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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005
Problem Set 11 - Solutions

Prof. Markus Zahn MIT OpenCourseWare

Problem 11.1
A

The given equations follow by writing out Maxwell’s equations and assuming £ and H have the given
directions and dependences.

B

The force equation for an incremental volume element is

_ v,
F=imn.,.—

ot

where F' is the force density due to electrical forces on the electrons
F = —izen.E,
Thus,
v,

—en.E, = mn,—— (1)

ot
C
As the electrons move, they give rise to the current density

Jr R —eneuy (linearized) (2)

D
Assume ¢/ (“*=k) dependence and (1) and (2) require

~ _e2ne ~

Jr = —J E,

wm

E;

) w
= —Jwé&o

where w), = 4/ 6"27?0 is called the plasma frequency. (See page 600 in Woodson and Melcher, Electromechanical Dynamics,

vol. 2). Combining this with Maxwell’s equations:
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E

We have a dispersion which yields evanescent waves below the plasma (cutoff) frequency. Below this fre-
quency, the electrons respond to the electric field associated with the wave in such a way as to reflect rather
than transmit an incident electromagnetic wave.

F

Waves impinging on a boundary between free space and plasma will be totally reflected if the wave frequency
w < wp. The plasma frequency for the ionosphere is typically f, ~ 10MHz. This result explains why
AM broadcasts (500kHz < f < 1500kHz) can commonly be monitored all over the world, whereas FM
(88 MHz < f < 108 MHz) has a range limited to “line-of-sight.”

Problem 11.2
A

The equation of motion for the string is

P 0%
where, for small deflections ¢ in the “%” field from @,

~ 99 §
S Sreod [1 * d}

In static equilibrium, £ = 0 and from (3)
qQ = 2mdeg - mg (4)

B

The perturbation equation of motion remains

0%¢ _ 0% ( 9Q )

"oz T a2 T\ 2nd2e,
Assume e/ “*=F2) dependence and (5) requires (v, = %)
2 27.2 qQ
Y LR\
v Ys 2nd?egm
or from (4),
2 2.2 _ 9
— k _ =
w? =S y

The boundary conditions require k = %, and for stability the mot critical mode is n = 1; thus

£(7) >

d
7
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C

Increase f,d, or decrease I.

Problem 11.3
A

This problem is very similar to that of problem 10.7. Using the same reasoning as in that problem, we obtain

9%¢, 0%¢ eV

I = e T (B &)
82 82 V2

Om 52 =9 52 + 070 (252 - 51)

o2 " Ox? d3

B
Assuming sinusoidal solutions in time and space, the dispersion relation is
2e0V? gV
2 2 0Vg _ , €0Vg
—ogpw’ + Sk* — B pE
We have a dispersion relation that factors into two parts. The odd mode, & = —&; has the dispersion
relation

_Sikz - 3€0‘/02:|;

| Om Omd®

The even mode, & = & has the dispersion relation

w=|— —
| om  Omd?

Sk sovq 5

C

A plot of the dispersion relation appears in Figure 1.

D

The lowest allowed value of k is k = 7 since the membranes are fixed at © = 0 and = = L. Therefore the
first mode to go unstable is the odd mode. This happens as

360‘/02 o LQ
Sd3 ) L?

L2 603

or

1
2

0=

Problem 11.4

We may take the results of Prob. 10.13, replacing % by % + U% and replacing w by w — kU.
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Figure 1: Plot of the dispersion relation for two membranes. (Image by MIT OpenCourseWare.)

A
The equations of motion are
o o\? 9%¢ V2
m \ 5, a_ - 2 — 6
7 (8t+U8m> Q=952 T a8 (6)
and
0 0 82§2 EQV02
— — =5—= 28y — 7
on (3 + U5 )@ =552+ 2 ea-a) @
B
The dispersion relation is biquadratic, and factors into
260V eoV§
O (w — kU)? + Sk? — 33 0 — ‘;30 (8)

The (+) signs correspond to the cases & = —& and & = & respectively, as will be seen in part (d).

C
The dispersion relations are plotted in figures (2) and (3) for U > ,/%.

D
Let & = &. Then (6) and (7) become

o \> 9%¢ V2
Om <8t + Ua.%’) 51 =5 83@2 + d3 gl
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A \k= [380V02]‘/2 [Uz-vszj/Z
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Figure 2: Plot of the dispersion relation for odd motions (§; = —&2). (Image by MIT OpenCourseWare.)

3g,V,2,'2
“’=[(Uz'gm) S(()jSO

T[]

"N 38,V 242 172
= [235] [

Figure 3: Plot of the dispersion relation for even motions (§; = &). (Image by MIT OpenCourseWare.)

and
0 9\ 826y egV2
m | = + U= =S 0
7 (5'15 * 8x) &2 ox? * d3 &
These equations are identical for & = —&5; the dispersion equation is (8) with the + sign.
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E
€1(0,t) = Refe?* = —£(0,1)
06 0&% B
9~ Ox Oatz =0
The odd mode is excited. Hence, we use the + sign in (8)
3€0V2
—0m(w — kU)? + SEk* — e ©—o
2
K2(S — 0mU?) + 20mwklU — omw? — 353;/ 0 —¢
Solving for k, we obtain
ki =a+ ﬂ
where oo = U;{Jv?

1
w202 — s

6 Vs O d3
- 2 2
U? -z
with v2 = =5
Om
Therefore

&1 =Re { [Ae—j<a+5>w + Be—j(a—ﬁ)x} ejcut}

Applying the boundary conditions, we obtain

(B
A=¢ 2

(e +pB)E
B="5

Therefore, if é is real

&, t) = —&5(x, t) = € cos Bz cos(wt — ax) — %ésin Bz sin(wt — ax)

F

We can see that 3 can be imaginary, for which we will have spatially growing curves. This can happen when

ST (U* -0} <0
or
Omd>w?v?
V2 m S 9
0 7 350 (U2 —02) 9)
G

With Vp =0 and v > v,: (see Figure 4)
Amplifying waves are obtained as (9) is satisfied (see Figure 5)
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Figure 5: Amplifying waves. (Image by MIT OpenCourseWare.)
Problem 11.5
A
The equation of motion is
d a\? o2¢
o (8t+U8x>£ S@xQ omg + (10)

2
with 7= 20 Vi~ cop2 {LJF%]
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For equilibrium, £ = 0 and from (10)

60V02
242 = 0mg
or
1
Vi 20,,9d* ]2
0 o
B
With solutions of the form e/(“t=*%) the dispersion relation is
S €0V2
—kU)? = —k2 - =20
(w ) Om Omd?

Solving for k, we obtain

w [ () (25)
k=

or






