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6.641 — Electromagnetic Fields, Forces, and Motion Spring 2005
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Problem 9.1
A
_ 0B
E=—
V x o
V x B=uockE
So
_ 0B
VXxVxB=—uo—
x V x po—
But
Vx(VxB)=V(V-B)-V?B=-V?B
So
_ 0B
2B _ =
VB =y,
B
Since B only has a z component
0B
V2B, = uo 8;

In cylindrical coordinates

Lo (o 12 &
T rdr \ or r2 002 022

Here B, = B.(r,t), so

18( 8B> —&-/wozB:O

ror \"ar

C

We want the magnetic field to remain finite at » = 0, hence Cy = 0.

D
Atr=a

B(a,t) = poHo — C1Jo(v/ooaa) = poHy
Hence if C7 #0

Jo(v/ooaa) =0
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E
Multiply both sides of expression for B(r,t = 0) =0 by rJo(v; %) and integrate from 0 to a. Then,

a r a2
/ ,U()H()TJ()(’UJ‘*)dT :,U,()Hole(’Uj)
0 a Uj

e r r a?
/0 ;CiJo(via)rJo(ng)dr = Cj?le(vj)

from which it follows that

20 Ho
v;J1(v5)
The values of v; and J;(v;) given in the table lead to the coefficients
2/140H0 2/140HO 2MO‘EIO
F
1 U1 2
N e (E)
2
n =170 — 0174000
U1
_r 10 —4
71 = (0.174) (47 x 1077)—(25) x 10
T
~ 4.35 x 10~7 seconds
Problem 9.2
vy T Ty :
al i X i
; (3): b
X :
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i : X1 = I_
(4)

Figure 1: Diagram of surfaces (1), (2), (3), and (4) to evaluate the force on the lower plate using the Maxwell
Stress Tensor. (Image by MIT OpenCourseWare.)

Before finding the force, we must calculate the H field at 21 = L. To find this field let us use
f{ B-nda =0 (1)

over the dotted surface. At z1 = +1L,

I;](Jil = L) = H()gl
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over surface (4) H =0, and over surface (2), H is in the 7; direction, where = i5. Thus over surface (2),

B -n = 0. Hence, the integral in reduces to
—/ o Hoda —i—/ woH(x1 = +L)da =0
1) 3)

—poHoa + poHb =0 per unit length
Thus:

H(z1 = +L) = (a/b)Hoix

Tij = poH; Hj — ?MOHka

Hence, the stress tensor over surfaces (1), (2), and (3) is:

Lz 0 0
T;; = 0 —&H? 0
0 0 —Ln?

Over surface (4)
Tij = [0]

Thus the force in the 1 direction is

fi :/Tijnj'da

fl = —/ Tlld(l +/ Tnda +/ T12da
1) (3) (2)

Thus, since the last integral makes no contribution,

fi= =230 + 0H3 (5) 0= Boaga (5 - 1)

(2)

Since T;; = 0 over surface (4) there is no contribution to the force from this surface and, by symmetry, there
is no contribution to the force from the surfaces perpendicular to the z; axis. Thus, the force per unit depth

in 1 direction is (2).

Problem 9.3

First, let us note the E fields on each of the surfaces of the figure over surfaces (1), (3), (5), and (7), By = 0.

Over surface

(6) E2:; E1:O
(4) EQZ% Ey =0
Vi
(2) EQZ?O E,=0

From Eq. 8.3.10,

8
Tij = E()EiEj — 7JEOE’€E]€
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Figure 2: Diagram of surfaces (1)-(8) used to find force on the lower electrode using the Maxwell Stress
Tensor. (Image by MIT OpenCourseWare.)

Hence, over surfaces (1), (3), (5) and (7)
Ti2=0 3)

and over surfaces

o m--3(7)

Now

fi= /Tijnjda: /T11ﬂ1da+/Tlgngda+/T13’rL3da

/ Tisnsda =0 because the problem is two dimensional
Let us consider each of the other integrals:
/ Tionada =0
because the surfaces that have normal ny are (1),(3),(5), and (7) and by (B]) we have shown that Tj2 = 0

over these surfaces. Also, we get no contribution to the force over surface (8), because E — 0 faster than
the area — 0o. Hence the calculation of the force reduces to

f1 :/ Tl(?)da(; —/ Tl(f)da4 —/ Tl(%)dQQ
(6) (4) (2)

__aDV (1 1,1
h= 2 a b+c

Note: by symmetry, there is no contribution to the force from the surfaces perpendicular to the x5 axis.
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Figure 3: Diagram of grounded electrodes and distributed electric potential source at 7 = 0. (Image by
MIT OpenCourseWare.)

Problem 9.4
A

From elementary field theory, we find that

Ty

. T2 _
¢:¢osm—26 B
a

satisfies V2¢ = 0 in the region between the plates and the required boundary conditions. The distribution
of E follows from

E=-Vo¢
Hence,
= TPy _m=y [ T~ L2~
EF=——¢ "o |sin—=17 —Ccos ——iy
a a a

The sketch of the E field is obtained by recognizing that E is directed perpendicular to contours of constant
o.

Figure 4: Sketch of the E field and equipotential lines. (Image by MIT OpenCourseWare.)

