
Chapter 1

Introduction

The advent of cheap high-speed global communications ranks as one of the most important
developments of human civilization in the second half of the twentieth century.

In 1950, an international telephone call was a remarkable event, and black-and-white television
was just beginning to become widely available. By 2000, in contrast, an intercontinental phone
call could often cost less than a postcard, and downloading large files instantaneously from
anywhere in the world had become routine. The effects of this revolution are felt in daily life
from Boston to Berlin to Bangalore.

Underlying this development has been the replacement of analog by digital communications.
Before 1948, digital communications had hardly been imagined. Indeed, Shannon’s 1948 paper

[7] may have been the first to use the word “bit.”1

Even as late as 1988, the authors of an important text on digital communications [5] could
write in their first paragraph:

Why would [voice and images] be transmitted digitally? Doesn’t digital transmission
squander bandwidth? Doesn’t it require more expensive hardware? After all, a voice-
band data modem (for digital transmission over a telephone channel) costs ten times
as much as a telephone and (in today’s technology) is incapable of transmitting voice
signals with quality comparable to an ordinary telephone [authors’ emphasis]. This
sounds like a serious indictment of digital transmission for analog signals, but for most
applications, the advantages outweigh the disadvantages . . .

But by their second edition in 1994 [6], they were obliged to revise this passage as follows:

Not so long ago, digital transmission of voice and video was considered wasteful of
bandwidth, and the cost . . . was of concern. [More recently, there has been] a com-
plete turnabout in thinking . . . In fact, today virtually all communication is either
already digital, in the process of being converted to digital, or under consideration for
conversion.

Shannon explains that “bit” is a contraction of “binary digit,” and credits the neologism to J. W. Tukey.

1

1

2 CHAPTER 1. INTRODUCTION

The most important factor in the digital communications revolution has undoubtedly been the
staggering technological progress of microelectronics and optical fiber technology. For wireline
and wireless radio transmission (but not optical), another essential factor has been progress in
channel coding, data compression and signal processing algorithms. For instance, data compres-
sion algorithms that can encode telephone-quality speech at 8–16 kbps and voiceband modem
algorithms that can transmit 40–56 kbps over ordinary telephone lines have become commodities
that require a negligible fraction of the capacity of today’s personal-computer microprocessors.

This book attempts to tell the channel coding part of this story. In particular, it focusses
on coding for the point-to-point additive white Gaussian noise (AWGN) channel. This choice
is made in part for pedagogical reasons, but also because in fact almost all of the advances in
practical channel coding have taken place in this arena. Moreover, performance on the AWGN
channel is the standard benchmark for comparison of different coding schemes.

1.1 Shannon’s grand challenge

The field of information theory and coding has a unique history, in that many of its ultimate
limits were determined at the very beginning, in Shannon’s founding paper [7].

Shannon’s most celebrated result is his channel capacity theorem, which we will review in
Chapter 3. This theorem states that for many common classes of channels there exists a channel
capacity C such that there exist codes at any rate R < C that can achieve arbitrarily reliable
transmission, whereas no such codes exist for rates R > C. For a band-limited AWGN channel,
the capacity C in bits per second (b/s) depends on only two parameters, the channel bandwidth
W in Hz and the signal-to-noise ratio SNR, as follows:

C = W log2(1 + SNR) b/s.

Shannon’s theorem has posed a magnificent challenge to succeeding generations of researchers.
Its proof is based on randomly chosen codes and optimal (maximum likelihood) decoding. In
practice, it has proved to be remarkably difficult to find classes of constructive codes that can be
decoded by feasible decoding algorithms at rates which come at all close to the Shannon limit.
Indeed, for a long time this problem was regarded as practically insoluble. Each significant
advance toward this goal has been awarded the highest accolades the coding community has to
offer, and most such advances have been immediately incorporated into practical systems.

In the next two sections we give a brief history of these advances for two different practical
channels: the deep-space channel and the telephone channel. The deep-space channel is an
unlimited-bandwidth, power-limited AWGN channel, whereas the telephone channel is very
much bandwidth-limited. (We realize that many of the terms used here may be unfamiliar to
the reader at this point, but we hope that these surveys will give at least an impressionistic
picture. After reading later chapters, the reader may wish to return to reread these sections.)

Within the past decade there have been remarkable breakthroughs, principally the invention
of turbo codes [1] and the rediscovery of low-density parity check (LDPC) codes [4], which have
allowed the capacity of AWGN and similar channels to be approached in a practical sense. For
example, Figure 1 (from [2]) shows that an optimized rate-1/2 LDPC code on an AWGN channel
can approach the relevant Shannon limit within 0.0045 decibels (dB) in theory, and within 0.04
dB with an arguably practical code of block length 107 bits. Practical systems using block
lengths of the order of 104–105 bits now approach the Shannon limit within tenths of a dB.

3 1.2. BRIEF HISTORY OF CODES FOR DEEP-SPACE MISSIONS
B

E
R

10
−2

−3
10

−4
10

10
−5

−6
10

Shannon limit

d
l
=100d

l
=200

Threshold (d
l
=100)Threshold (d

l
=200)

Threshold (d
l
=8000)

0	 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
E

b
/N

0
 [dB]

Figure 1. Bit error rate vs. Eb/N0 in dB for optimized irregular rate-1/2 binary LDPC codes
with maximum left degree dl. Threshold: theoretical limit as block length → ∞. Solid curves:
simulation results for block length = 107 . Shannon limit: binary codes, R = 1/2. (From [2].)

Here we will tell the story of how Shannon’s challenge has been met for the AWGN channel, first
for power-limited channels, where binary codes are appropriate, and then for bandwidth-limited
channels, where multilevel modulation must be used. We start with the simplest schemes and
work up to capacity-approaching codes, which for the most part follows the historical sequence.

1.2 Brief history of codes for deep-space missions

The deep-space communications application has been the arena in which most of the most
powerful coding schemes for the power-limited AWGN channel have been first deployed, because:

• The only noise is AWGN in the receiver front end;

• Bandwidth is effectively unlimited;

• Fractions of a dB have huge scientific and economic value;

• Receiver (decoding) complexity is effectively unlimited.

4 CHAPTER 1. INTRODUCTION

For power-limited AWGN channels, we will see that there is no penalty to using binary codes
with binary modulation rather than more general modulation schemes.

The first coded scheme to be designed was a simple (32, 6, 16) biorthogonal code for the Mariner
missions (1969), decoded by efficient maximum-likelihood decoding (the fast Hadamard trans-
form, or “Green machine;” see Exercise 2, below). We will see that such a scheme can achieve a
nominal coding gain of 3 (4.8 dB). At a target error probability per bit of Pb(E) ≈ 5 · 10−3, the
actual coding gain achieved was only about 2.2 dB.

The first coded scheme actually to be launched was a rate-1/2 convolutional code with con-
straint length ν = 20 for the Pioneer 1968 mission. The receiver used 3-bit soft decisions and
sequential decoding implemented on a general-purpose 16-bit minicomputer with a 1 MHz clock
rate. At 512 b/s, the actual coding gain achieved at Pb(E) ≈ 5 · 10−3 was about 3.3 dB.

During the 1970’s, the NASA standard became a concatenated coding scheme based on a
ν = 6, rate-1/3 inner convolutional code and a (255, 223, 33) Reed-Solomon outer code over
F256. Such a system can achieve a real coding gain of about 8.3 dB at Pb(E) ≈ 10−6 .

When the primary antenna failed to deploy on the Galileo mission (circa 1992), an elaborate
concatenated coding scheme using a ν = 14 rate-1/4 inner code with a Big Viterbi Decoder
(BVD) and a set of variable-strength RS outer codes was reprogrammed into the spacecraft
computers. This scheme was able to operate at Eb/N0 ≈ 0.8 dB at Pb(E) ≈ 2 · 10−7, for a real
coding gain of about 10.2 dB.

Turbo coding systems for deep-space communications have been developed by NASA’s Jet
Propulsion Laboratory (JPL) and others to get within 1 dB of the Shannon limit, and have now
been standardized.

For a more comprehensive history of coding for deep-space channels, see [3].

1.3 Brief history of telephone-line modems

For several decades the telephone channel was the arena in which the most powerful coding
and modulation schemes for the bandwidth-limited AWGN channel were first developed and
deployed, because:

• The telephone channel is fairly well modeled as a band-limited AWGN channel;

• One dB has a significant commercial value;

• Data rates are low enough that a considerable amount of processing can be done per bit.

To approach the capacity of bandwidth-limited AWGN channels, multilevel modulation must
be used. Moreover, it is important to use as much of the available bandwidth as possible.

The earliest modems developed in the 1950s and 1960s (Bell 103 and 202, and international
standards V.21 and V.23) used simple binary frequency-shift keying (FSK) to achieve data rates
of 300 and 1200 b/s, respectively. Implementation was entirely analog.

The first synchronous “high-speed” modem was the Bell 201 (later V.24), a 2400 b/s modem
which was introduced about 1962. This modem used four-phase (4-PSK) modulation at 1200
symbols/s, so the nominal (Nyquist) bandwidth was 1200 Hz. However, because the modulation
pulse had 100% rolloff, the actual bandwidth used was closer to 2400 Hz.

5 1.3. BRIEF HISTORY OF TELEPHONE-LINE MODEMS

The first successful 4800 b/s modem was the Milgo 4400/48 (later V.27), which was introduced
about 1967. This modem used eight-phase (8-PSK) modulation at 1600 symbols/s, so the
nominal (Nyquist) bandwidth was 1600 Hz. “Narrow-band” filters with 50% rolloff kept the
actual bandwidth used to 2400 Hz.

The first successful 9600 b/s modem was the Codex 9600C (later V.29), which was introduced
in 1971. This modem used quadrature amplitude modulation (QAM) at 2400 symbols/s with an
unconventional 16-point signal constellation (see Exercise 3, below) to combat combined “phase
jitter” and AWGN. More importantly, it used digital adaptive linear equalization to keep the
actual bandwidth needed to not much more than the Nyquist bandwidth of 2400 Hz.

All of these modems were designed for private point-to-point conditioned voice-grade lines,
which use four-wire circuits (independent transmission in each direction) whose quality is higher
and more consistent than that of the typical telephone connection in the two-wire (simultaneous
transmission in both directions) public switched telephone network (PSTN).

The first international standard to use coding was the V.32 standard (1986) for 9600 b/s
transmission over the PSTN (later raised to 14.4 kb/s in V.32bis). This modem used an 8-state,
two-dimensional (2D) rotationally invariant Wei trellis code to achieve a coding gain of about 3.5
dB with a 32-QAM (later 128-QAM) constellation at 2400 symbols/s, again with an adaptive
linear equalizer. Digital echo cancellation was also introduced to combat echoes on two-wire
channels.

The “ultimate modem standard” was V.34 (1994) for transmission at up to 28.8 kb/s over
the PSTN (later raised to 33.6 kb/s in V.34bis). This modem used a 16-state, 4D rotationally
invariant Wei trellis code to achieve a coding gain of about 4.0 dB with a variable-sized QAM
constellation with up to 1664 points. An optional 32-state, 4D trellis code with an additional
coding gain of 0.3 dB and four times (4x) the decoding complexity and a 64-state, 4D code
with a further 0.15 dB coding gain and a further 4x increase in complexity were also provided.
A 16D “shell mapping” constellation shaping scheme provided an additional shaping gain of
about 0.8 dB (see Exercise 4, below). A variable symbol rate of up to 3429 symbols/s was used,
with symbol rate and data rate selection determined by “line probing” of individual channels.
Nonlinear transmitter precoding combined with adaptive linear equalization in the receiver was
used for equalization, again with echo cancellation. In short, this modem used almost every tool
in the AWGN channel toolbox.

However, this standard was shortly superseded by V.90 (1998). V.90 is based on a completely
different, non-AWGN model for the telephone channel: namely, it recognizes that within today’s
PSTN, analog signals are bandlimited, sampled and quantized to one of 256 amplitude levels at
8 kHz, transmitted digitally at 64 kb/s, and then eventually reconstructed by pulse amplitude
modulation (PAM). By gaining direct access to the 64 kb/s digital data stream at a central site,
and by using a well-spaced subset of the pre-existing nonlinear 256-PAM constellation, data can
easily be transmitted at 40–56 kb/s (see Exercise 5, below). In V.90, such a scheme is used for
downstream transmission only, with V.34 modulation upstream. In V.92 (2000) this scheme has
been extended to the more difficult upstream direction.

Neither V.90 nor V.92 uses coding, nor the other sophisticated techniques of V.34. In this
sense, the end of the telephone-line modem story is a bit of a fizzle. However, techniques similar
to those of V.34 are now used in higher-speed wireline modems, such as digital subscriber line
(DSL) modems, as well as on wireless channels such as digital cellular. In other words, the story
continues in other settings.

