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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005 

Final- Solutions 2004 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 1


Figure 1: A potential sheet between two lossless dielectrics with a perfect conductor placed at x = s. 

A potential sheet of infinite extent in the y and z directions is placed at x = 0 and has potential 
distribution Φ(x = 0, y) = V0 cos(ky). Free space with no conductivity (σ = 0) and permittivity �0 is present 
for x < 0 while for 0 < x < s a perfectly insulating dielectric (σ = 0) with permittivity � is present. The 
region for x > s is a grounded perfect conductor at zero potential. 

A 

Question: What are the potential distributions for x < 0 and 0 < x < s? 

Solution: 
� 

V0 cos(ky)ekx x < 0 
Φ(x, y) = 

−V0 sinh(k(x−s)) cos(ky) 
sinh(ks) 0 < x < s 
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B 

Question: What are the surface charge densities at x = 0, σf (x = 0, y), and at x = s, σf (x = s, y)? 

Solution: 

∂Φ −kV0 cos(ky)ekx x < 0

Ex =
 kV0 cosh(k(x−s)) cos(ky)−

∂x 
=

0 < x < ssinh(ks)


σf (x = 0, y) = �Ex(x = 0+, y) − �0Ex(x = 0−, y)


= [�0 + � coth(ks)] kV0 cos(ky)


σf (x = s, y) = −�Ex(x = s−, y)


−�kV0 cos(ky)

= 

sinh(ks) 

Question: What is the force, magnitude and direction, on a section of the perfect conductor 
at x = s that extends over the region 0 < y < π

k 
and 0 < z < D? 

y sin(2y)Hint: 
� 

cos2 ydy = 2 4+ . 

Solution: 

Fx 1 
σfEx x=s =

1 
�Ex

2 
x=s =

1 �(kV0 cos(ky))2 

area 
=

2 
| −

2 
| −

2 sinh2(ks) 
π 

1 �k2V0
2D k 

2 π �kV0
2D


Fx =
 −
2 sinh2(ks) 0 

cos kydy = −
4 sinh2(ks) 
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Problem 2 

Figure 2: Parallel plate electrodes 

Parallel plate electrodes with spacing h and depth D are excited by a DC current source I. An elastic rod 
surrounded by free space has mass density ρ, modulus of elasticity E, equilibrium length l and has infinite 
ohmic conductivity σ. The elastic rod end at x = 0 is fixed while the deflections of the rod are described as 
δ(x, t) and are assumed small |δ(x, t)| � l. The rod width l− δ(−l, t) changes as I is changed because of the 
magnetic force. The DC current flows as a surface current on the x = −(l − δ(−l, t)) end of the perfectly 
conducting rod. 

A 

Question: Calculate Hz in the free space region −a < x < −(l − δ(−l, t)). Neglect fringing field 
effects and assume h � a and h � D. 

Solution: 

I 
Hz = 

D 

B 

Question: Using the Maxwell Stress Tensor calculate the magnetic force per unit area on the 
x = −(l − δ(−l, t)) end of the rod. 

Solution: 

zTxx =
2

1 
µ0 

� 

Hx 
2 − Hy 

2 − H2
� 

�

� 

x=−(l−δ(−l,t)) 
= − µ

2 
0 

D

I2

2 

Fx �

� 

µ0 I
2


area 
= −Txx � 

x=−(l−δ(−l,t)) 
=

2 D2


3 



� 

� 

� � 

� 

� 

� 

� 

C 

Final: 2004 6.641, Spring 2005 

Question: Calculate the steady state change in rod length δ(x = −l). 

Solution: 

0 

∂2δ�� ∂2δ −µ0I
2 −µ0I

2 x 
ρ � = E 
�∂t2 ∂x2 

⇒ δ = ax + b a =
2D2E 

⇒ δ(x) =
2ED2 

δ(x = 0) = b = 0


∂δ 
�

� µ0 I2 µ0I
2


E = 
∂x 

Txx = −
2 D2 

= Ea δ(−l) =
2ED2 

x=−l 

D 

Question: Noise creates fluctuations δ�(x, t) in longitudinal displacement. What are the natural 
frequencies of the rod? 

