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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005
Problem Set 10 - Solutions

Prof. Markus Zahn MIT OpenCourseWare

Problem 10.1

The equation of motion for a static rod is

%5
0= F— + F, where F, = pg
0x?

We can integrate this equation directly and get

2
o(x) = —% <I2> +Cx+D

where C' and D are arbitrary constants.

A

The stress function is T'(z) = E%, and therefore
T(xz) = —pgx +CE

We have a free end at 2 = [ and this implies T'(z = 1) = 0. Now we can write the stress as
T(z) = —pgz + pgl

The maximum stress occurs at x = 0 and is Ti,ax = pgl. Equating this to the maximum allowable stress, we
have

2 x 107 = (7.8 x 10%)(9.8)!
hence

[ = 2.6 x 10* meters

B
From part (a)
T'(z) = —pgx + pgl

The fixed end at z = 0 implies that D = 0, so now we can write the displacement

8(z) = —% (“’;) + %gl(:z:)

pgl* | pgl pgl?
)=—"=—+—=()= —
© E 2 + E @) 2F

For | = 2.6 x 10* meters, (1) = 129 meters. This appears to be a large displacement, but note that the total

unstressed length is 26,000 meters.
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Problem 10.2

From the characteristic equations

ov_or _ CitCo
Por = ox T
ar _ ov T C_ -0y
ot oz’ VpE 2
1
v+ —=T =C_
VpE
1
- —T=C
v pE +

Figure 1: Tension and medium velocity in « — ¢ space for an infinite extent elastic medium (Image by MIT
OpenCourseWare.)

1:CL=C_=v,

IIZC+:Um707:0
IIT:C.=0,C_ = vy
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B
1:CL=C_=v,
11:Cy =v,,0_ =—-u,
111 :Cy = —v,,C_ = vy,
IV : Cy = —vp, C_ = —vupy,
V:Ci=—v,,C.=uv,
VI:Cy =v,,C_ =-u,

Figure 2: Tension and medium velocity in = — ¢ space for an elastic rod of length a. (Image by MIT
OpenCourseWare.)
At £ =0, z = fixed boundary v =0
C, = —C+

Problem 10.3

First, we can calculate the force of magnetic origin, f,, on the rod. If we define 6(I,¢) to be the a.c. deflection
on the rod at x = [, then using Ampere’s law and the Maxwell stress tensor (Eq. 8.5.41 with magnetostriction
ignored) we find
f - /L()AN2I2
T 2(d—5(1,1))°
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This result can also be obtained using the energy methods of Chap. 3 (See Appendix E, Table 3.1). Since
d > §(l,t), we may linearize f,
AN?Z?J? AN?Z?J?
fo = Ho + Ho
2d? d?
The first term represents a constant force which is balanced by a static deflection on the rod. If we assume
that this static deflection is included in the equilibrium length [, then we need only use the last term of f,

to compute the dynamic deflection §(I,¢). In the bulk of the rod we have the wave equation; for sinusoidal
variations

§(z,t) = Re [S(x)eﬂ‘wt}

5(1, 1)

we can write the complex amplitude & (x) as
6(x) = Cysin Bz + Cy cos B

where 3 = wy/%. At z = 0 we have a fixed end, so (5(0) =0and Cy = 0. At x = [ the boundary condition is

a9

0= fz - AE@?(Zat)
or

0= Mé(x =) AEd—g(x — 1)

B d3 N dz
Substituting we obtain
272
"Of#cl sin 8l = CLAES cos (1)

Our solution is §(z) = Cy sin Bz and for a non-trivial solution we must have Cy # 0. So, divide (@) by C; to
obtain the resonance condition:

(M()AN2I2

pE ) sin 8l = AE (3 cos (51

Substituting 3 = /£ and rearranging, we have

Ed® [p P

which, when solved for w, yields the eigenfrequencies. Graphically, the first two eigenfrequencies are found
from the sketch. Notice that as the current I is increased, the slope of the straight line decreases and the
first eigenfrequency (denoted by w;) goes to zero and then seemingly disappears for still higher currents.
Actually w; now becomes imaginary and can be found from the equation

Ed® [p [p
W ((/Jll E) = tanh (|(A)1|l E)

Just as there are negative solutions to ([2), —wi, —wa, ... etc., so there are now solutions £jlwy|. Thus,
because wy is imaginary, the system is unstable, (amplitude of one solution growing in time).

Hence when the slope of the straight line becomes less than unity, the system is unstable. This condition
can be stated as

7Ed3 >1

o N212]
Eid?’ <1
,U,0N212l

STABLE —

UNSTABLE —
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Figure 3: Sketch used to find eigenfrequencies in Problem 10.3. (Image by MIT OpenCourseWare.)

Problem 10.4
A

At the outset, we can write the equation of motion for the massless plate:

—aTU )+ ) = MES ) ~ 0
et TR

Using the maxwell stress tensor we find the force of electrical origin f¢(¢) to be

_ €A [ (Vo +o()* (Vo —v()? ]

Fe) == (d—6(1,1)2  (d—6(1,1))2

Since v(t) < Vo and §(1,t) < d, we can linearize f¢(¢):

e = [ s, + [ o

Recognizing that T'(l,t) = E %(l, t) we can write our boundary condition at z = [ in the desired form

o) o 26014‘/02
aE%(l,t) = d3

2e0 AV,
5(1,t) + Odz Ou(t)

Longitudinal displacements in the rod obey the wave equation and for an assumed form of §(z,t) =
Re [S(x)ej“t} we can write S(m) = CysinfBx + Cycos Bz, where f = wy/&. At 2 = 0 we have a fixed

end, thus & (x =0) =0 and Cy = 0. From part (a) and assuming sinusoidal time dependence, we can write
our boundary condition at x =1 as

A5 . 2e0AVE ;. 2e0AV -
B (1) = =20 () + ==V
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Solving

280AVOV

a aFEd? (3 cos Bl — % sin 31

q

Finally, we can write our solution as

2e0 AV} si N
Sy | Zobsing g
aEd? [ cos Bl — =5 sin 3]
Problem 10.5
A
0 . .

i(z,t) = — = [v(z — Az) — v(z)] v(z,t) = T [i(2) — i(z + Az)]

. 0%v 924

il_r)n i(z,t) = _Cﬁtaz’ v(z,t) —Lm
B

i(z7t) = Re%ej(wt—kz)7 ’U(Z,t) — Reded (Wt—kz)

i = —Cwki;  ©=—Lwki

: : 1

:+LC 2k2'—>LC 2k2:1—)k:i7

Z o ’ wVLC
C

w 2
vp= = w VILC
dw
U_q - % = —(UQR

Such systems are called backward wave because the group velocity is opposite in direction to the phase
velocity.

D
0(z) = Visinkz + Vacoskz
0(z=0)=0=1;
b(z=—1)=Vy = —Visinkl — 8(z) = —— sinkz
sin
A,( )= —Cj @_ijVOkcoskz L /9 coskz
R sin kl B L %sinkl
E
1

Resonance — sinkl =0 — kl =nm — w, =
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Problem 10.6

A

u(t:O):%:W*‘L V+_?m
B

Vi = A([D7)™ T = gz;gﬁﬂ - %

Vip =TV, = AT (TsTL)"

VW (R Z
V+n=O—A—O( Lt 0)

2 \ Ry + R
Vo (R + Zo Ry — 2
n — n —-n — 5 1
Vn=VintV. 2<RL+RS){ Ry + Z

" R+ R,
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