6 CHAPTER 1. INTRODUCTION

1.4 Exercises

In this section we offer a few warm-up exercises to give the reader some preliminary feeling for
data communication on the AWGN channel.

In these exercises the underlying channel model is assumed to be a discrete-time AWGN
channel whose output sequence is given by Y = X + N, where X is a real input data sequence
and N is a sequence of real independent, identically distributed (iid) zero-mean Gaussian noise
variables. This model will be derived from a continuous-time model in Chapter 2.

We will also give the reader some practice in the use of decibels (dB). In general, a dB represen-
tation is useful wherever logarithms are useful; i.e., wherever a real number is a multiplicative
factor of some other number, and particularly for computing products of many factors. The dB
scale is simply the logarithmic mapping

ratio or multiplicative factor of α ↔ 10 log10 α dB,

where the scaling is chosen so that the decade interval 1–10 maps to the interval 0–10. (In other
words, the value of α in dB is logβ α, where β = 100.1 = 1.2589....) This scale is convenient for
human memory and calculation. It is often useful to have the little log table below committed
to memory, even in everyday life (see Exercise 1, below).

α dB dB
(round numbers) (two decimal places)

1 0 0.00
1.25 1 0.97
2 3 3.01

2.5 4 3.98
e 4.3 4.34
3 4.8 4.77
π 5 4.97
4 6 6.02
5 7 6.99
8 9 9.03
10 10 10.00

Exercise 1. (Compound interest and dB) How long does it take to double your money at an
interest rate of P %? The bankers’ “Rule of 72” estimates that it takes about 72/P years; e.g.,
at a 5% interest rate compounded annually, it takes about 14.4 years to double your money.

(a) An engineer decides to interpolate the dB table above linearly for 1 ≤ 1 + p ≤ 1.25; i.e.,

ratio or multiplicative factor of 1 + p ↔ 4p dB.

Show that this corresponds to a “Rule of 75;” e.g., at a 5% interest rate compounded annually,
it takes 15 years to double your money.

(b) A mathematician linearly approximates the dB table for p ≈ 0 by noting that as p → 0,
ln(1+p) → p, and translates this into a “Rule of N ” for some real number N . What is N ? Using
this rule, how many years will it take to double your money at a 5% interest rate, compounded
annually? What happens if interest is compounded continuously?

(c) How many years will it actually take to double your money at a 5% interest rate, com-
pounded annually? [Hint: 10 log10 7 = 8.45 dB.] Whose rule best predicts the correct result?

� �

@ �

7 1.4. EXERCISES

Exercise 2. (Biorthogonal codes) A 2m × 2m {±1}-valued Hadamard matrix H2m may be
constructed recursively as the m-fold tensor product of the 2 × 2 matrix

+1 +1
H2 =

+1 −1 ,

as follows: � �
+H2m−1 +H2m−1

H2m = .
+H2m−1 −H2m−1

(a) Show by induction that:

(i) (H2m)T = H2m , where T denotes the transpose; i.e., H2m is symmetric;

(ii) The rows or columns of H2m form a set of mutually orthogonal vectors of length 2m;

(iii) The first row and the first column of H2m consist of all +1s;

(iv) There are an equal number of +1s and −1s in all other rows and columns of H2m ;

(v) H2m H2m = 2mI2m ; i.e., (H2m)−1 = 2−mH2m , where −1 denotes the inverse.

(b) A biorthogonal signal set is a set of real equal-energy orthogonal vectors and their negatives.
Show how to construct a biorthogonal signal set of size 64 as a set of {±1}-valued sequences of
length 32.

(c) A simplex signal set S is a set of real equal-energy vectors that are equidistant and that
have zero mean m(S) under an equiprobable distribution. Show how to construct a simplex
signal set of size 32 as a set of 32 {±1}-valued sequences of length 31. [Hint: The fluctuation
O − m(O) of a set O of orthogonal real vectors is a simplex signal set.]

(d) Let Y = X+N be the received sequence on a discrete-time AWGN channel, where the input
sequence X is chosen equiprobably from a biorthogonal signal set B of size 2m+1 constructed as
in part (b). Show that the following algorithm implements a minimum-distance decoder for B
(i.e., given a real 2m-vector y, it finds the closest x ∈ B to y):

(i) Compute z = H2m y, where y is regarded as a column vector;

(ii) Find the component zj of z with largest magnitude |zj |;
(iii) Decode to sgn(zj)xj , where sgn(zj) is the sign of the largest-magnitude component zj and

xj is the corresponding column of H2m .

(e) Show that a circuit similar to that shown below for m = 2 can implement the 2m × 2m

matrix multiplication z = H2m y with a total of only m×2m addition and subtraction operations.
(This is called the “fast Hadamard transform,” or “Walsh transform,” or “Green machine.”)

y1 - - - z1+@�
+ A� ��y2 @R A-� - z2+-� − A A� �� y3 - A AU - z3+ � �- −A� �@R AUy4 -� − � - − - z4

Figure 2. Fast 2m × 2m Hadamard transform for m = 2.

8 CHAPTER 1. INTRODUCTION

Exercise 3. (16-QAM signal sets) Three 16-point 2-dimensional quadrature amplitude mod-
ulation (16-QAM) signal sets are shown in Figure 3, below. The first is a standard 4 × 4 signal
set; the second is the V.29 signal set; the third is based on a hexagonal grid and is the most
power-efficient 16-QAM signal set known. The first two have 90◦ symmetry; the last, only 180◦ .
All have a minimum squared distance between signal points of d2 = 4. min

r r r r
−3 −1 1r r r r

r
√r 2 3r r r r r	 r
√r r r r 3r r	 r r

3 −5r −3r −1 1 3r 5r −2.r5−0.r5 1.r5 3.r5r r	 r r √r r r r − 3
√r r r r r	 r r	 −2 3 r

(a) (b)	 (c)

Figure 3. 16-QAM signal sets. (a) (4 × 4)-QAM; (b) V.29; (c) hexagonal.

(a) Compute the average energy (squared norm) of each signal set if all points are equiprobable.
Compare the power efficiencies of the three signal sets in dB.

(b) Sketch the decision regions of a minimum-distance detector for each signal set.
(c) Show that with a phase rotation of ±10◦ the minimum distance from any rotated signal

point to any decision region boundary is substantially greatest for the V.29 signal set.
Exercise 4. (Shaping gain of spherical signal sets) In this exercise we compare the power

efficiency of n-cube and n-sphere signal sets for large n.
An n-cube signal set is the set of all odd-integer sequences of length n within an n-cube of

side 2M centered on the origin. For example, the signal set of Figure 3(a) is a 2-cube signal set
with M = 4.

An n-sphere signal set is the set of all odd-integer sequences of length n within an n-sphere
of squared radius r2 centered on the origin. For example, the signal set of Figure 3(a) is also a
2-sphere signal set for any squared radius r2 in the range 18 ≤ r2 < 25. In particular, it is a
2-sphere signal set for r2 = 64/π = 20.37, where the area πr2 of the 2-sphere (circle) equals the
area (2M)2 = 64 of the 2-cube (square) of the previous paragraph.

Both n-cube and n-sphere signal sets therefore have minimum squared distance between signal
points d2

min = 4 (if they are nontrivial), and n-cube decision regions of side 2 and thus volume
2n associated with each signal point. The point of the following exercise is to compare their
average energy using the following large-signal-set approximations:

•	 The number of signal points is approximately equal to the volume V (R) of the bounding
n-cube or n-sphere region R divided by 2n, the volume of the decision region associated
with each signal point (an n-cube of side 2).

•	 The average energy of the signal points under an equiprobable distribution is approximately
equal to the average energy E(R) of the bounding n-cube or n-sphere region R under a
uniform continuous distribution.

9 1.4. EXERCISES

(a) Show that if R is an n-cube of side 2M for some integer M , then under the two above
approximations the approximate number of signal points is M n and the approximate average
energy is nM 2/3. Show that the first of these two approximations is exact.

(b) For n even, if R is an n-sphere of radius r, compute the approximate number of signal
points and the approximate average energy of an n-sphere signal set, using the following known
expressions for the volume V⊗(n, r) and the average energy E⊗(n, r) of an n-sphere of radius r:

(πr2)n/2
V⊗(n, r) =

(n/2)!
;

2nr
E⊗(n, r) = .

n + 2

(c) For n = 2, show that a large 2-sphere signal set has about 0.2 dB smaller average energy
than a 2-cube signal set with the same number of signal points.

(d) For n = 16, show that a large 16-sphere signal set has about 1 dB smaller average energy
than a 16-cube signal set with the same number of signal points. [Hint: 8! = 40320 (46.06 dB).]

(e) Show that as n → ∞ a large n-sphere signal set has a factor of πe/6 (1.53 dB) smaller
average energy than an n-cube signal set with the same number of signal points. [Hint: Use
Stirling’s approximation, m! → (m/e)m as m → ∞.]

Exercise 5. (56 kb/s PCM modems)
This problem has to do with the design of “56 kb/s PCM modems” such as V.90 and V.92.
In the North American telephone network, voice is commonly digitized by low-pass filtering to

about 3.8 KHz, sampling at 8000 samples per second, and quantizing each sample into an 8-bit
byte according to the so-called “µ law.” The µ law specifies 255 distinct signal levels, which are
a quantized, piecewise-linear approximation to a logarithmic function, as follows:

• 1 level at 0;

• 15 positive levels evenly spaced with d = 2 between 2 and 30 (i.e., 2, 4, 6, 8, . . . , 30);

• 16 positive levels evenly spaced with d = 4 between 33 and 93;

• 16 positive levels evenly spaced with d = 8 between 99 and 219;

• 16 positive levels evenly spaced with d = 16 between 231 and 471;

• 16 positive levels evenly spaced with d = 32 between 495 and 975;

• 16 positive levels evenly spaced with d = 64 between 1023 and 1983;

• 16 positive levels evenly spaced with d = 128 between 2079 and 3999;

• 16 positive levels evenly spaced with d = 256 between 4191 and 8031;

• plus 127 symmetric negative levels.

The resulting 64 kb/s digitized voice sequence is transmitted through the network and ulti-
mately reconstructed at a remote central office by pulse amplitude modulation (PAM) using a
µ-law digital/analog converter and a 4 KHz low-pass filter.

10 CHAPTER 1. INTRODUCTION

For a V.90 modem, one end of the link is assumed to have a direct 64 kb/s digital connection
and to be able to send any sequence of 8000 8-bit bytes per second. The corresponding levels
are reconstructed at the remote central office. For the purposes of this exercise, assume that the
reconstruction is exactly according to the µ-law table above, and that the reconstructed pulses
are then sent through an ideal 4 KHz additive AWGN channel to the user.

(a) Determine the maximum number M of levels that can be chosen from the 255-point µ-law
constellation above such that the minimum separation between levels is d = 2, 4, 8, 16, 64, 128,
256, 512, or 1024, respectively.

(b) These uncoded M -PAM subconstellations may be used to send up to r = log2 M bits per
symbol. What level separation can be obtained while sending 40 kb/s? 48 kb/s? 56 kb/s?

(c) How much more SNR in dB is required to transmit reliably at 48 kb/s compared to 40
kb/s? At 56 kb/s compared to 48 kb/s?

References

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: Turbo codes,” Proc. 1993 Int. Conf. Commun. (Geneva), pp. 1064–1070, May
1993.
[2] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson and R. Urbanke, “On the design of low-
density parity-check codes within 0.0045 dB from the Shannon limit,” IEEE Commun. Letters,
vol. 5, pp. 58–60, Feb. 2001.
[3] D. J. Costello, Jr., J. Hagenauer, H. Imai and S. B. Wicker, “Applications of error-control
coding,” IEEE Trans. Inform. Theory, vol. 44, pp. 2531–2560, Oct. 1998.
[4] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1962.
[5] E. A. Lee and D. G. Messerschmitt, Digital Communication (first edition). Boston: Kluwer,
1988.
[6] E. A. Lee and D. G. Messerschmitt, Digital Communication (second edition). Boston:
Kluwer, 1994.
[7] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp.
379–423 and 623–656, 1948.

Chapter 2

Discrete-time and continuous-time
AWGN channels

In this chapter we begin our technical discussion of coding for the AWGN channel. Our purpose
is to show how the continuous-time AWGN channel model Y (t) = X(t) + N(t) may be reduced
to an equivalent discrete-time AWGN channel model Y = X + N, without loss of generality or
optimality. This development relies on the sampling theorem and the theorem of irrelevance.
More practical methods of obtaining such a discrete-time model are orthonormal PAM or QAM
modulation, which use an arbitrarily small amount of excess bandwidth. Important parameters
of the continuous-time channel such as SNR, spectral efficiency and capacity carry over to
discrete time, provided that the bandwidth is taken to be the nominal (Nyquist) bandwidth.
Readers who are prepared to take these assertions on faith may skip this chapter.