B

To find the force_ at the bottom plate, we use surface (2). E = 0 everywhere except on the upper side where
the normal 7 = i5 and the field is
7T¢0 S

E=——e "oy
a
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Hence,

f1 = /Tijnjda =0

f2 = /ngnjda = /ngngdag

per unit x3. This reduces to

f2=/ Thodzy
0

2w

2,2 1
but, Thy = se0E2E> = 3e Fﬂf“ e~ —a and thus

242 0
0T 2z
f2 = 0 (bo/ e_Tlde'l
0

2a2

607T¢3

f2=—

C
On the top plate, use surface (1). Only the sign of the normal changes, and the result is
Ji=0

N 607T¢8
f2= 1o

or the force is equal and opposite to that on the bottom plate.

Problem 9.5

A
Since J' = J
K = i,Kqcos(kUt — kx)
=i, Kocos(wt — kx); w=kU
B

The track can be taken as large in the y direction when it is many skin depths thick

L = track thickness > § = \/ 2 = \/ 2
WO kU poo

In the track we have the diffusion equation

or, with B = Reﬁexpj(cut — kx),
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Let B, (y) = Ce®¥, then
R
—a = Jw+ ——
Hoo Moo
wpoo  Upgo

Since the track is modeled as infinitely thick
B, = Ceayej(wtsz)

The gap between track and train is very thin; thus,
_ B . _
—iy X — = K = Koed @t=ho)j
Ho

which yields |
By(z,y,t) = ,uoKOeo‘yeJ(wt—kz)

9B,
9B, , = 0or

We must also have V- B = e 3

To compute the current in the track we note that

= +— (0B, 0B,\ -
VXB_IZ<63:_ ay)-,uoj

. (jsk-?) Be (o0
«a Ho

C

The time average force density in the track is
1
(Fy) = §RG(JZB:)

Hence the time average lifting force per unit x — z area on the train is

0 0
1
(Ty) = —/ (Fy)dy = —Re/ iJzB;dy

o[ V1I+52-1
oKy | ————1]>0
V1452

The time average force density in the track in the z direction is
1 *
(Fy) = —§Re(JZBy)

The force on the train in the z direction is then
0

0

1 *

@)= [ )= gre [ LBy
_ HoK§ S

= <
4 1+ 82Rey/1+jS
The problem is that this force drags the train instead of propelling it in the = direction. To make matters

worse, if the train stops, the magnetic levitation force becomes zero.
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Problem 9.6

A
From Eq. 8.1.11,

B, B,
A om)
L — z Dy 1 2 2
ng - ‘o m(—Bx + By) 0
0 0 5 (—BZ = B})

where the components of B are given in the problem.

B

The appropriate surface of integration, which is fixed with respect to the fixed frame, is shown in Figure ().
We compute the time average force, and hence contributions from surfaces (1) and (3) cancel. Fields go to
zero on surface (2), which is at y — oo. Thus, there remains the stress on surface (4). The time average
value of the surface force density T is independent of x. Hence,

Figure 5: Diagram of the Maxwell Stress Tensor surface to find the levitation force on a train. (Image by
MIT OpenCourseWare.)

Ty=—<Tyy=0)>

1
T,=—-— < —B2+B? 4
Yy 2,[1,0 < x + Yy > ( )
Observe that
~ . ~ . 1 N
<ReAeﬁkUtReBe*3kUt> = iReAB*

where B* is complex conjugate of B, and (@) becomes

1 , , —7kpoKo) . (GRkpoK ,
Ty _ Re {_(uOKOejkz)(uoKoe]kx) + ( JRHo O)Gsz (.7 Ho 0) egkz}
410 «@ a*
,LL()Kg kQ
4 ( oa* 5)
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Finally, use the given definition of « to write (&) as

_ ung 1— 1

4 2
oo U

Note that T}, is positive so that the train is supported by the magnetic field. However, as U — 0 (the train
is stopped) the levitation force goes to zero.

T,

C
For the force per unit area in the x direction
T, — ——— < B,B,(y=0)>
T = 2/140 2Dy Y =

1 . ik .
= ——Re |:ILLQK08jkm <],UO> Koejkx:|
210 a*

Thus

K2 . . oU
T, = — Ho20 ; %Rej 1—]<'u0k ) (6)
oU
2 <1 + (—“Ok ) )
As must be expected, the force on the train in the 2 direction vanishes as U — 0. Note that in any case the

force always tends to retard the motion and hence could hardly be used to propel the train.
The identity sin(f/2) = ++/(1 — cos#)/2 is helpful in reducing (@) to the form

T, — — 10 K3 : 1 1+(ﬂoUU>2_1
273 Al 2 k
2 [1 + (%) ]
Problem 9.7
A

From Ampere’s Law,

poNip
B, = Hotr
D
B
N2WT
A:NWTBZEMF;»L:%
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C

Apply Faraday’s Law to the armature circuit and assume perfectly conducting wires.

fra-dfzs-o

zZero

(-) (+)
E,dy + / —Vé-dl =0= E,W = v,
-)

fluid terminals

(+)

Ohm’sLaw:>J:o(E+v><B):>Ey:%+vBZ

1A

E, = DT +vB,
v = —W 4+ L)NW vl
A~ \onT )™ D F
——— —_———
R G
D
Force density =
=5 . polNipia
JxB= JuBzx = T
Power =
NW . .
J,B.U -TDW = M0 \U = GipiaU
volume

va = Ria + GUip

dip
vp = L——

dt
Vp = VA
P = —iA

Putting everything together,
di
L% — —Rip + GUip

Self excitation implies

GU>R=U
>R= >,uOUNT

10
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