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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005 

Problem Set 9 - Questions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 9.1 (W&M Prob 7.9)


Figure 1: A cylindrical column of plasma within a long solenoid 

As a possible plasma containment scheme, it has been proposed to create a cylindrical column of plasma 
within a long solenoid. The plasma is created by use of an arc discharge through a gas. After the plasma 
is formed the solenoid is excited by rapid discharge of a capacitor bank connected to the terminals. The 
magnetic field of the solenoid is initially excluded from the interior of the plasma column by surface currents 
which flow in the theta direction on the plasma; for this reason the device is called a “Theta-pinch machine.” 
Because the plasma has only a finite conductivity, the magnetic field diffuses into the interior. Therefore to 
design the machine it is necessary to determine the time associated with this field diffusion. In Fig. 7P.9a 
the plasma column is shown in the magnetic field. Neglect end effects by assuming an infinitely long system. 
Furthermore, assume that the plasma remains stationary during the diffusion process. 

A 

Write an equation governing the magnetic flux density B inside the plasma. 

B 

Because there are only θ currents independent of θ, assume that B = izB(r, t), where B(r, t) has the form 

B(r, t) = µ0H0 − B̂(r)e −αt , α > 0 

which satisfies the condition that B(r, t) µ0H0 as t → ∞. Using the results of part (a), write an equation 
for B̂(r). 

→

The equation obtained in part (b) for B̂(r)is called “Bessel’s equation of zeroth order.” The general solution 
to this equation is 

B̂(r) = C1J0(
√

µ0σαr) + C2N0(
√

µ0σαr), 

1 
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Table 1: Roots of J0(vi) = 0 and the Corresponding Values of J1(vi) 
i vi J1(vi) 
1 2.4048 0.5191 
2 5.5201 -0.3403 
3 8.6537 .2715 
4 11.7915 -0.2325 
5 14.9309 0.2065 
6 18.0711 -0.1877 

where J0 is the Bessel function of zeroth order and the first kind and N0 is the Bessel function of zeroth 
order and the second kind (sometimes called a “Neumann function”). See Fig. 7P.9b. Using the boundary 
condition at r = 0, argue that C2 = 0, hence that B̂(r) = C1J0(

√
µ0σαr). 

Figure 2: Bessel functions of zeroth order 

D 

Now apply the boundary condition at r = a that B(r, t) = µ0H0 for all t > 0 and show that J0(
√

µ0σαa) = 0. 
This transcendental equation determines the allowed values of α. The values of α may be obtained from 
Table 1 as 

√
µ0σαa = vi; α =

1 � vi 
�2 

µ0σ a 

where J0(vi) = 0. 

E 
rOn examination of the results, it is evident that B̂(r) = CiJ0 

� 

vi 

� 

a 

�� 

is a solution for any of the allowed 
values of vi. The most general solution for B(r, t) is obtained by using superposition; hence 

∞ � � 

�

� r � vi 
2t 

B(r, t) = µ0H0 − CiJ0 vi 
a 

−
µ0σa2

exp 
i=1 

2 
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and to evaluate the constants Ci the last boundary condition B(r, t = 0) ≡ 0 is used. This condition implies 
that 

∞ 
� � 

� r

CiJ0 vi
 = µ0H0 

a 
i=1 

which is just a series in terms of the functions J0 vi a
r . Using the integrals 

a � � � � a 2 

J1
2(vi) vi = vjr r 

rJ0 vi dr = 2


0 a a 0 vi = vj


J0 vj 

and 
� a � � 2 

�
r a

rJ0 vi dr = J1(vi) 
0 a vi 

evaluate C1, C2 and C3. 

F 

What is the fundamental time constant for the diffusion? Evaluate this time constant for a = 5 cm and 
σ = 104/4π(Ωm)−1 . 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 9.2 (W&M Prob 8.7) 

Figure 3: Two perfectly conducting plates with an applied magnetic field 

Two perfectly conducting plates are arranged as shown in Fig. 8P.7. A magnetic field trapped between 
the plates is established in such a way that it does not penetrate the perfectly conducting plates. Also H3 = 0 
and ∂ = 0. Under the assumption that b � L, find the x1−component of the force per unit x3 on the 

∂x3 

section of the lower plate between x1 = L and x1 = −L. You may assume that, when x1 = −L, H = H0i1, 
where H0 is a known constant. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.


Problem 9.3 (W&M Prob 8.11) 

Two parallel conducting plates with a potential difference V0 are shown in Fig. 8P.11. Assuming that 
c < b < a � l � D and that the fringing fields are zero at the extreme points A and B, find the force in the 
x1 direction on the lower plate. 
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Figure 4: Two parallel conducting plates with potential difference V0 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 9.4 (W&M Prob 8.12) 

Figure 5: Parallel perfectly conducting electrodes with imposed potential distribution along x1 = 0 

In Fig. 8P.12 two parallel perfectly conducting electrodes extend from x1 = 0 to x1 = and are infinite ∞
πin the x3 direction. The separation of the electrodes in the x2 direction is a. A potential φ = φ0 sin 
a 

x2 

is established along the x2-axis at x1 = 0. 