2.1 Continuous-time AWGN channel model

The continuous-time AWGN channel is a random channel whose output is a real random process

Y (t) = X(t) + N(t),

where X(t) is the input waveform, regarded as a real random process, and N(t) is a real white
Gaussian noise process with single-sided noise power density N0 which is independent of X(t).

Moreover, the input X(t) is assumed to be both power-limited and band-limited. The average
input power of the input waveform X(t) is limited to some constant P . The channel band B
is a positive-frequency interval with bandwidth W Hz. The channel is said to be baseband if
B = [0, W], and passband otherwise. The (positive-frequency) support of the Fourier transform
of any sample function x(t) of the input process X(t) is limited to B.

The signal-to-noise ratio SNR of this channel model is then
P

SNR = ,
N0W

where N0W is the total noise power in the band B. The parameter N0 is defined by convention
to make this relationship true; i.e., N0 is the noise power per positive-frequency Hz. Therefore
the double-sided power spectral density of N(t) must be Snn(f) = N0/2, at least over the bands
±B.

11

�

�

�

12 CHAPTER 2. DISCRETE-TIME AND CONTINUOUS-TIME AWGN CHANNELS

The two parameters W and SNR turn out to characterize the channel completely for digital
communications purposes; the absolute scale of P and N0 and the location of the band B do not
affect the model in any essential way. In particular, as we will show in Chapter 3, the capacity
of any such channel in bits per second is

C[b/s] = W log2(1 + SNR) b/s.

If a particular digital communication scheme transmits a continuous bit stream over such a
channel at rate R b/s, then the spectral efficiency of the scheme is said to be ρ = R/W (b/s)/Hz
(read as “bits per second per Hertz”). The Shannon limit on spectral efficiency is therefore

C[(b/s)/Hz] = log2(1 + SNR) (b/s)/Hz;

i.e., reliable transmission is possible when ρ < C[(b/s)/Hz], but not when ρ > C[(b/s)/Hz].

2.2 Signal spaces

In the next few sections we will briefly review how this continuous-time model may be reduced
to an equivalent discrete-time model via the sampling theorem and the theorem of irrelevance.
We assume that the reader has seen such a derivation previously, so our review will be rather
succinct.

The set of all real finite-energy signals x(t), denoted by L2, is a real vector space; i.e., it is
closed under addition and under multiplication by real scalars. The inner product of two signals
x(t), y(t) ∈ L2 is defined by

〈x(t), y(t)〉 = x(t)y(t) dt.

The squared Euclidean norm (energy) of x(t) ∈ L2 is defined as ||x(t)||2 = 〈x(t), x(t)〉 < ∞, and
the squared Euclidean distance between x(t), y(t) ∈ L2 is d2(x(t), y(t)) = ||x(t) − y(t)||2. Two
signals in L2 are regarded as the same (L2-equivalent) if their distance is 0. This allows the
following strict positivity property to hold, as it must for a proper distance metric:

||x(t)||2 ≥ 0, with strict inequality unless x(t) is L2-equivalent to 0.

Every signal x(t) ∈ L2 has an L2 Fourier transform

x(t)e −2πiftx̂(f) = dt,

such that, up to L2-equivalence, x(t) can be recovered by the inverse Fourier transform:

2πiftdf. x(t) = x(f)eˆ

We write ˆ x(f)), and x(t) ↔ ˆx(f) = F (x(t)), x(t) = F −1(ˆ x(f).
It can be shown that an L2 signal x(t) is L2-equivalent to a signal which is continuous except

at a discrete set of points of discontinuity (“almost everywhere”); therefore so is x̂(f). The
values of an L2 signal or its transform at points of discontinuity are immaterial.

�

�

�

�

�

2.3. THE SAMPLING THEOREM 13

By Parseval’s theorem, the Fourier transform preserves inner products:

〈x(t), y(t)〉 = 〈ˆ ˆ yx(f), ŷ(f)〉 = x(f)ˆ∗(f) df.

In particular, ||x(t)||2 = ||x̂(f)||2 .
A signal space is any subspace S ⊆ L2. For example, the set of L2 signals that are time-limited

to an interval [0, T] (“have support [0, T]”) is a signal space, as is the set of L2 signals whose
Fourier transforms are nonzero only in ±B (“have frequency support ±B”).

Every signal space S ⊆ L2 has an orthogonal basis {φk (t), k ∈ I}, where I is some discrete
index set, such that every x(t) ∈ S may be expressed as

� 〈x(t), φk (t)〉
x(t) = ||φk (t)||2 φk (t),

k∈I

up to L2 equivalence. This is called an orthogonal expansion of x(t).
Of course this expression becomes particularly simple if {φk (t)} is an orthonormal basis with

||φk (t)||2 = 1 for all k ∈ I. Then we have the orthonormal expansion

x(t) = xk φk(t),
k∈I

where x = {xk = 〈x(t), φk (t)〉, k ∈ I} is the corresponding set of orthonormal coefficients. From
this expression, we see that inner products are preserved in an orthonormal expansion; i.e.,

〈x(t), y(t)〉 = 〈x, y〉 = xk yk .
k∈I

In particular, ||x(t)||2 = ||x||2 .

2.3 The sampling theorem

The sampling theorem allows us to convert a continuous signal x(t) with frequency support
[−W, W] (i.e., a baseband signal with bandwidth W) to a discrete-time sequence of samples
{x(kT), k ∈ Z} at a rate of 2W samples per second, with no loss of information.

The sampling theorem is basically an orthogonal expansion for the space L2[0, W] of sig-
nals that have frequency support [−W, W]. If T = 1/2W , then the complex exponentials
{exp(2πifkT), k ∈ Z} form an orthogonal basis for the space of Fourier transforms with support
[−W, W]. Therefore their scaled inverse Fourier transforms {φk (t) = sincT (t − kT), k ∈ Z} form
an orthogonal basis for L2[0, W], where sincT (t) = (sin πt/T)/(πt/T). Since ||sincT (t)||2 = T ,
every x(t) ∈ L2[0, W] may therefore be expressed up to L2 equivalence as

1
x(t) = 〈x(t), sincT (t − kT)〉sincT (t − kT).

T
k∈Z

1Moreover, evaluating this equation at t = jT gives x(jT) = T 〈x(t), sincT (t − jT)〉 for all j ∈
Z (provided that x(t) is continuous at t = jT), since sincT ((j − k)T) = 1 for k = j and
sincT ((j − k)T) = 0 for k �= j. Thus if x(t) ∈ L2[0, W] is continuous, then

x(t) = x(kT)sincT (t − kT).
k∈Z

This is called the sampling theorem.

�

�

14 CHAPTER 2. DISCRETE-TIME AND CONTINUOUS-TIME AWGN CHANNELS

Since inner products are preserved in an orthonormal expansion, and here the orthonormal √
1coefficients are xk = √ 〈x(t), sincT (t − kT)〉 = Tx(kT), we have
T

〈x(t), y(t)〉 = 〈x, y〉 = T x(kT)y(kT).
k∈Z

The following exercise shows similarly how to convert a continuous passband signal x(t) with
bandwidth W (i.e., with frequency support ±[fc − W/2, fc + W/2] for some center frequency
fc > W/2) to a discrete-time sequence of sample pairs {(xc,k, xs,k), k ∈ Z} at a rate of W pairs
per second, with no loss of information.
Exercise 2.1 (Orthogonal bases for passband signal spaces)
(a) Show that if {φk (t)} is an orthogonal set of signals in L2[0, W], then

{φk (t) cos 2πfct, φk (t) sin 2πfct} is an orthogonal set of signals in L2[fc − W, fc + W], the set
of signals in L2 that have frequency support ±[fc − W, fc + W], provided that fc ≥ W .

[Hint: use the facts that F(φk (t) cos 2πfct) = (φ̂k (f − fc) + φ̂k (f + fc))/2 and
F(φk(t) sin 2πfct) = (φ̂k (f − fc) − φ̂k (f + fc))/2i, plus Parseval’s theorem.]

(b) Show that if the set {φk(t)} is an orthogonal basis for L2[0, W], then the set
{φk (t) cos 2πfct, φk (t) sin 2πfct} is an orthogonal basis for L2[fc − W, fc + W], provided that
fc ≥ W .

[Hint: show that every x(t) ∈ L2[fc − W, fc + W] may be written as x(t) = xc(t) cos 2πfct +
xs(t) sin 2πfct for some xc(t), xs(t) ∈ L2[0, W].]

(c) Conclude that every x(t) ∈ L2[fc − W, fc + W] may be expressed up to L2 equivalence as
� 1

x(t) = (xc,k cos 2πfct + xs,k sin 2πfct) sincT (t − kT), T =
2W

,
k∈Z

for some sequence of pairs {(xc,k, xs,k), k ∈ Z}, and give expressions for xc,k and xs,k .

2.4 White Gaussian noise

The question of how to define a white Gaussian noise (WGN) process N(t) in general terms is
plagued with mathematical difficulties. However, when we are given a signal space S ⊆ L2 with
an orthonormal basis as here, then defining WGN with respect to S is not so problematic. The
following definition captures the essential properties that hold in this case:

Definition 2.1 (White Gaussian noise with respect to a signal space S) Let S ⊆ L2
be a signal space with an orthonormal basis {φk (t), k ∈ I}. A Gaussian process N(t) is de-
fined as white Gaussian noise with respect to S with single-sided power spectral density N0 if

(a) The sequence {Nk = 〈N(t), φk (t)〉, k ∈ I} is a sequence of iid Gaussian noise variables with
mean zero and variance N0/2;

(b) Define the “in-band noise” as the projection N|S (t) = Nk φk (t) of N(t) onto the signal k∈I
space S, and the “out-of-band noise” as N|S⊥ (t) = N(t) −N|S (t). Then N|S⊥ (t) is a process
which is jointly Gaussian with N|S (t), has sample functions which are orthogonal to S, is
uncorrelated with N|S (t), and thus is statistically independent of N|S (t).

�

�

�

�
�

�

�

2.4. WHITE GAUSSIAN NOISE 15

For example, any stationary Gaussian process whose single-sided power spectral density is
equal to N0 within a band B and arbitrary elsewhere is white with respect to the signal space
L2(B) of signals with frequency support ±B.
Exercise 2.2 (Preservation of inner products) Show that a Gaussian process N(t) is white

with respect to a signal space S ⊆ L2 with psd N0 if and only if for any signals x(t), y(t) ∈ S,

E[〈N(t), x(t)〉〈N(t), y(t)〉] =
N0 〈x(t), y(t)〉.
2

Here we are concerned with the detection of signals that lie in some signal space S in the
presence of additive white Gaussian noise. In this situation the following theorem is fundamental:

Theorem 2.1 (Theorem of irrelevance) Let X(t) be a random signal process whose sample
functions x(t) lie in some signal space S ⊆ L2 with an orthonormal basis {φk (t), k ∈ I}, let
N(t) be a Gaussian noise process which is independent of X(t) and white with respect to S, and
let Y (t) = X(t) + N(t). Then the set of samples

Yk = 〈Y (t), φk (t)〉, k ∈ I,

is a set of sufficient statistics for detection of X(t) from Y (t).

Sketch of proof. We may write
Y (t) = Y|S (t) + Y|S⊥ (t),

where Y|S (t) = Yk φk (t) and Y|S⊥ (t) = Y (t) − Y|S (t). Since Y (t) = X(t) + N(t) and k

X(t) = 〈X(t), φk(t)〉φk (t),
k

since all sample functions of X(t) lie in S, we have

Y (t) = Yk φk (t) + N|S⊥ (t),
k

where N|S⊥ (t) = N(t) − 〈N(t), φk (t)〉φk (t). By Definition 2.1, N|S⊥ (t) is independent of k
N|S (t) = 〈N(t), φk(t)〉φk (t), and by hypothesis it is independent of X(t). Thus the proba-k
bility distribution of X(t) given Y|S (t) = Yk φk (t) and Y|S⊥ (t) = N|S⊥ (t) depends only on k
Y|S (t), so without loss of optimality in detection of X(t) from Y (t) we can disregard Y|S⊥ (t);
i.e., Y|S (t) is a sufficient statistic. Moreover, since Y|S (t) is specified by the samples {Yk }, these
samples equally form a set of sufficient statistics for detection of X(t) from Y (t).