Solution: 

∂2δ� ∂2δ� 
ρ = E , δ�(x, t) = Re δ̂(x)ejωt 

∂t2 ∂x2


ρω2 

δ̂(x) = �E
d2δ d2δ̂

+ k2δ̂ = 0, k2 = 
ω2ρ
− 

E dx2 
⇒ 

dx2 E


δ̂(x) = A sin(kx) + B cos(kx)


δ̂(x = 0) = B = 0


dδ̂
� 

π 
� = 0 = kA cos(kl) kl = (2n + 1) , n = 0, 1, 2 

dx � 

⇒
2

x=−l 

ρ π

ωn
 = kn = (2n + 1)

E 2l 

E π 
(2n + 1), n = 0, 1, 2ωn = 

ρ 2l
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Problem 3 

Figure 3: An electrical transmission line 

An electrical transmission line of length l has characteristic impedance Z0. Electromagnetic waves can 
travel on the line at speed c, so that the time to travel one-way over the line length l is T = l

c 
. The line is 

matched at z = 0 and is short circuited at z = l. At time t = 0, a lightning bolt strikes the entire line so 
that there is a uniform current along the line but with zero voltage: 

i(z, t = 0) = I0 0 < z < l 

v(z, t = 0) = 0 0 < z < l 

Since the voltage and current obey the telegrapher’s relations: 

∂v ∂i 1 
= , c = 

∂z 
−L

∂t
√

LC 

∂i ∂v L 
= , Z0 =−C 

∂z ∂t C 

the voltage and current along the line are related as 

dz c+ + c− 

v + iZ0 = c+ on = c v = 
dt 

⇒
2 

dz c− 

v − iZ0 = c− on 
dt 

⇒
2 

= −c iZ0 = 
c+ −

A 

Question: The solutions for v(z, t) and i(z, t) can be found using the method of characteristics 
within each region shown below (see exam questions). Within regions 1-9 give the values of 
c+, c−, v and iZ0. 

Solution: See Figure 4. 

B 

Question: Plot v(z, t = T 
4 ) and i(z, t = T 

4 ). 
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z 

matched 

at z = 0, 

short circuited 

T 2T 3T 

1 

2 

3 

4 

8 

7 

6 9 

5 

c+ = 0 

c- = -I0 Z0 

v = -I0 Z0 , 

2 2 

i = I0 

c+ = 0 

c- = 0 

v = 0 , i = 0 

c+ = - c- = I0 Z0 

i = I0 

c+ = c­ = 0 

v = 0 , i = 0 

c- = 0 

c+ = 0 

v = 0 , i = 0c+ 
= 0 

c-

v = 0 

at z = l, 
c­

= -1 
c+ 

t 

l


c+ = - c- = I0 Z0 

v = 0 , i = I0 

0 

Figure 4: Values of c+, c−, v and iZ0 in regions 1-9. (Image by MIT OpenCourseWare.) 

Solution: 

Figure 5: plots of v(z, t = T 
4 

T 
4) and i(z, t = ) for problem 2, part B (Image by MIT OpenCourseWare.) 

C 

Question: How long a time does it take for the transmission line to have v(z, t) = 0 and i(z, t) = 0 
everywhere for 0 < z < l for all further time? 

Solution: 2T 
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Problem 4 

Figure 6: A perfectly conducting membrane stressed from below by magnetic field H0ix 

A perfectly conducting membrane of depth D with mass per unit area σm and tension S is a distance h 

above a rigid perfect conductor. The membrane and rigid conductor are in free space and support currents 
such that when the membrane is flat, ξ(x, t) = 0, the static uniform magnetic field intensity is H0. As the 
membrane deforms, the flux through the region between membrane and rigid conductor is conserved. The 
system is in a downward gravity field with gravitational acceleration ḡ = −gīz. The membrane deflection 
has no dependence on y and is fixed at its two ends at x = 0 and x = l. 