A 

Find the electric field intensity E everywhere between the plates and sketch. 

B 

Find the total force on the bottom plate per unit depth in the x3 direction. 

Find the total force on the top plate per unit depth in the x3-direction. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 9.5 (W&M Prob 7.14) 

You are working on a transportation project and are asked to make an analysis of the following basic method 
of both levitating and propelling a train. The train rides just above a track which is composed of a slab 

4 
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Figure 6: Magnetic levitation and propulsion 

with conductivity σ. Superconducting coils within the train are arranged to produce a current that can be 
represented by the current sheet K (see Fig. 7P.14). This current sheet is backed by a highly permeable 
magnetic shield (µ → ∞) which is also attached to the train. (The shield prevents magnetization of the 
passengers’ watches and the attendant possibility that t = t�.) Here x� is the distance measured with respect 
to the moving train. Hence, because the train is moving in the x-direction with velocity U , x = Ut + x . We 
wish to compute the time average force per unit area that presumably holds the train a distance s (ks � 1) 
above the track. 

A 

Express the surface current in the fixed frame K(x, t). 

B 

Assume that the track is infinitely thick in the y-direction (under what conditions is this a good assumption?) 
and compute the magnetic field and current in the conducting track. Assume that ∂ = 0.

∂z 

Compute the time average force per unit area (in the x − z plane) that holds up the vehicle. 

D 

Compute the force per unit (x − z) area that tends to propel the train in the x− direction. Do you see any 
basic problems with the proposed scheme of propulsion? 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 9.6 (W&M Prob 8.21) 

In problem 7.14 a vehicle system was proposed in which a magnetic field provided both suspension (i.e., 
levitation) and propulsion forces. There it was assumed that the condition ks � 1 is valid and, to calculate 
the volume force density, J × B was applied. The Maxwell stress tensor provides an alternate and useful 
method for the calculation of the forces per unit area (Fig. 8P.21). The solution for the magnetic field in the 
region −∞ < y < 0 is 

Bx = Re µ0K0e
αyejk(x−Ut) 

5 
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Figure 7: Proposed vehicle system using magnetic levitation 

and 

αy jk(x−Ut)By = Re 
−jkµ0K0 

e e
α 

where 

1 

µ0σU 2 

α = k 1 − j
k 

A 

Write the components of the Maxwell stress tensor explicitly in terms of Bx and By. Present your results in 
matrix form. 

B 

Using the stress tensor, compute the time average force per unit area (in the x − z plane) that holds the 
vehicle up. Take advantage of the periodic variation with x to define a suitable surface. 

Again using the stress tensor, compute the time average force per unit area (x − z) that tends to propel the 
train. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 2: Fields, Forces, and Motion. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.

Problem 9.7 

The figure below shows a magnetohydrodynamic generator. In this generator, a fluid having conductivity 
σ and free-space permeability is pumped through a rectangular channel with velocity U in the x̂ direction. 
The width and height of the channel are W and D respectively. The channel passes through the gap of a 
perfectly-permeable C-core of width T in the x̂ direction. The C-core is excited by a perfectly-conducting 
N-turn field coil that carries the current iF and has a terminal voltage vF . The two side walls of the channel 
make perfect electrical contact with the fluid over the width T as the channel passes through the C-core. 
The current through these armature contacts is iA and the voltage across them is vA. A two-dimensional 
view of the MHD generator is shown in Figure 9. 

6 
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Figure 8: Magnetohydrodynamic generator 

Figure 9: Two-dimensional view of the magnetohydrodynamic generator 

A 

Determine the ẑ-directed magnetic flux density in the gap of the C-core in terms of the field current iF , 
and the parameters of the generator. Make reasonable magnetic circuit approximations, and ignore the flux 
density sourced by the armature current. 

7 
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B 

Determine the self-inductance of the field coil in terms of the parameters of the generator. 

The static terminal relation for the armature takes the form 

vA = RiA + GUiF 

Determine R and G in terms of the parameters of the generator. 

Hint: J = σ(E + v × B) 

D 

Determine the mechanical power that is required to pump the fluid through the channel in terms of iA, iF , U , 
and the parameters of the MHD generator. 

E 

The generator is connected such that iF = −iA and vF = vA as shown below, in an effort to produce 
self-excitation. For what range of U will it exhibit such self-excitation? Ignore any armature inductance. 

Figure 10: An effort to produce self-excitation 
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