The sufficient statistic Y|S (t) may alternatively be generated by filtering out the out-of-band
noise N|S⊥ (t). For example, for the signal space L2(B) of signals with frequency support ±B,
we may obtain Y|S (t) by passing Y (t) through a brick-wall filter which passes all frequency

1components in B and rejects all components not in B.
1Theorem 2.1 may be extended to any model Y (t) = X(t) + N (t) in which the out-of-band noise N|S⊥ (t) =

N (t) − N|S (t) is independent of both the signal X(t) and the in-band noise N|S (t) = Nk φk (t); e.g., to models k
in which the out-of-band noise contains signals from other independent users. In the Gaussian case, independence
of the out-of-band noise is automatic; in more general cases, independence is an additional assumption.

�

�

�

� �

16 CHAPTER 2. DISCRETE-TIME AND CONTINUOUS-TIME AWGN CHANNELS

Combining Definition 2.1 and Theorem 2.1, we conclude that for any AWGN channel in which
the signals are confined to a sample space S with orthonormal basis {φk(t), k ∈ I}, we may
without loss of optimality reduce the output Y (t) to the set of samples

Yk = 〈Y (t), φk(t)〉 = 〈X(t), φk (t)〉 + 〈N(t), φk (t)〉 = Xk + Nk , k ∈ I,

where {Nk, k ∈ I} is a set of iid Gaussian variables with mean zero and variance N0/2. Moreover,
if x1(t), x2(t) ∈ S are two sample functions of X(t), then this orthonormal expansion preserves
their inner product:

〈x1(t), x2(t)〉 = 〈x1,x2〉,
where x1 and x2 are the orthonormal coefficient sequences of x1(t) and x2(t), respectively.

2.5 Continuous time to discrete time

We now specialize these results to our original AWGN channel model Y (t) = X(t) + N(t),
where the average power of X(t) is limited to P and the sample functions of X(t) are required
to have positive frequency support in a band B of width W . For the time being we consider the
baseband case in which B = [0, W].

The signal space is then the set S = L2[0, W] of all finite-energy signals x(t) whose Fourier
transform has support ±B. The sampling theorem shows that {φk (t) = √1 sincT (t−kT), k ∈ Z}

T
is an orthonormal basis for this signal space, where T = 1/2W , and that therefore without loss
of generality we may write any x(t) ∈ S as

x(t) = xk φk(t),
k∈Z

where xk is the orthonormal coefficient xk = 〈x(t), φk (t)〉, and equality is in the sense of L2
equivalence.

Consequently, if X(t) is a random process whose sample functions x(t) are all in S, then we
can write

X(t) = Xkφk (t),
k∈Z

where Xk = 〈X(t), φk (t)〉 = X(t)φk (t) dt, a random variable that is a linear functional of
X(t). In this way we can identify any random band-limited process X(t) of bandwidth W with
a discrete-time random sequence X = {Xk } at a rate of 2W real variables per second. Hereafter
the input will be regarded as the sequence X rather than X(t).

Thus X(t) may be regarded as a sum of amplitude-modulated orthonormal pulses Xkφk(t).
By the Pythagorean theorem,

||X(t)||2 = ||Xk φk (t)||2 = Xk
2 ,

k∈Z k∈Z

where we use the orthonormality of the φk (t). Therefore the requirement that the average power
(energy per second) of X(t) be less than P translates to a requirement that the average energy
of the sequence X be less than P per 2W symbols, or equivalently less than P/2W per symbol.2

2The requirement that the sample functions of X(t) must be in L2 translates to the requirement that the
sample sequences x of X must have finite energy. This requirement can be met by requiring that only finitely
many elements of x be nonzero. However, we do not pursue such finiteness issues.

�

�

2.5. CONTINUOUS TIME TO DISCRETE TIME	 17

Similarly, the random Gaussian noise process N(t) may be written as

N(t) = Nkφk(t) + N|S⊥ (t)
k∈Z

where N = {Nk = 〈N(t), φk(t)〉} is the sequence of orthonormal coefficients of N(t) in S,
and N|S⊥ (t) = N(t) − Nkφk(t) is out-of-band noise. The theorem of irrelevance shows k
that N|S⊥ (t) may be disregarded without loss of optimality, and therefore that the sequence
Y = X + N is a set of sufficient statistics for detection of X(t) from Y (t).

In summary, we conclude that the characteristics of the discrete-time model Y = X + N mirror
those of the continuous-time model Y (t) = X(t) + N(t) from which it was derived:

•	 The symbol interval is T = 1/2W ; equivalently, the symbol rate is 2W symbols/s;

•	 The average signal energy per symbol is limited to P/2W ;

•	 The noise sequence N is iid zero-mean (white) Gaussian, with variance N0/2 per symbol;

•	 The signal-to-noise ratio is thus SNR = (P/2W)/(N0/2) = P/N0W , the same as for the
continuous-time model;

•	 A data rate of ρ bits per two dimensions (b/2D) translates to a data rate of R = Wρ b/s,
or equivalently to a spectral efficiency of ρ (b/s)/Hz.

This important conclusion is the fundamental result of this chapter.

2.5.1 Passband case

Suppose now that the channel is instead a passband channel with positive-frequency support
band B = [fc − W/2, fc + W/2] for some center frequency fc > W/2.

The signal space is then the set S = L2[fc − W/2, fc + W/2] of all finite-energy signals x(t)
whose Fourier transform has support ±B.

In this case Exercise 2.1 shows that an orthogonal basis for the signal space is a set of signals
of the form φk,c(t) = sincT (t − kT) cos 2πfct and φk,s(t) = sincT (t − kT) sin 2πfct, where the
symbol interval is now T = 1/W . Since the support of the Fourier transform of sincT (t − kT) is
[−W/2, W/2], the support of the transform of each of these signals is ±B.

The derivation of a discrete-time model then goes as in the baseband case. The result is that
the sequence of real pairs

(Yk,c, Yk,s) = (Xk,c, Xk,s) + (Nk,c, Nk,s)

is a set of sufficient statistics for detection of X(t) from Y (t). If we compute scale factors
correctly, we find that the characteristics of this discrete-time model are as follows:

•	 The symbol interval is T = 1/W , or the symbol rate is W symbols/s. In each symbol
interval a pair of two real symbols is sent and received. We may therefore say that the rate
is 2W = 2/T real dimensions per second, the same as in the baseband model.

•	 The average signal energy per dimension is limited to P/2W ;

18 CHAPTER 2. DISCRETE-TIME AND CONTINUOUS-TIME AWGN CHANNELS

•	 The noise sequences Nc and Ns are independent real iid zero-mean (white) Gaussian se-
quences, with variance N0/2 per dimension;

•	 The signal-to-noise ratio is again SNR = (P/2W)/(N0/2) = P/N0W ;

•	 A data rate of ρ b/2D again translates to a spectral efficiency of ρ (b/s)/Hz.

Thus the passband discrete-time model is effectively the same as the baseband model.
In the passband case, it is often convenient to identify real pairs with single complex variables √

via the standard correspondence between R2 and C given by (x, y) ↔ x + iy, where i = −1.
This is possible because a complex iid zero-mean Gaussian sequence N with variance N0 per
complex dimension may be defined as N = Nc + iNs, where Nc and Ns are independent real
iid zero-mean Gaussian sequences with variance N0/2 per real dimension. Then we obtain a
complex discrete-time model Y = X + N with the following characteristics:

•	 The symbol interval is T = 1/W , or the rate is W complex dimensions/s.

•	 The average signal energy per complex dimension is limited to P/W ;

•	 The noise sequence N is a complex iid zero-mean Gaussian sequence, with variance N0 per
complex dimension;

•	 The signal-to-noise ratio is again SNR = (P/W)/N0 = P/N0W ;

•	 A data rate of ρ bits per complex dimension translates to a spectral efficiency of ρ (b/s)/Hz.

This is still the same as before, if we regard one complex dimension as two real dimensions.
Note that even the baseband real discrete-time model may be converted to a complex discrete-

time model simply by taking real variables two at a time and using the same map R2 → C.
The reader is cautioned that the correspondence between R2 and C given by (x, y) ↔ x + iy

preserves some algebraic, geometric and probabilistic properties, but not all.
Exercise 2.3 (Properties of the correspondence R2 ↔ C) Verify the following assertions:

(a) Under the correspondence R2 ↔ C, addition is preserved.

(b) However, multiplication is not preserved. (Indeed, the product of two elements of R2 is not
even defined.)

(c) Inner products are not preserved. Indeed, two orthogonal elements of R2 can map to two
collinear elements of C.

(d) However, (squared) Euclidean norms and Euclidean distances are preserved.

(e) In general, if Nc and Ns are real jointly Gaussian sequences, then Nc + iNs is not a proper
complex Gaussian sequence, even if Nc and Ns are independent iid sequences.

(f) However, if Nc and Ns are independent real iid zero-mean Gaussian sequences with variance
N0/2 per real dimension, then Nc + iNs is a complex zero-mean Gaussian sequence with
variance N0 per complex dimension.

�

�
�

�

�
�

�

�

�

2.6. ORTHONORMAL PAM AND QAM MODULATION 19

2.6 Orthonormal PAM and QAM modulation

More generally, suppose that X(t) = Xk φk (t), where X = {Xk } is a random sequence and k
{φk (t) = p(t − kT)} is an orthonormal sequence of time shifts p(t − kT) of a basic modulation
pulse p(t) ∈ L2 by integer multiples of a symbol interval T . This is called orthonormal pulse-
amplitude modulation (PAM).

The signal space S is then the subspace of L2 spanned by the orthonormal sequence {p(t−kT)};
i.e., S consists of all signals in L2 that can be written as linear combinations k xk p(t − kT).

Again, the average power of X(t) = Xk p(t −kT) will be limited to P if the average energy k
of the sequence X is limited to PT per symbol, since the symbol rate is 1/T symbol/s.

The theorem of irrelevance again shows that the set of inner products

Yk = 〈Y (t), φk(t)〉 = 〈X(t), φk (t)〉 + 〈N(t), φk (t)〉 = Xk + Nk

is a set of sufficient statistics for detection of X(t) from Y (t). These inner products may be
obtained by filtering Y (t) with a matched filter with impulse response p(−t) and sampling at
integer multiples of T as shown in Figure 1 to obtain

Z(kT) = Y (τ)p(τ − kT) dτ = Yk,

Thus again we obtain a discrete-time model Y = X + N, where by the orthonormality of the
p(t − kT) the noise sequence N is iid zero-mean Gaussian with variance N0/2 per symbol.

-
Orthonormal

X = {Xk } X(t) = Xkp(t − kT)kPAM
modulator

- -

()N t
?

+
��

Y (t) p(−t) sample at ��
t = kT

Y = -{Yk }

Figure 1. Orthonormal PAM system.

The conditions that ensure that the time shifts {p(t−kT)} are orthonormal are determined by
Nyquist theory as follows. Define the composite response in Figure 1 as g(t) = p(t) ∗p(−t), with
Fourier transform ĝ(f) = |p̂(f)|2. (The composite response g(t) is also called the autocorrelation
function of p(t), and ĝ(f) is also called its power spectrum.) Then:

Theorem 2.2 (Orthonormality conditions) For a signal p(t) ∈ L2 and a time interval T ,
the following are equivalent:

(a) The time shifts {p(t − kT), k ∈ Z} are orthonormal;

(b) The composite response g(t) = p(t) ∗ p(−t) satisfies g(0) = 1 and g(kT) = 0 for k �= 0;

(c) The Fourier transform ĝ(f) = |p̂(f)|2 satisfies the Nyquist criterion for zero intersymbol
interference, namely

1
ĝ(f − m/T) = 1 for all f.

T
m∈Z

Sketch of proof. The fact that (a) ⇔ (b) follows from 〈p(t − kT), p(t − k′T)〉 = g((k − k′)T).
The fact that (b) ⇔ (c) follows from the aliasing theorem, which says that the discrete-time
Fourier transform of the sample sequence {g(kT)} is the aliased response 1 ĝ(f − m/T).T m

20 CHAPTER 2. DISCRETE-TIME AND CONTINUOUS-TIME AWGN CHANNELS

It is clear from the Nyquist criterion (c) that if p(t) is a baseband signal of bandwidth W , then

(i) The bandwidth W cannot be less than 1/2T ;

(ii) If W = 1/2T , then ̂ 	 g(f) = 0; i.e., g(t) = sincT (t);g(f) = T,−W ≤ f ≤ W , else ̂

(iii) If 1/2T < W ≤ 1/T , then any real non-negative power spectrum ĝ(f) that satisfies
ĝ(1/2T + f) + ̂g(1/2T − f) = T for 0 ≤ f ≤ 1/2T will satisfy (c).