A 

Question: Assuming that ξ(x, t) � h and that the only significant magnetic field component is 
x directed, how is Hx(x, t) approximately related to ξ(x, t) to linear terms in ξ(x, t)? 

Solution: 

H0h H0 ξ 
Hx(h + ξ) = H0h ⇒ Hx = 

h + ξ 
=

1 + 
≈ H0(1 −

hξ 
) 

h 

B 

Question: Using the Maxwell Stress tensor and the result of part(a), to linear terms in small 
displacement ξ(x, t), what is the z directed magnetic force per unit area, Fz, on the membrane? 

Solution: 

⎛ ⎞ 

µ0 
0 0 

µ0 
H2 

� 

ξ 
�2 

µ0H0
2 � 

2ξ 
�


Tzz = y

⎝Hz 

2 − H2 H2 
⎠ = 0 1 − 1 −x − − ≈ −

2 2 h 2 h 

µ0H0
2 2ξ 

Fz = −Tzz = 1 −
2 h 
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Question: To linear terms in small displacement ξ(x, t), express the membrane equation of 
motion in the form 

∂2ξ ∂2ξ 
a = b + cξ + d 

∂t2 ∂x2 

What are a, b, c, and d? 

Solution: 

∂2ξ ∂2ξ 
= Sσm 

∂t2 ∂x2 
+ Fz − σmg 

∂2ξ H0
2 � 

2ξ 
� 

= S 
∂x2 

+ µ0 
2

1 − 
h 

− σmg 

µ0H0
2 µ0H0

2 

a = σm, b = S, c = − 
h 

, d =
2 

− σmg 

D 

Question: What value of H0 is needed so that in static equilibrium the membrane has no sag, 
ξ(x, t) = 0. 

Solution: 

1

2µ0H0
2 2σmg 

2
= σmg ⇒ H0 = 

µ0 

E 

Question: About the equilibrium of part (d), what is the ω−k dispersion relation for membrane 
deflections of the form 

ξej(ωt−kx)ξ(x, t) = Re ˆ ? 

Solve for k as a function of ω and system parameters. 

Solution: 

−σmω2 = −Sk2 − µ0

h

H0
2


k2 σm 
ω2 µ0H0

2


= 
S 

− 
hS 

1

2 

1

2 

= ±k0 
σmω2 µ0H0

2 

k = ± −
S hS 

σmω2 µ0H0
2 

k0 = + 
S 

− 
hS 
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F 

Question: Using all the values of k found in part (e), find a superposition of solutions of the 
form of ξ(x, t) given in (e) that satisfy the zero deflection boundary conditions at the ends of 
the membrane at x = 0 and x = l. What are the allowed values of k? 

Solution: 

ξ(x, t) = Re ejωt ξ̂1e 
−jk0x + ξ̂2e 

+jk0x 

ξ(x = 0, t) = 0 = Re ejωt ξ̂1 + ξ̂2 ξ̂2 = −ξ̂1⇒ 

ξ(x, t) = Re ejωtξ̂1 
� 

e −jk0x ejk0x 
� 

−

= Re ejωtξ̂1(−2j) sin(k0x) 

ξ(x = l, t) = 0 = Re ejωtξ̂1(−2j) sin(k0l) = 0 

sin(k0l) = 0 k0l = nπ, n = 1, 2, . . . ⇒

G 

Question: Is this system always stable or under what conditions can it be unstable? When 
stable, what are the natural frequencies and if unstable what are the growth rates of the in­
stability? 

Solution: 

ω2 S
k2 + 

µ0H0
2 

= 
σm hσm 

1 
�2 2S � nπ µ0H

2 

ωn = + 0 Always stable as ωn real. 
σm l hσm 
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