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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005 

Problem Set 7 - Questions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 7.1 (W&M Prob 3.3) 

A slab of dielectric slides between plane parallel electrodes as shown. The dielectric obeys the constitutive 
law D = α (E · E)E + ε0E, where ε0 is the permittivity of free space and α is a constant. Find the force of 

eelectrical origin on the slab. Your answer should take the form f = fe(v, x). 

Figure 1: A slab of dielectric sliding between parallel electrodes 

Courtesy of Herbert Woodson and James Melcher. Used with permission. 
Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics, 
Part 1: Discrete Systems. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.
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Problem 7.2 (W&M Prob. 3.16) 

A plane electrode is free to move into the region between plane-parallel electrodes, as shown in Fig. 3P.16. 
The outer electrodes are at the same potential, whereas the inner electrode is at a potential determined by 
the constant voltage source V0 in series with the output of an amplifier driven by a signal proportional to 
the displacement of the movable electrode itself. Hence the voltage of the inner electrode relative to that of 
the outer electrodes is v = −V0 + Ax, wehre A is a given feedback gain. Find the force of electrical origin 
fe(x). (Note that this force is only a function of position, since the voltage is a known function of x.) 

Figure 2: A plane electrode with position dependent voltage v = −V0 + Ax free to move between grounded 
plane-parallel electrodes. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 1: Discrete Systems. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.
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Problem 7.3 (W&M Prob. 3.4) 

A magnetic circuit, including a movable plunger, is shown in Fig. 3P.4. The circuit is excited by an N -
turn coil and consists of a perfectly permeable yoke and plunger with a variable air gap x(t) and a fixed 
nonmagnetic gap d. The system, with the cross section shown, has width w into the paper. The following 
parts lead to a mathematical formulation of the equations of motion for the mass M , given the excitation 
I(t). 

A 

Find the terminal relation for the flux λ(i, x) linked by the electrical terminal pair. Ignore fringing in the 
nonmagnetic gaps. Note that the coil links the flux through the magnetic material N times. 

B 

Find the energy Wm(λ, x) stored in the electromechanical coupling. This should be done by making use of 
part (a). 

eUse the energy function W m(λ, x) to compute the force of electrical origin f acting on the plunger. 

D 

Write an electrical (circuit) equation of motion involving λ and x as the only dependent variables and I(t) 
as a driving function. 

D 

Write the mechanical equation of motion for the mass. This differential equation should have λ and x as the 
only dependent variables, hence taken with the result of (d) should constitute a mathematical formulation 
appropriate for analyzing the system dynamics. 

Figure 3: A magnetic circuit including a movable plunger 

Courtesy of Herbert Woodson and James Melcher. Used with permission. 
Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics, 
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Part 1: Discrete Systems. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.
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Problem 7.4 (W&M Prob. 3.9) 

The electric terminal variables of the electromechanical coupling system shown in Fig. 3P.9 are known to be 
λ1 = ax

1

2i
1

3 + bx
2

2x1i2 and λ2 = bx
2

2x1i1 + cx
2

2i
2

3, where a, b, and c are constants. 

Figure 4: An electromechanical coupling network 

A 

What is the coenergy W � 
m

(i1, i2, x1, x2) stored in the coupling network? 

B


Find the forces f
1 
e and fe .

2 

Write the complete set of equations for the system with the terminal constraints shown. 

Courtesy of Herbert Woodson and James Melcher. Used with permission.

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics,

Part 1: Discrete Systems. Malabar, FL: Kreiger Publishing Company, 1968. ISBN: 9780894644597.
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Figure 5P.11 shows a diagrammatic cross section of a two-phase,          

Problem 7.5 (W&M Prob. 5.11) 

salient-pole synchronous machine. The 
windings in an actual machine are distributed in many slots along the periphery of the stator, rather than 
as shown. The rotor is made of magnetically soft iron which has no residual permanent magnetism. The 

Figure 5: Cross section of a two-phase, salient-pole synchronous machine 

electrical terminal relations are 

λ1 = (L0 + M cos 2θ)i1 + M sin 2θi2, 

λ2 = M sin 2θi1 + (L0 − M cos 2θ)i2. 

A 

Determine the torque of electrical origin T e(i1, i2, θ). 

B 

Assume that the machine is excited by sources such that i1 = I cos ω s t,i2 = I sin ω s t, and the rotor has the 
econstant angular velocity ωm such that θ = ωmt + γ. Evaluate the instantaneous torque T . Under what 

conditions is it constant? 

The rotor is subjected to a mechanical torque (acting on it in the +θ-direction): T = T0 +T �(t), where T0 is a 
constant. The time-varying part of the torque perturbs the steady rotation of (b) so that θ = ω m t+γ0 +γ�(t). 
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Assume that the rotor has a moment of inertia J but that there is no damping. Find the possible equilibrium 
angles γ0 between the rotor and the stator field. Then write a differential equation for γ�(t), with T �(t) as a 
driving function. 

D 

Consider small perturbations of the rotation γ�(t), so that the equation of motion found in (c) can be 
linearized. Find the response to an impulse of torque T �(t) = I0µ0(t), assuming that before the impulse in 
torque the rotation velocity is constant. 

E 

Which of the equilibrium phase angles γ0 found in (c) is stable? 

Courtesy of Herbert Woodson and James Melcher. Used with permission. 
Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics, 
Part 1: Discrete Systems. Malabar, FL: Kreiger Publishing Company, 1968, 
pp. 239-240. ISBN: 9780894644597.
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