For this reason W = 1/2T is called the nominal or Nyquist bandwidth of a PAM system with
symbol interval T . No orthonormal PAM system can have bandwidth less than the Nyquist
bandwidth, and only a system in which the modulation pulse has autocorrelation function g(t) =
p(t)∗p(−t) = sincT (t) can have exactly the Nyquist bandwidth. However, by (iii), which is called
the Nyquist band-edge symmetry condition, the Fourier transform |p̂(f)|2 may be designed to roll
off arbitrarily rapidly for f > W , while being continuous and having a continuous derivative.

Figure 2 illustrates a raised-cosine frequency response that satisfies the Nyquist band-edge
symmetry condition while being continuous and having a continuous derivative. Nowadays it is
no great feat to implement such responses with excess bandwidths of 5–10% or less.

T

f

2T − |p̂(1 − f)|2T

���

*��

|p̂(1 + f)|2T

0 2
1
T

Figure 2. Raised-cosine spectrum ˆ g(f) = |p̂(f)|2 with Nyquist band-edge symmetry.

We conclude that an orthonormal PAM system may use arbitrarily small excess bandwidth
beyond the Nyquist bandwidth W = 1/2T , or alternatively that the power in the out-of-band
frequency components may be made to be arbitrarily small, without violating the practical
constraint that the Fourier transform p̂(f) of the modulation pulse p(t) should be continuous
and have a continuous derivative.

In summary, if we let W denote the Nyquist bandwidth 1/2T rather than the actual bandwidth,
then we again obtain a discrete-time channel model Y = X + N for any orthonormal PAM
system, not just a system with the modulation pulse p(t) = √1 sincT (t), in which:

T

•	 The symbol interval is T = 1/2W ; equivalently, the symbol rate is 2W symbols/s;

•	 The average signal energy per symbol is limited to P/2W ;

•	 The noise sequence N is iid zero-mean (white) Gaussian, with variance N0/2 per symbol;

•	 The signal-to-noise ratio is SNR = (P/2W)/(N0/2) = P/N0W ;

•	 A data rate of ρ bits per two dimensions (b/2D) translates to a data rate of R = ρ/W b/s,
or equivalently to a spectral efficiency of ρ (b/s)/Hz.

2

�

�

2.7. SUMMARY 21

Exercise 2.4 (Orthonormal QAM modulation)
Figure 3 illustrates an orthonormal quadrature amplitude modulation (QAM) system with

symbol interval T in which the input and output variables Xk and Yk are complex, p(t) is a
complex finite-energy modulation pulse whose time shifts {p(t−kT)} are orthonormal (the inner
product of two complex signals is 〈x(t), y(t)〉 = x(t)y ∗(t) dt), the matched filter response is
∗p (−t), and fc > 1/2T is a carrier frequency. The box marked 2�{·} takes twice the real part

of its input— i.e., it maps a complex signal f(t) to f(t) + f∗(t)— and the Hilbert filter is a
complex filter whose frequency response is 1 for f > 0 and 0 for f < 0.

2πifcte
?Orthonormal � ��

X = {Xk } X(t) = k - × -Xk p(t − kT)- 2�{·}QAM ��
modulator ?��

N(t)�+ −2πifct ��e
@ ?�� Hilbert �Y = {Yk}� @ ∗ � × �p (−t)sample at �� filter

t = kT
Figure 3. Orthonormal QAM system.

(a) Assume that p̂(f) = 0 for |f | ≥ fc. Show that the Hilbert filter is superfluous.
(b) Show that Theorem 2.2 holds for a complex response p(t) if we define the composite

response (autocorrelation function) as g(t) = p(t) ∗ p ∗(−t). Conclude that the bandwidth of an
orthonormal QAM system is lowerbounded by its Nyquist bandwidth W = 1/T .

(c) Show that Y = X + N, where N is an iid complex Gaussian noise sequence. Show that the
signal-to-noise ratio in this complex discrete-time model is equal to the channel signal-to-noise
ratio SNR = P/N0W , if we define W = 1/T . [Hint: use Exercise 2.1.]

(d) Show that a mismatch in the receive filter— i.e., an impulse response h(t) other than
∗p (−t)— results in linear intersymbol interference— i.e., in the absence of noise Yk = j Xj hk−j

for some discrete-time response {hk} other than the ideal response δk0 (Kronecker delta).
(e) Show that a phase error of θ in the receive carrier— i.e., demodulation by e−2πifct+iθ rather

than by e−2πifct— results (in the absence of noise) in a phase rotation by θ of all outputs Yk .
(f) Show that a sample timing error of δ— i.e., sampling at times t = kT + δ— results in

linear intersymbol interference.

2.7 Summary

To summarize, the key parameters of a band-limited continuous-time AWGN channel are its
bandwidth W in Hz and its signal-to-noise ratio SNR, regardless of other details like where the
bandwidth is located (in particular whether it is at baseband or passband), the scaling of the
signal, etc. The key parameters of a discrete-time AWGN channel are its symbol rate W in
two-dimensional real or one-dimensional complex symbols per second and its SNR, regardless of
other details like whether it is real or complex, the scaling of the symbols, etc. With orthonormal
PAM or QAM, these key parameters are preserved, regardless of whether PAM or QAM is used,
the precise modulation pulse, etc. The (nominal) spectral efficiency ρ (in (b/s)/Hz or in b/2D)
is also preserved, and (as we will see in the next chapter) so is the channel capacity (in b/s).

Chapter 3

Capacity of AWGN channels

In this chapter we prove that the capacity of an AWGN channel with bandwidth W and signal-to-
noise ratio SNR is W log2(1+SNR) bits per second (b/s). The proof that reliable transmission is
possible at any rate less than capacity is based on Shannon’s random code ensemble, typical-set
decoding, the Chernoff-bound law of large numbers, and a fundamental result of large-deviation
theory. We also sketch a geometric proof of the converse. Readers who are prepared to accept
the channel capacity formula without proof may skip this chapter.

3.1 Outline of proof of the capacity theorem

The first step in proving the channel capacity theorem or its converse is to use the results
of Chapter 2 to replace a continuous-time AWGN channel model Y (t) = X(t) + N(t) with
bandwidth W and signal-to-noise ratio SNR by an equivalent discrete-time channel model Y =
X + N with a symbol rate of 2W real symbol/s and the same SNR, without loss of generality
or optimality.

We then wish to prove that arbitrarily reliable transmission can be achieved on the discrete-
time channel at any rate (nominal spectral efficiency)

ρ < C[b/2D] = log2(1 + SNR) b/2D.

This will prove that reliable transmission can be achieved on the continuous-time channel at any
data rate

R < C[b/s] = WC[b/2D] = W log2(1 + SNR) b/s.

We will prove this result by use of Shannon’s random code ensemble and a suboptimal decoding
technique called typical-set decoding.

Shannon’s random code ensemble may be defined as follows. Let Sx = P/2W be the allowable
average signal energy per symbol (dimension), let ρ be the data rate in b/2D, and let N be the
code block length in symbols. A block code C of length N , rate ρ, and average energy Sx per
dimension is then a set of M = 2ρN/2 real sequences (codewords) c of length N such that the
expected value of ||c||2 under an equiprobable distribution over C is NSx.

For example, the three 16-QAM signal sets shown in Figure 3 of Chapter 1 may be regarded as
three block codes of length 2 and rate 4 b/2D with average energies per dimension of Sx = 5, 6.75
and 4.375, respectively.

23

�

�

�	 �

24 CHAPTER 3. CAPACITY OF AWGN CHANNELS

In Shannon’s random code ensemble, every symbol ck of every codeword c ∈ C is chosen
independently at random from a Gaussian ensemble with mean 0 and variance Sx. Thus the
average energy per dimension over the ensemble of codes is Sx, and by the law of large numbers
the average energy per dimension of any particular code in the ensemble is highly likely to be
close to Sx.

We consider the probability of error under the following scenario. A code C is selected randomly
from the ensemble as above, and then a particular codeword c0 is selected for transmission. The
channel adds a noise sequence n from a Gaussian ensemble with mean 0 and variance Sn = N0/2
per symbol. At the receiver, given y = c0 + n and the code C, a typical-set decoder implements
the following decision rule (where ε is some small positive number):

•	 If there is one and only one codeword c ∈ C within squared distance N(Sn ± ε) of the
received sequence y, then decide on c;

•	 Otherwise, give up.

A decision error can occur only if one of the following two events occurs:

•	 The squared distance ||y − c0||2 between y and the transmitted codeword c0 is not in the
range N(Sn ± ε);

•	 The squared distance ||y − ci||2 between y and some other codeword ci �= c0 is in the range
N(Sn ± ε).

Since y − c0 = n, the probability of the first of these events is the probability that ||n||2 is not
in the range N(Sn − ε) ≤ ||n||2 ≤ N(Sn + ε). Since N = {Nk} is an iid zero-mean Gaussian
sequence with variance Sn per symbol and ||N||2 = Nk

2, this probability goes to zero as k
N → ∞ for any ε > 0 by the weak law of large numbers. In fact, by the Chernoff bound of the
next section, this probability goes to zero exponentially with N .

For any particular other codeword ci ∈ C, the probability of the second event is the probability
that a code sequence drawn according to an iid Gaussian pdf pX(x) with symbol variance Sx and
a received sequence drawn independently according to an iid Gaussian pdf pY (y) with symbol
variance Sy = Sx + Sn are “typical” of the joint pdf pXY (x, y) = pX(x)pN (y − x), where here
we define “typical” by the distance ||x − y||2 being in the range N(Sn ± ε). According to a
fundamental result of large-deviation theory, this probability goes to zero as e−NE , where, up
to terms of the order of ε, the exponent E is given by the relative entropy (Kullback-Leibler
divergence)

D(pXY ||pXpY) = dx dy pXY (x, y) log
pXY (x, y)

.
pX(x)pY (y)

If the logarithm is binary, then this is the mutual information I(X; Y) between the random
variables X and Y in bits per dimension (b/D).

In the Gaussian case considered here, the mutual information is easily evaluated as

1 1
+

y2 log2 e 1
I(X; Y) = EXY −

2
log2 2πSn −

(y − x)2 log2 e
+

2
log2 2πSy =

2
log2

Sy b/D.
2Sn	 2Sy Sn

Since Sy = Sx + Sn and SNR = Sx/Sn, this expression is equal to the claimed capacity in b/D.

3.2. LAWS OF LARGE NUMBERS 25

Thus we can say that the probability that any incorrect codeword ci ∈ C is “typical” with
respect to y goes to zero as 2−N (I(X;Y)−δ(ε)), where δ(ε) goes to zero as ε → 0. By the union
bound, the probability that any of the M − 1 < 2ρN/2 incorrect codewords is “typical” with
respect to y is upperbounded by

Pr{any incorrect codeword “typical”} < 2ρN/22−N (I(X;Y)−δ(ε)),

which goes to zero exponentially with N provided that ρ < 2I(X; Y) b/2D and ε is small enough.
In summary, the probabilities of both types of error go to zero exponentially with N provided

that
ρ < 2I(X; Y) = log2(1 + SNR) = C[b/2D] b/2D

and ε is small enough. This proves that an arbitrarily small probability of error can be achieved
using Shannon’s random code ensemble and typical-set decoding.

To show that there is a particular code of rate ρ < C[b/2D] that achieves an arbitrarily small
error probability, we need merely observe that the probability of error over the random code
ensemble is the average probability of error over all codes in the ensemble, so there must be at
least one code in the ensemble that achieves this performance. More pointedly, if the average
error probability is Pr(E), then no more than a fraction of 1/K of the codes can achieve error
probability worse than K Pr(E) for any constant K > 0; e.g., at least 99% of the codes achieve
performance no worse than 100 Pr(E). So we can conclude that almost all codes in the random
code ensemble achieve very small error probabilities. Briefly, “almost all codes are good” (when
decoded by typical-set or maximum-likelihood decoding).

3.2 Laws of large numbers

The channel capacity theorem is essentially an application of various laws of large numbers.

3.2.1 The Chernoff bound

The weak law of large numbers states that the probability that the sample average of a sequence
of N iid random variables differs from the mean by more than ε > 0 goes to zero as N → ∞, no
matter how small ε is. The Chernoff bound shows that this probability goes to zero exponentially
with N , for arbitrarily small ε.

Theorem 3.1 (Chernoff bound) Let SN be the sum of N iid real random variables Xk , each
with the same probability distribution pX (x) and mean X = EX [X]. For τ > X, the probability
that SN ≥ Nτ is upperbounded by

−NEc(τ)Pr{SN ≥ Nτ} ≤ e ,

where the Chernoff exponent Ec(τ) is given by

Ec(τ) = max sτ − µ(s),
s≥0

where µ(s) denotes the semi-invariant moment-generating function, µ(s) = log EX [esX].

