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Problem 7.1 

The electric field intensity between the plates is 

E = v/a 

Hence, the surface charge adjacent to the free space region on the upper plate is 

σf = ε0v/a 

while that next to the nonlinear dielectric slab is 

3v v 
σf = α + ε0 

a3 a 

It follows that the total charge on the upper plate is 

dxε0v 
� 

αv3 ε0v 
� 

q = + d(l − x) + 
a a3 a 

The electric co-energy is 

dlε0v
2 d(l − x)αv4 

W = qdv = +e 2a 4a3 

Then, the force of electrical origin is 

∂W 
� 

dαv4 

fe e = = − 
∂x 4a3 

Problem 7.2 

We ignore fringing fields. Then the electric field is completely between the center plate and the outer plates, 
where it has the value E = v/b. The constraints on the electrical terminals further require that v = V0 − Ax. 
The surface charge on the outer plates is εv

b 
and hence the total charge q on these plates is 

dε0 
q = 2(a − x) v (1) 

b 

It follows that the co-energy is 

dε0
We = (a − x) v 2 (2) 

b 

and the electrical force is 

∂W dε0 2fe e = = − v (3) 
∂x b 
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Finally, we use the electrical circuit conditions to write 

dε0 2
fe = − (V0 − Ax) (4) 

b 

The major point to be made in this situation is this. One might substitute the voltage, as it depends on x, into 
(2) before taking the derivative. This clearly gives an answer not in agreement with (4). We have assumed 
in writing (3) that the variables (v, x) remain thermodynamically independent until after the force has been 
found. Of course, in the actual situation, external constraints relate these variables, but these constraints 
can only be introduced with care in the energy functions. To be safe they should not be introduced until 
after the force has been found. 

Problem 7.3 

A 

The magnetic field intensity in the gap must first be related to the excitation current. From Ampere’s law 

Ni = dHd + xHx (5) 

where the fields Hd and Hx are directed counterclockwise around the magnetic circuit when they are positive. 
These fields are further related because the magnetic flux into the movable member must equal that out of 
it 

µ0wbHd = µ0waHx (6) 

From these two expressions 

Ni 
Hx = � 

da 
� (7) 

+ x
b 

The flux linked by the electrical terminals is λ = Nµ0awHx, which in view of (7) is 

N2µ0aw 
λ = Li; L = � 

da 
� (8) 

+ x
b 

B 

The system is electrically linear. Hence, Wm = 
2

1 λ2/L (See sec. 3.1.2h) and from (8), 

1 da + x 
λ2 b (9) Wm = 

2 N2µ0aw 

∂WmFrom conservation of energy fe = − 
∂x 

, Wm = Wm(λ, x). Hence, 

1 λ2 

fe = − (10) 
2 (N2µ0aw) 

D 

In view of (8) the current node equation can be written as (remember that the terminal voltage is dλ )
dt 

da + x1 dλ λ 
bI(t) = + (11) 

R dt N2µ0aw 
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E 

The inertial force due to the mass M must be equal to two other forces, one due to gravity and the other 
fe . Hence, 

d2x 1 λ2 

M = Mg − (12) 
dt2 2 N2µ0aw 

(11) and (12) are the required equations of motion, where (λ, x) are the dependent variables. 

Problem 7.4 

A 

From the terminal relations, the electrical co-energy is (Table 3.1.1) 

Wm = λ1di1 + λ2di2 

or 

1 1 
ax 2i4 + bx2

2x1i1i2 + cx 2i4Wm = 1 1 2 22 4 

i1 

i2 

Figure 1: Co-energy computed by integration in the i1 − i2 plane (Image by MIT OpenCourseWare.) 

B 

It follows that the required forces are 

∂W 1 
fe m = = ax1i

4
1 + bx2

2i1i21 ∂x1 2 

∂W 1 
fe = m = 2bx2x1i1i2 + cx2i

4
22 ∂x2 2 

There are four equations of motion in the dependent variables i1, i2, x1 and x2; two of these are the electrical 
voltage equations, which in view of the terminal equations for the λ’s are 

d 2 
−i1R1 = 

dt
(ax 1i1

3 + bx2
2x1i2) 
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d 2 v2(t) − i2R2 = (bx2
2x1i1 + cx 2i

3
2)dt

and two are the mechanical force equations 

1 
0 = ax1i

4 + bx2i1i2 − Kx1
2 1 2


1 dx2

0 = 2bx2x1i1i2 + cx2i

4
2 − B 

2 dt 

Problem 7.5 

A 

From the terminal pair relation, the coenergy is given by 

1 1 
Wm(i1, i2, θ) = 1(L0 + M cos 2θ)i2 + (L0 − M cos 2θ)i22 + M sin 2θi1i2

2 2

so that the torque of electrical origin is 

T e = M(sin 2θ(i2
2 
− i21) + 2 cos 2θi1i2) 

B 

For the two phase currents, as given, 

i22 − i21 = −I2 cos 2ωst 

1 
i1i2 = I2 sin 2ωst 

2 

so that the torque T e becomes 

T e = MI2(− sin 2θ cos 2ωst + sin 2ωst cos 2θ) 

or 

eT = MI2 sin(2ωst − 2θ) 

Substitution of θ = ωmt + γ obtains 

eT = −MI2 sin(2(ωm − ωs)t + 2γ) 

and for this torque to be constant, we must have the frequency condition 

ωm = ωs 

under which condition, the torque can be written as 

T e = −MI2 sin 2γ 
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To determine the possible equilibrium angles δ0, the perturbations and time derivatives are set to zero in 
the mechanical equations of motion. 

T0 = MI2 sin 2γ0 (13) 

Here, we have written the time dependence in a form that is convenient if cos 2γ0 > 0, as it is at the points 
marked (s) in Fig. 2. Hence, these points are stable. At the points marked (u), the argument of the sin 
function and the denominator are imaginary, and the response takes the form of a sinh function. Hence, the 
equilibrium points indicated by (u) are unstable. 

Graphical solutions of this expression are shown in Fig. 2. For there to be equilibrium values of δ the 
currents must be large enough that the torque can be maintained with the rotor in synchronism with the 
rotating field (MI2 > T0). Returning to the perturbation part of the equation of motion with ωm = ωs, 

Figure 2: Graphical solutions showing stable (s) and unstable (u) equilibria (Image by MIT OpenCourse-
Ware.) 

d2


J
 (ωmt + γ0 + γ�) = T0 + T 
� 

− MI2 sin(2γ0 + 2γ�)
dt2 

linearization gives 

d2γ�


J + (2MI2 cos 2γ0)γ
� = T �


dt2 

where the constant terms cancel out by virtue of (13). With T = τ0u0(t) and initial rest conditions, the 
initial conditions are 

dγ� τ0
(0+) = 

dt J


γ�(0+) = 0
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D 

The solution for γ�(t) is 

τ0 2MI2 cos 2γ0
γ�(t) = � sin t 

2MI2 cos 2γ0 J
J 

J 

E 

For stability cos 2γ0 > 0 as shown in Fig. 2. 
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