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Problem 2.1 
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(a) Two line currents of infinite extent in the z direction are a distance d apart along the y-
axis.  The current I1 is located at y=d/2 and the current I2 is located at y=-d/2.  Find the 
magnetic field (magnitude and direction) at any point in the y=0 plane when the currents 
are: 

i) I1=I, I2=0 
ii) both equal, I1=I2=I 
iii) of opposite direction but equal magnitude, I1=-I2=I.  This configuration is called a 

current line dipole with moment mx=Id. 

 Hint: In cylindrical coordinates [ ] [ ]2122/ yxixiyi yx ++−=φ  

(b) For each of the three cases in part (a) find the force per unit length on I1. 
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Problem 2.2  

The superposition integral for the electric scalar potential is 
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The electric field is related to the potential as 

 )()( rrE Φ−∇=         (2) 

The vector distance between a source point at Q and a field point at P is: 

 zyx izziyyixxrr )()()( ′−+′−+′−=′−      (3) 

(a) By differentiating r r′−  in Cartesian coordinates with respect to the unprimed 
coordinates at P show that  
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where rri ′  is the unit vector pointing from Q to P. 

(b) Using the results of (a) show that 
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Figure 4.5.1 from Electromagnetic Fields and Energy by Hermann A. Haus and James R. Melcher.



(c) A circular hoop of line charge λ0 coulombs/meter with radius a is centered about the origin 
in the z=0 plane. Find the electric scalar potential along the z-axis for z<0 and z>0 using 
Eq. (1) with φλρ adVdr o=′′)( .  Then find the electric field magnitude and direction using 
symmetry and E = −∇Φ .  Verify that using Eq. (5) gives the same electric field.  What do 
the electric scalar potential and electric field approach as ∞→z  and how do these results 
relate to the potential and electric field of a point charge? 

(d) Use the results of (c) to find the electric scalar potential and electric field along the z axis 
for a uniformly surface charged circular disk of radius a with uniform surface charge 
density σ0 coulombs/m2. Consider z>0 and z<0.  
 

(e) What do the electric scalar potential and electric field approach as  and how do these 
results relate to the potential and electric field of a point charge?   
 

∞→z

(f) What do the potential and electric field approach as the disk gets very large so that ∞→a . 

Problem 2.3 

The curl and divergence operations have a simple relationship that will be used throughout the 
subject. 

(a) One might be tempted to apply the divergence theorem to the surface integral in Stokes’ 
theorem. However, the divergence theorem requires a closed surface while Stokes’ 
theorem is true in general for an open surface. Stokes’ theorem for a closed surface 
requires the contour to shrink to zero giving a zero result for the line integral. Use the 
divergence theorem applied to the closed surface with vector A×∇  to prove that 

. 0)( =×∇•∇ A
(b) Verify (a) by direct computation in Cartesian and cylindrical coordinates. 

PS#2, p.3 

Figures a & b from: Electromagnetic Field Theory:  A Problem Solving Approach, by Markus Zahn,  
Robert E. Krieger Publishing Company, 1987.  Used with permission.



Problem 2.4

Charge is distributed along the z axis such that the charge per unit length λl(z) is given by  
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(a) What is the total charge? 
(b) Determine the electric scalar potential Φ and electric field E  along the z-axis for . 

Hint: 

z a>
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(c) What do the electric scalar potential and electric field approach as  and how do 
these results relate to part (a)?  Note that you have to use the series expansions below 
up to third order in some cases. 

z →∞

Hints: 
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(d) What is the effective dipole moment of this charge distribution? 
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