�

�

� �

�

� �

�

�

26 CHAPTER 3. CAPACITY OF AWGN CHANNELS

Proof. The indicator function Φ(SN ≥ Nτ) of the event {SN ≥ Nτ } is bounded by

s(SN −Nτ)Φ(SN ≥ Nτ) ≤ e

for any s ≥ 0. Therefore

Pr{SN ≥ Nτ } = Φ(SN ≥ Nτ) ≤ es(SN −Nτ), s ≥ 0,

where the overbar denotes expectation. Using the facts that SN = Xk and that the Xk arek
independent, we have

es(SN −Nτ) −N (sτ −µ(s))= es(Xk −τ) = e ,
k

where µ(s) = log esX . Optimizing the exponent over s ≥ 0, we obtain the Chernoff exponent

Ec(τ) = max sτ − µ(s).
s≥0

We next show that the Chernoff exponent is positive:

Theorem 3.2 (Positivity of Chernoff exponent) The Chernoff exponent Ec(τ) is positive
when τ > X, provided that the random variable X is nondeterministic.

Proof. Define X(s) as a random variable with the same alphabet as X, but with the tilted
sx−µ(s).probability density function q(x, s) = p(x)e This is a valid pdf because q(x, s) ≥ 0 and

sx q(x, s) dx = e −µ(s) e p(x) dx = e −µ(s)eµ(s) = 1.

Evidently µ(0) = log EX [1] = 0, so q(x, 0) = p(x) and X(0) = X.
Define the moment-generating (partition) function

sxZ(s) = eµ(s) = EX [e sX] = e p(x) dx.

Now it is easy to see that

sx sxZ ′(s) = xe p(x) dx = eµ(s) xe q(x, s) dx = Z(s)X(s).

Similarly,
2 sxZ ′′(s) = x e p(x) dx = Z(s)X2(s).

Consequently, from µ(s) = log Z(s), we have

µ ′(s) =
Z ′(s)

= X(s);
Z(s)

Z ′(s)
�2

2
µ ′′(s) =

Z ′′(s) − = X2(s) − X(s) .
Z(s) Z(s)

Thus the second derivative µ′′(s) is the variance of X(s), which must be strictly positive unless
X(s) and thus X is deterministic.

�

27 3.2. LAWS OF LARGE NUMBERS

We conclude that if X is a nondeterministic random variable with mean X, then µ(s) is a
strictly convex function of s that equals 0 at s = 0 and whose derivative at s = 0 is X. It follows
that the function sτ − µ(s) is a strictly concave function of s that equals 0 at s = 0 and whose
derivative at s = 0 is τ −X. Thus if τ > X, then the function sτ −µ(s) has a unique maximum
which is strictly positive.
Exercise 1. Show that if X is a deterministic random variable— i.e., the probability that X

equals its mean X is 1— and τ > X, then Pr{SN ≥ Nτ} = 0.
The proof of this theorem shows that the general form of the function f(s) = sτ − µ(s)

when X is nondeterministic is as shown in Figure 1. The second derivative f ′′(s) is negative
everywhere, so the function f(s) is strictly concave and has a unique maximum Ec(τ). The
slope f ′(s) = τ − X(s) therefore decreases continually from its value f ′(0) = τ − X > 0 at
s = 0. The slope becomes equal to 0 at the value of s for which τ = X(s); in other words, to
find the maximum of f(s), keep increasing the “tilt” until the tilted mean X(s) is equal to τ .
If we denote this value of s by s ∗(τ), then we obtain the following parametric equations for the
Chernoff exponent:

∗Ec(τ) = s ∗(τ)τ − µ(s (τ)); τ = X(s ∗(τ)).

�������� τ − X

s -s ∗(τ)0

f(s)

6

Ec(τ)

0

slope
slope 0

Figure 1. General form of function f(s) = sτ − µ(s) when τ > X.

We will show below that the Chernoff exponent Ec(τ) is the correct exponent, in the sense
that

lim
log Pr{SN ≥ Nτ}

= Ec(τ).
N →∞ N

The proof will be based on a fundamental theorem of large-deviation theory
We see that finding the Chernoff exponent is an exercise in convex optimization. In convex

optimization theory, Ec(τ) and µ(s) are called conjugate functions. It is easy to show from the
properties of µ(s) that Ec(τ) is a continuous, strictly convex function of τ that equals 0 at τ = X
and whose derivative at τ = X is 0.

3.2.2 Chernoff bounds for functions of rvs

If g : X → R is any real-valued function defined on the alphabet X of a random variable X,
then g(X) is a real random variable. If {Xk } is a sequence of iid random variables Xk with the
same distribution as X, then {g(Xk)} is a sequence of iid random variables g(Xk) with the same
distribution as g(X). The Chernoff bound thus applies to the sequence {g(Xk)}, and shows that

1the probability that the sample mean N k g(Xk) exceeds τ goes to zero exponentially with N
as N → ∞ whenever τ > g(X).

�

�

�

�
�

�

28 CHAPTER 3. CAPACITY OF AWGN CHANNELS

Let us consider any finite set {gj } of such functions gj : X → R. Because the Chernoff bound
decreases exponentially with N , we can conclude that the probability that any of the sample
means 1

k gj (Xk) exceeds its corresponding expectation gj (X) by a given fixed ε > 0 goes to N
zero exponentially with N as N → ∞.

We may define a sequence {Xk} to be ε-typical with respect to a function gj : X → R if
1

k gj (Xk) < gj (X)+ ε. We can thus conclude that the probability that {Xk} is not ε-typical N
with respect to any finite set {gj } of functions gj goes to zero exponentially with N as N → ∞.

1A simple application of this result is that the probability that the sample mean N k gj (Xk)
is not in the range gj (X) ± ε goes to zero exponentially with N as N → ∞ for any ε > 0,
because this probability is the sum of the two probabilities Pr{ k gj (Xk) ≥ N(gj (X)+ ε)} and
Pr{ −gj (Xk) ≥ N(−gj (X) + ε)}.k

More generally, if the alphabet X is finite, then by considering the indicator functions of each
possible value of X we can conclude that the probability that all observed relative frequencies
in a sequence are not within ε of the corresponding probabilities goes to zero exponentially with
N as N → ∞. Similarly, for any alphabet X , we can conclude that the probability of any finite

1number of sample moments N
m are not within ε of the corresponding expected moments k Xk

Xm goes to zero exponentially with N as N → ∞.
In summary, the Chernoff bound law of large numbers allows us to say that as N → ∞ we will

almost surely observe a sample sequence x which is typical in every (finite) way that we might
specify.

3.2.3 Asymptotic equipartition principle

One consequence of any law of large numbers is the asymptotic equipartition principle (AEP):
as N → ∞, the observed sample sequence x of an iid sequence whose elements are chosen
according to a random variable X will almost surely be such that pX (x) ≈ 2−N H(X), where
H(X) = EX [− log2 p(x)]. If X is discrete, then pX (x) is its probability mass function (pmf) and
H(X) is its entropy; if X is continuous, then pX (x) is its probability density function (pdf) and
H(X) is its differential entropy.

The AEP is proved by observing that − log2 pX (x) is a sum of iid random variables
− log2 pX (xk), so the probability that − log2 pX (x) differs from its mean NH(X) by more than
ε > 0 goes to zero as N → ∞. The Chernoff bound shows that this probability in fact goes to
zero exponentially with N .

A consequence of the AEP is that the set Tε of all sequences x that are ε-typical with respect
to the function − log2 pX (x) has a total probability that approaches 1 as N → ∞. Since for
all sequences x ∈ Tε we have pX (x) ≈ 2−N H(X)— i.e., the probability distribution pX (x) is
approximately uniform over Tε— this implies that the “size” |Tε| of Tε is approximately 2N H(X).
In the discrete case, the “size” |Tε| is the number of sequences in Tε, whereas in the continuous
case |Tε| is the volume of Tε.

In summary, the AEP implies that as N → ∞ the observed sample sequence x will almost
surely lie in an ε-typical set Tε of size ≈ 2N H(X), and within that set the probability distribution
pX (x) will be approximately uniform.

� �

�

� �

� �

3.2. LAWS OF LARGE NUMBERS 29

3.2.4 Fundamental theorem of large-deviation theory

As another application of the law of large numbers, we prove a fundamental theorem of large-
deviation theory. A rough statement of this result is as follows: if an iid sequence X is chosen
according to a probability distribution q(x), then the probability that the sequence will be typical
of a second probability distribution p(x) is approximately

−ND(p||q)Pr{x typical for p | q} ≈ e ,

where the exponent D(p||q) denotes the relative entropy (Kullback-Leibler divergence)

D(p||q) = Ep log
p(x)

�
= dx p(x) log

p(x)
.

q(x) q(x)X

Again, p(x) and q(x) denote pmfs in the discrete case and pdfs in the continuous case; we use
notation that is appropriate for the continuous case.
Exercise 2 (Gibbs’ inequality).
(a) Prove that for x > 0, log x ≤ x − 1, with equality if and only if x = 1.
(b) Prove that for any pdfs p(x) and q(x) over X , D(p||q) ≥ 0, with equality if and only if

p(x) = q(x).
Given p(x) and q(x), we will now define a sequence x to be ε-typical with regard to log p(x)/q(x)

if the log likelihood ratio λ(x) = log p(x)/q(x) is in the range N (D(p||q) ± ε), where D(p||q) =
Ep[λ(x)] is the mean of λ(x) = log p(x)/q(x) under p(x). Thus an iid sequence X chosen
according to p(x) will almost surely be ε-typical by this definition.

The desired result can then be stated as follows:

Theorem 3.3 (Fundamental theorem of large-deviation theory) Given two probability
distributions p(x) and q(x) on a common alphabet X , for any ε > 0, the probability that an iid
random sequence X drawn according to q(x) is ε-typical for p(x), in the sense that log p(x)/q(x)
is in the range N (D(p||q) ± ε), is bounded by

(1 − δ(N))e −N(D(p||q)+ε) ≤ Pr{x ε−typical for p | q} ≤ e −N(D(p||q)−ε),

where δ(N) → 0 as N → ∞.

Proof. Define the ε-typical region

Tε = {x | N (D(p||q) − ε) ≤ log
p(x) ≤ N (D(p||q) + ε)}.
q(x)

By any law of large numbers, the probability that X will fall in Tε goes to 1 as N → ∞; i.e.,

1 − δ(N) ≤ dx p(x) ≤ 1,
Tε

where δ(N) → 0 as N → ∞. It follows that

−N(D(p||q)−ε) ≤ e −N(D(p||q)−ε);dx q(x) ≤ dx p(x)e
Tε Tε

−N(D(p||q)+ε)dx q(x) ≥ dx p(x)e −N(D(p||q)+ε) ≥ (1 − δ(N))e .
Tε Tε

�

30 CHAPTER 3. CAPACITY OF AWGN CHANNELS

Since we can choose an arbitrarily small ε > 0 and δ(N) > 0, it follows the exponent D(p||q)
is the correct exponent for this probability, in the sense that

log Pr{x ε−typical for p | q}
= D(p||q).lim

N →∞ N

Exercise 3 (Generalization of Theorem 3.3).
(a) Generalize Theorem 3.3 to the case in which q(x) is a general function over X . State any

necessary restrictions on q(x).
(b) Using q(x) = 1 in (a), state and prove a form of the Asymptotic Equipartition Principle.

As an application of Theorem 3.3, we can now prove:

Theorem 3.4 (Correctness of Chernoff exponent) The Chernoff exponent Ec(τ) is the
correct exponent for Pr{SN ≥ Nτ }, in the sense that

lim
log Pr{SN ≥ Nτ }

= Ec(τ),
N →∞ N

where SN = k xk is the sum of N iid nondeterministic random variables drawn according to
some distribution p(x) with mean X < τ , and Ec(τ) = maxs≥0 sτ − µ(s) where µ(s) = log esX .

Proof. Let s ∗ be the s that maximizes sτ − µ(s) over s ≥ 0. As we have seen above, for s = s ∗
∗ ∗∗ s x−µ(s) has mean the tilted random variable X(s ∗) with tilted distribution q(x, s) = p(x)e

X(s ∗) = τ , whereas for s = 0 the untilted random variable X(0) with untilted distribution
q(x, 0) = p(x) has mean X(0) = X.

Let q(0) denote the untilted distribution q(x, 0) = p(x) with mean X(0) = X, and let q(s ∗)
∗ ∗

denote the optimally tilted distribution q(x, s ∗) = p(x)es x−µ(s) with mean X(s ∗) = τ . Then
∗log q(x, s ∗)/q(x, 0) = s x − µ(s ∗), so

∗ D(q(s ∗)||q(0)) = s τ − µ(s ∗) = Ec(τ).

