=′−      (3) 

(a) By differentiating r r′−  in Cartesian coordinates with respect to the unprimed 
coordinates at P show that  

 
23

)(1
rr

i
rr

rr
rr

rr

′−

−
=

′−

′−−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
′−

∇ ′

     (4) 
where rri ′  is the unit vector pointing from Q to P. 

(b) Using the results of (a) show that 
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2

( )( ) 1( ) ( )
4 4

r r

oV V o

r irE r r dV dV
r r r r

ρρΦ
πε πε

′

′ ′

⎛ ⎞ ′′
′ ′= −∇ = − ∇ =⎜ ⎟⎜ ⎟′− ′−⎝ ⎠

∫ ∫   (5) 

 

 

(c) A circular hoop of line charge λ0 coulombs/meter with radius a is centered about 
the origin in the z=0 plane. Find the electric scalar potential along the z-axis for z<0 
and z>0 using Eq. (1) with φλρ adVdr o=′′)( .  Then find the electric field 
magnitude and direction using symmetry and E = −∇Φ .  Verify that using the last 
integral in Eq. (5) gives the same electric field.  What do the electric scalar potential 
and electric field approach as ∞→z  and how do these results relate to the potential 
and electric field of a point charge? 

(d) Use the results of (c) to find the electric scalar potential and electric field along the 
z axis for a uniformly surface charged circular disk of radius a with uniform surface 
charge density σ0 coulombs/m2. Consider z>0 and z<0.  
 

(e) What do the electric scalar potential and electric field approach as  and how 
do these results relate to the potential and electric field of a point charge?   
 

∞→z

(f) What do the potential and electric field approach as the disk gets very large so that 
 

 
∞→a

(g) Consider the case where the line charge density of (a) is a function of angle φ,          
λ(φ)=λ0 sin φ.  What is the electric scalar potential along the z-axis?  Can you use 
Eq. (1) to find the electric field along the z-axis? 
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(h) Use Eq. (5) to find the electric field along the z-axis. 
Find lim ( 0, )

z
E r z

→∞
= . 

 
(i) Now consider that the surface charge density in (b) is a function of φ, 

σ(φ) = σ0 sin φ.  What is the electric scalar potential along the z-axis?  Can you use 
Eq. (1) to find the electric field along the z-axis? 

(j) Use the results of (h) to find the electric field along the z-axis. Find 
lim ( 0, )
z

E r z
→∞

= . 

Problem 2.2 

The curl and divergence operations have a simple relationship that will be used 
throughout the subject. 

(a) One might be tempted to apply the divergence theorem to the surface integral in 
Stokes’ theorem. However, the divergence theorem requires a closed surface 
while Stokes’ theorem is true in general for an open surface. Stokes’ theorem for 
a closed surface requires the contour to shrink to zero giving a zero result for the 
line integral. Use the divergence theorem applied to the closed surface with vector 

 to prove that A×∇ 0)( =×∇•∇ A . 
 

(b) Verify (a) by direct computation in Cartesian and spherical coordinates. 

Problem 2.3 

A general right-handed orthogonal curvilinear coordinate system is described by 
variables (u, v, w), where 
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Since the incremental coordinate quantities du, dv, and dw do not necessarily have units 
of length, the differential length elements must be multiplied by coefficients that 
generally are a function of u, v, and w: 

   dLu = hudu, dLv=hvdv, dLw=hwdw

(a) What are the h coefficients for the Cartesian, cylindrical, and 
spherical coordinate systems? 

(b) What is the gradient function of any function f(u,v,w)? 
(c) What is the area of each surface and the volume of a differential 

size volume element in the (u, v, w) space? 
(d) What are the curl and divergence of the vector 

                     A = Auiu + Aviv + Awiw? 

(e) What is the scalar Laplacian ? 

(f) Check your results of (b)-(e) for the three basic coordinate 
systems. 

Problem 2.4 
Write a brief paragraph of what you saw and what you learned from viewing each of the 
assigned video demonstrations. 

Demos: 4.7.1 and 10.2.1 

Problem 3.1 
Write a brief paragraph of what you saw and what you learned from viewing each of the 
assigned video demonstrations. 
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Demos: 8.2.1, 8.2.2, and 8.4.1 

Problem 4.1 
 
A pair of parallel plate electrodes at voltage difference  enclose an Ohmic material 

whose conductivity varies with position as 

0V

0( )
1 /

x
x s
σσ =
+

.  The permittivity ε  of the 

material is a constant.  

x

 0, ( )
1 /

x
x s
σε σ =
+

 

 
a) Find the electric field  and the resistance between the electrodes. ( )xE x
b) What are the volume and surface charge densities? 
c) What is the total volume charge in the system and how is it related to the total 

surface charge on the electrodes? 
 
Problem 4.2 

 

 

+ 

_ 
v 

  
 
 
 
 
 
 
 
 
Concentric spherical electrodes with respective radii a and b enclose a material whose 
permittivity varies with radius as 1( ) /(1 / )r r aε ε= + .  A voltage v is applied across the 
spherical electrodes.  There is no volume charge in the dielectric. 
 

a) What are the electric field and potential distributions for a<r<b? 
b) What are the surface charge densities at r=a and r=b? 
c) What is the capacitance? 

 
Problem 4.3 
 

 
1( ) /(1 / )r r aε ε= +  
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An infinitely long cylinder of radius a1, permittivity ε , and conductivity σ  is 
nonuniformly charged at t=0: 

2

2 0
( 0)

0

o
o

f o

o

r r a
t a

r a

ρ
ρ

⎧
< <⎪= = ⎨

⎪ >⎩

 

 
 

ε, σ

a0

a1

 
 
 

ρf (t)  
 ε0
 
 
 
What is the time dependence of the electric field everywhere and the free surface charge 
density at r=a1 as a function of time?  At time t=0  the surface charge at r=a, is zero. 
 
 
Problem 4.4 
 
An infinity long line charge λ is a distance D from the center of a conducting cylinder of 
radius R that carries a total charge per unit length λc.  What is the force per unit length on 
the cylinder? 
 
 
 (Hint:  Where can another 

image charge be placed with the 
cylinder remaining an 
equipotential surface?) 

λc

R 
λ 
• 

D 

 
 
Problem 4.5 
Write a brief paragraph of what you saw and what you learned from viewing each of the 
assigned video demonstrations. 
 
Demos: 1.4.1, 1.6.1, 6.6.1, and 9.4.1. 
 
Problem 5.1 
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A line current I of infinite extent in the z direction is at a distance d above an infinitely 
permeable material as shown above. 

a. What is the boundary condition on the magnetic field at y=0? 
b. Use the method of images to satisfy the boundary condition of (a) and find the 

magnetic vector potential for y>0. 
c. What is the magnetic field for y>0? 
d. What is the force per unit length on the line current at y=d? 
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