∗Moreover, the event that X is ε-typical with respect to the variable log q(x, s ∗)/q(x, 0) = s x −
∗ ∗µ(s ∗) under q(x, 0) = p(x) is the event that s SN − Nµ(s ∗) is in the range N (s τ − µ(s ∗) ± ε),

since τ is the mean of X under q(x, s ∗). This event is equivalent to SN being in the range
N (τ ± ε/s∗). Since ε may be arbitrarily small, it is clear that the correct exponent of the event
Pr{SN ≈ Nτ } is Ec(τ). This event evidently dominates the probability Pr{SN ≥ Nτ }, which

−NEc(τ).we have already shown to be upperbounded by e
Exercise 4 (Chernoff bound ⇒ divergence upper bound.)
Using the Chernoff bound, prove that for any two distributions p(x) and q(x) over X ,

−N (D(p||q))Pr{log
p(x) ≥ ND(p||q) | q} ≤ e .
q(x)

[Hint: show that the s that maximizes sτ − µ(s) is s = 1.]

3.2. LAWS OF LARGE NUMBERS 31

3.2.5 Proof of the forward part of the capacity theorem

We now prove that with Shannon’s random Gaussian code ensemble and with a slightly dif-
ferent definition of typical-set decoding, we can achieve reliable communication at any rate
ρ < C[b/2D] = log2(1 + SNR) b/2D.

We recall that under this scenario the joint pdf of the channel input X and output Y is

1 −(y−x)2/2SnpXY (x, y) = pX(x)pN (y − x) = √ 1
e −x2/2Sx √ e .

2πSx 2πSn

Since Y = X + N , the marginal probability of Y is

pY (y) = � 1
e −y2/2Sy ,

2πSy

where Sy = Sx + Sn. On the other hand, since incorrect codewords are independent of the
correct codeword and of the output, the joint pdf of an incorrect codeword symbol X ′ and of Y
is

′ −y2 /2Sy .qXY (x , y) = pX(x ′)pY (y) = √
2
1
πSx

e −(x′)2/2Sx � 1
e

2πSy

We now redefine typical-set decoding as follows. An output sequence y will be said to be
ε-typical for a code sequence x if

pXY (x, y)
λ(x, y) = log

pX(x)pY (y)
≥ N(D(pXY ||pXpY) − ε).

2 log Sy/Sn, we find that this is
equivalent to
Substituting for the pdfs and recalling that D(pXY ||pXpY) = 1

||y − x||2
≤

||y||2
+ 2Nε.

Sn Sy

Since ||y||2/N is almost surely very close to its mean Sy, this amounts to asking that ||y −x||2/N
be very close to its mean Sn under the hypothesis that x and y are drawn according to the joint
pdf pXY (x, y). The correct codeword will therefore almost surely meet this test.

According to Exercise 4, the probability that any particular incorrect codeword meets the test

pXY (x, y)
λ(x, y) = log

pX(x)pY (y)
≥ ND(pXY ||pXpY)

is upperbounded by e−ND(pXY ||pXpY) = 2−NI(X;Y). If we relax this test by an arbitrarily small
number ε > 0, then by the continuity of the Chernoff exponent, the exponent will decrease
by an amount δ(ε) which can be made arbitrarily small. Therefore we can assert that the
probability that a random output sequence Y will be ε-typical for a random incorrect sequence
X is upperbounded by

Pr{Y ε-typical for X} ≤ 2−N(I(X;Y)−δ(ε)),

where δ(ε) → 0 as ε → 0.

�

�

32 CHAPTER 3. CAPACITY OF AWGN CHANNELS

= 2ρN/2Now if the random codes have rate ρ < 2I(X; Y) b/2D, then there are M code-
words, so by the union bound the total probability of any incorrect codeword being ε-typical is
upperbounded by

Pr{Y ε-typical for any incorrect X} ≤ (M − 1)2−N (I(X;Y)−δ(ε)) < 2−N (I(X;Y)−ρ/2−δ(ε)).

If ρ < 2I(X; Y) and ε is small enough, then the exponent will be positive and this probability
will go to zero as N → ∞.

Thus we have proved the forward part of the capacity theorem: the probability of any kind
of error with Shannon’s random code ensemble and this variant of typical-set decoding goes to
zero as N → ∞, in fact exponentially with N .

3.3 Geometric interpretation and converse

For AWGN channels, the channel capacity theorem has a nice geometric interpretation in terms
of the geometry of spheres in real Euclidean N -space RN .

By any law of large numbers, the probability that the squared Euclidean norm ||X||2 of a
random sequence X of iid Gaussian variables of mean zero and variance Sx per symbol falls in
the range N(Sx ± ε) goes to 1 as N → ∞, for any ε > 0. Geometrically, the typical region

Tε = {x ∈ R
N | N(Sx − ε) ≤ ||x||2 ≤ N(Sx + ε)}

is a spherical shell with outer squared radius N(Sx + ε) and inner squared radius N(Sx − ε).
Thus the random N -vector X will almost surely lie in the spherical shell Tε as N → ∞. This
phenomenon is known as “sphere hardening.”

Moreover, the pdf pX (x) within the spherical shell Tε is approximately uniform, as we expect
from the asymptotic equipartition principle (AEP). Since pX (x) = (2πSx)−N/2 exp −||x||2/2Sx,
within Tε we have

−(N/2)(ε/Sx) ≤ pX (x) ≤ (2πeSx)−N/2 e(N/2)(ε/Sx)(2πeSx)−N/2 e .

Moreover, the fact that pX (x) ≈ (2πeSx)−N/2 implies that the volume of Tε is approximately
|Tε| ≈ (2πeSx)N/2 . More precisely, we have

1 − δ(N) ≤ pX (x) dx ≤ 1,
Tε

where δ(N) → 0 as N → ∞. Since |Tε| = dx, we have Tε

−(N/2)(ε/Sx)1 ≥ (2πeSx)−N/2 e |Tε| ⇒ |Tε| ≤ (2πeSx)N/2 e(N/2)(ε/Sx);
e(N/2)(ε/Sx) −(N/2)(ε/Sx)1 − δ(N) ≤ (2πeSx)−N/2 |Tε| ⇒ |Tε| ≥ (1 − δ(N))(2πeSx)N/2 e .

Since these bounds hold for any ε > 0, this implies that

log |Tε| 1
lim =

2
log 2πeSx = H(X),

N →∞ N

where H(X) = 1
2 log 2πeSx denotes the differential entropy of a Gaussian random variable with

mean zero and variance Sx.

�

33 3.3. GEOMETRIC INTERPRETATION AND CONVERSE

We should note at this point that practically all of the volume of an N -sphere of squared radius
N(Sx + ε) lies within the spherical shell |Tε| as N → ∞, for any ε > 0. By dimensional analysis,
the volume of an N -sphere of radius r must be given by AN r

N for some constant AN that does
not depend on r. Thus the ratio of the volume of an N -sphere of squared radius N(Sx − ε) to
that of an N -sphere of squared radius N(Sx + ε) must satisfy

Sx − ε
�N/2AN (N(Sx − ε))N/2

= → 0 as N → ∞, for any ε > 0.
AN (N(Sx + ε))N/2 Sx + ε

It follows that the volume of an N -sphere of squared radius NSx is also approximated by
eN H(X) = (2πeSx)N/2 as N → ∞.
Exercise 5. In Exercise 4 of Chapter 1, the volume of an N -sphere of radius r was given as

V⊗(N, r) =
(πr2)N/2

,
(N/2)!

for N even. In other words, AN = πN/2/((N/2)!). Using Stirling’s approximation, m! → (m/e)m

as m → ∞, show that this exact expression leads to the same asymptotic approximation for
V⊗(N, r) as was obtained above by use of the asymptotic equipartition principle.

The sphere-hardening phenomenon may seem somewhat bizarre, but even more unexpected
phenomena occur when we code for the AWGN channel using Shannon’s random code ensemble.

In this case, each randomly chosen transmitted N -vector X will almost surely lie in a spherical
shell TX of squared radius ≈ NSx, and the random received N -vector Y will almost surely lie
in a spherical shell TY of squared radius ≈ NSy , where Sy = Sx + Sn.

Moreover, given the correct transmitted codeword c0, the random received vector Y will
almost surely lie in a spherical shell Tε(c0) of squared radius ≈ NSn centered on c0. A further
consequence of the AEP is that almost all of the volume of this nonzero-mean shell, whose
center c0 has squared Euclidean norm ||c0||2 ≈ NSx, lies in the zero-mean shell TY whose
squared radius is ≈ NSy, since the expected squared Euclidean norm of Y = c0 + N is

EN [||Y||2] = ||c0||2 + NSn ≈ NSy.

“Curiouser and curiouser,” said Alice.
= 2ρN/2We thus obtain the following geometrical picture. We choose M code vectors at

random according to a zero-mean Gaussian distribution with variance Sx, which almost surely
puts them within the shell TX of squared radius ≈ NSx. Considering the probable effects of
a random noise sequence N distributed according to a zero-mean Gaussian distribution with
variance Sn, we can define for each code vector ci a typical region Tε(ci) of volume |Tε(ci)| ≈
(2πeSn)N/2, which falls almost entirely within the shell TY of volume |TY | ≈ (2πeSy)N/2 .

Now if a particular code vector c0 is sent, then the probability that the received vector y will
fall in the typical region Tε(c0) is nearly 1. On the other hand, the probability that y will fall
in the typical region Tε(ci) of some other independently-chosen code vector ci is approximately
equal to the ratio |Tε(ci)|/|TY | of the volume of Tε(ci) to that of the entire shell, since if y
is generated according to py (y) independently of ci, then it will be approximately uniformly
distributed over TY . Thus this probability is approximately

Sn
�N/2(2πeSn)N/2

=Pr{Y typical for ci} ≈
|T
|
ε

T

(
Y

ci

|
)| ≈

�
.

(2πeSy)N/2 Sy

As we have seen in earlier sections, this argument may be made precise.

34 CHAPTER 3. CAPACITY OF AWGN CHANNELS

It follows then that if ρ < log2(1 + Sx/Sn) b/2D, or equivalently M = 2ρN/2 < (Sy/Sn)N/2 ,
then the probability that Y is typical with respect to any of the M − 1 incorrect codewords is
very small, which proves the forward part of the channel capacity theorem.

On the other hand, it is clear from this geometric argument that if ρ > log2(1 + Sx/Sn) b/2D,
or equivalently M = 2ρN/2 > (Sy/Sn)N/2, then the probability of decoding error must be large.
For the error probability to be small, the decision region for each code vector ci must include
almost all of its typical region Tε(ci). If the volume of the M = 2ρN/2 typical regions exceeds
the volume of TY , then this is impossible. Thus in order to have small error probability we must
have

Sx2ρN/2(2πeSn)N/2 ≤ (2πeSy)N/2 ⇒ ρ ≤ log2
Sy = log2(1 +) b/2D.
Sn Sn

This argument may also be made precise, and is the converse to the channel capacity theorem.
In conclusion, we obtain the following picture of a capacity-achieving code. Let TY be the

N -shell of squared radius ≈ NSy, which is almost the same thing as the N -sphere of squared
radius NSy. A capacity-achieving code consists of the centers ci of M typical regions Tε(ci),
where ||ci||2 ≈ NSx and each region Tε(ci) consists of an N -shell of squared radius ≈ NSn
centered on ci, which is almost the same thing as an N -sphere of squared radius NSx. As
ρ → C[b/2D] = log2(1 + Sx) b/2D, these regions Tε(ci) form an almost disjoint partition of TY .Sn
This picture is illustrated in Figure 2. '$ nn nn &%

Figure 2. Packing ≈ (Sy /Sn)N/2 typical regions Tε(ci) of squared radius ≈ NSn into a large
typical region TY of squared radius ≈ NSy .

3.3.1 Discussion

It is natural in view of the above picture to frame the problem of coding for the AWGN channel
as a sphere-packing problem. In other words, we might expect that a capacity-achieving code
basically induces a disjoint partition of an N -sphere of squared radius NSy into about (Sy/Sn)N/2

disjoint decision regions, such that each decision region includes the sphere of squared radius
NSn about its center.

However, it can be shown by geometric arguments that such a disjoint partition is impossible
as the code rate approaches capacity. What then is wrong with the sphere-packing approach?
The subtle distinction that makes all the difference is that Shannon’s probabilistic approach
does not require decision regions to be disjoint, but merely probabilistically almost disjoint. So
the solution to Shannon’s coding problem involves what might be called “soft sphere-packing.”

We will see that hard sphere-packing— i.e., maximizing the minimum distance between code
vectors subject to a constraint on average energy— is a reasonable approach for moderate-size
codes at rates not too near to capacity. However, to obtain reliable transmission at rates near
capacity, we will need to consider probabilistic codes and decoding algorithms that follow more
closely the spirit of Shannon’s original work.

Chapter 4

The gap between uncoded
performance and the Shannon limit

The channel capacity theorem gives a sharp upper limit C[b/2D] = log2(1 + SNR) b/2D on the
rate (nominal spectral efficiency) ρ b/2D of any reliable transmission scheme. However, it does
not give constructive coding schemes that can approach this limit. Finding such schemes has
been the main problem of coding theory and practice for the past half century, and will be our
main theme in this book.

We will distinguish sharply between the power-limited regime, where the nominal spectral
efficiency ρ is small, and the bandwidth-limited regime, where ρ is large. In the power-limited
regime, we will take 2-PAM as our baseline uncoded scheme, whereas in the bandwidth-limited
regime, we will take M -PAM (or equivalently (M × M)-QAM) as our baseline.

By evaluating the performance of these simplest possible uncoded modulation schemes and
comparing baseline performance to the Shannon limit, we will establish how much “coding
gain” is possible.

4.1 Discrete-time AWGN channel model

We have seen that with orthonormal PAM or QAM, the channel model reduces to an analogous
real or complex discrete-time AWGN channel model

Y = X + N,

where X is the random input signal point sequence, and N is an independent iid Gaussian noise
sequence with mean zero and variance σ2 = N0/2 per real dimension. We have also seen that
there is no essential difference between the real and complex versions of this model, so from now
on we will consider only the real model.

We recapitulate the connections between the parameters of this model and the corresponding
continuous-time parameters. If the symbol rate is 1/T real symbols/s (real dimensions per
second), the bit rate per two dimensions is ρ b/2D, and the average signal energy per two
dimensions is Es, then:

35

36 CHAPTER 4. UNCODED PERFORMANCE VS. THE SHANNON LIMIT

• The nominal bandwidth is W = 1/2T Hz;

• The data rate is R = ρW b/s, and the nominal spectral efficiency is ρ (b/s)/Hz;

• The signal power (average energy per second) is P = EsW ;

• The signal-to-noise ratio is SNR = Es/N0 = P/N0W ;

• The channel capacity in b/s is C[b/s] = WC[b/2D] = W log2(1 + SNR) b/s.

4.2 Normalized SNR and Eb/N0

In this section we introduce two normalized measures of SNR that are suggested by the capacity
bound ρ < C[b/2D] = log2(1 + SNR) b/2D, which we will now call the Shannon limit.

An equivalent statement of the Shannon limit is that for a coding scheme with rate ρ b/2D, if
the error probability is to be small, then the SNR must satisfy

SNR > 2ρ − 1.

This motivates the definition of the normalized signal-to-noise ratio SNRnorm as

SNR
SNRnorm =

2ρ − 1
. (4.1)

SNRnorm is commonly expressed in dB. Then the Shannon limit may be expressed as

SNRnorm > 1 (0 dB).

Moreover, the value of SNRnorm in dB measures how far a given coding scheme is operating from
the Shannon limit, in dB (the “gap to capacity”).

Another commonly used normalized measure of signal-to-noise ratio is Eb/N0, where Eb is the
average signal energy per information bit and N0 is the noise variance per two dimensions. Note
that since Eb = Es/ρ, where Es is the average signal energy per two dimensions, we have

Eb/N0 = Es/ρN0 = SNR/ρ.

The quantity Eb/N0 is sometimes called the “signal-to-noise ratio per information bit,” but it
is not really a signal-to-noise ratio, because its numerator and denominator do not have the same
units. It is probably best just to call it “Eb/N0” (pronounced “eebee over enzero” or “ebno”).
Eb/N0 is commonly expressed in dB.

Since SNR > 2ρ − 1, the Shannon limit on Eb/N0 may be expressed as

2ρ − 1
Eb/N0 > . (4.2)

ρ

Notice that the Shannon limit on Eb/N0 is a monotonic function of ρ. For ρ = 2, it is equal to
3/2 (1.76 dB); for ρ = 1, it is equal to 1 (0 dB); and as ρ → 0, it approaches ln 2 ≈ 0.69 (-1.59
dB), which is called the ultimate Shannon limit on Eb/N0.

4.3. POWER-LIMITED AND BANDWIDTH-LIMITED CHANNELS	 37

4.3 Power-limited and bandwidth-limited channels

Ideal band-limited AWGN channels may be classified as bandwidth-limited or power-limited
according to whether they permit transmission at high spectral efficiencies or not. There is no
sharp dividing line, but we will take ρ = 2 b/2D or (b/s)/Hz as the boundary, corresponding to
the highest spectral efficiency that can be achieved with binary transmission.

We note that the behavior of the Shannon limit formulas is very different in the two regimes.
If SNR is small (the power-limited regime), then we have

ρ < log2(1 + SNR) ≈ SNR log2 e;
SNR

= (Eb/N0) log2 e.SNRnorm ≈
ρ ln 2

In words, in the power-limited regime, the capacity (achievable spectral efficiency) increases
linearly with SNR, and as ρ → 0, SNRnorm becomes equivalent to Eb/N0, up to a scale factor
of log2 e = 1/ ln 2. Thus as ρ → 0 the Shannon limit SNRnorm > 1 translates to the ultimate
Shannon limit on Eb/N0, namely Eb/N0 > ln 2.

On the other hand, if SNR is large (the bandwidth-limited regime), then we have

ρ < log2(1 + SNR) ≈	 log2 SNR;
SNR

SNRnorm ≈
2ρ .

Thus in the bandwidth-limited regime, the capacity (achievable spectral efficiency) increases
logarithmically with SNR, which is dramatically different from the linear behavior in the power-
limited regime. In the power-limited regime, every doubling of SNR doubles the achievable rate,
whereas in the bandwidth-limited regime, every additional 3 dB in SNR yields an increase in
achievable spectral efficiency of only 1 b/2D or 1 (b/s)/Hz.

Example 1. A standard voice-grade telephone channel may be crudely modeled as an ideal
band-limited AWGN channel with W ≈ 3500 Hz and SNR ≈ 37 dB. The Shannon limit on
spectral efficiency and bit rate of such a channel are roughly ρ < 37/3 ≈ 12.3 (b/s)/Hz and R <
43,000 b/s. Increasing the SNR by 3 dB would increase the achievable spectral efficiency ρ by
only 1 (b/s)/Hz, or the bit rate R by only 3500 b/s.

Example 2. In contrast, there are no bandwidth restrictions on a deep-space communication
channel. Therefore it makes sense to use as much bandwidth as possible, and operate deep in
the power-limited region. In this case the bit rate is limited by the ultimate Shannon limit on
Eb/N0, namely Eb/N0 > ln 2 (-1.59 dB). Since Eb/N0 = P/RN0, the Shannon limit becomes
R < (P/N0)/(ln 2). Increasing P/N0 by 3 dB will now double the achievable rate R in b/s.

We will find that the power-limited and bandwidth-limited regimes differ in almost every way.
In the power-limited regime, we will be able to use binary coding and modulation, whereas in
the bandwidth-limited regime we must use nonbinary (“multilevel”) modulation. In the power-
limited regime, it is appropriate to normalize everything “per information bit,” and Eb/N0 is
a reasonable normalized measure of signal-to-noise ratio. In the bandwidth-limited regime, on
the other hand, we will see that it is much better to normalize everything “per two dimensions,”
and SNRnorm will become a much more appropriate measure than Eb/N0. Thus the first thing
to do in a communications design problem is to determine which regime you are in, and then
proceed accordingly.

� � �

� � � � � �

38 CHAPTER 4. UNCODED PERFORMANCE VS. THE SHANNON LIMIT

4.4 Performance of M -PAM and (M × M)-QAM

We now evaluate the performance of the simplest possible uncoded systems, namely M -PAM and
(M × M)-QAM. This will give us a baseline. The difference between the performance achieved
by baseline systems and the Shannon limit determines the maximum possible gain that can be
achieved by the most sophisticated coding systems. In effect, it defines our playing field.

4.4.1 Uncoded 2-PAM

We first consider the important special case of a binary 2-PAM constellation

A = {−α, +α},
where α > 0 is a scale factor chosen such that the average signal energy per bit, Eb = α2 ,
satisfies the average signal energy constraint.

For this constellation, the bit rate (nominal spectral efficiency) is ρ = 2 b/2D, and the average
signal energy per bit is Eb = α2 .

The usual symbol-by-symbol detector (which is easily seen to be optimum) makes an inde-
pendent decision on each received symbol yk according to whether the sign of yk is positive or
negative. The probability of error per bit is evidently the same regardless of which of the two
signal values is transmitted, and is equal to the probability that a Gaussian noise variable of
variance σ2 = N0/2 exceeds α, namely

Pb(E) = Q (α/σ) ,

where the Gaussian probability of error Q(·) function is defined by � ∞
Q(x) = √ 1

e −y2 /2 dy.
x 2π

Substituting the energy per bit Eb = α2 and the noise variance σ2 = N0/2, the probability of
error per bit is

Pb(E) = Q 2Eb/N0 . (4.3)

This gives the performance curve of Pb(E) vs. Eb/N0 for uncoded 2-PAM that is shown in Figure
1, below.

4.4.2 Power-limited baseline vs. the Shannon limit

In the power-limited regime, we will take binary pulse amplitude modulation (2-PAM) as our
baseline uncoded system, since it has ρ = 2. By comparing the performance of the uncoded
baseline system to the Shannon limit, we will be able to determine the maximum possible gains
that can be achieved by the most sophisticated coding systems.

In the power-limited regime, we will primarily use Eb/N0 as our normalized signal-to-noise
ratio, although we could equally well use SNRnorm. Note that when ρ = 2, since Eb/N0 = SNR/ρ
and SNRnorm = SNR/(2ρ − 1), we have 2Eb/N0 = 3SNRnorm. The baseline performance curve
can therefore be written in two equivalent ways:

Pb(E) = Q 2Eb/N0 = Q 3SNRnorm .

39 4.4. PERFORMANCE OF M -PAM AND (M × M)-QAM

Uncoded 2−PAM
0

10

10

Uncoded 2−PAM
Shannon Limit
Shannon Limit for ρ = 2

−1
10

−2
10

P
b(E

)

−3

10
−4

10
−5

10
−6

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
Eb/No [dB]

Figure 1. Pb(E) vs. Eb/N0 for uncoded binary PAM.

Figure 1 gives us a universal design tool. For example, if we want to achieve Pb(E) ≈ 10−5

with uncoded 2-PAM, then we know that we will need to achieve Eb/N0 ≈ 9.6 dB.

We may also compare the performance shown in Figure 1 to the Shannon limit. The rate of
2-PAM is ρ = 2 b/2D. The Shannon limit on Eb/N0 at ρ = 2 b/2D is Eb/N0 > (2ρ − 1)/ρ = 3/2
(1.76 dB). Thus if our target error rate is Pb(E) ≈ 10−5, then we can achieve a coding gain of
up to about 8 dB with powerful codes, at the same rate of ρ = 2 b/2D.

However, if there is no limit on bandwidth and therefore no lower limit on spectral efficiency,
then it makes sense to let ρ → 0. In this case the ultimate Shannon limit on Eb/N0 is Eb/N0 >
ln 2 (-1.59 dB). Thus if our target error rate is Pb(E) ≈ 10−5, then Shannon says that we
can achieve a coding gain of over 11 dB with powerful codes, by letting the spectral efficiency
approach zero.

4.4.3 Uncoded M -PAM and (M × M)-QAM

We next consider the more general case of an M -PAM constellation

A = α{±1, ±3, . . . , ±(M − 1)},
where α > 0 is again a scale factor chosen to satisfy the average signal energy constraint. The
bit rate (nominal spectral efficiency) is then ρ = 2 log2 M b/2D.

The average energy per M -PAM symbol is

α2(M 2 − 1)
E(A) = .

3

40 CHAPTER 4. UNCODED PERFORMANCE VS. THE SHANNON LIMIT

An elegant way of making this calculation is to consider a random variable Z = X + U , where
X is equiprobable over A and U is an independent continuous uniform random variable over the
interval (−α, α]. Then Z is a continuous random variable over the interval (−Mα, M α], and1

(αM)2 α2
X2 = Z2 − U 2 = − .

3 3

The average energy per two dimensions is then Es = 2E(A) = 2α2(M 2 − 1)/3.

Again, an optimal symbol-by-symbol detector makes an independent decision on each received
symbol yk . In this case the decision region associated with an input value αzk (where zk is
an odd integer) is the interval α[zk − 1, zk + 1] (up to tie-breaking at the boundaries, which is
immaterial), except for the two outermost signal values ±α(M − 1), which have decision regions
±α[M − 2, ∞). The probability of error for any of the M − 2 inner signals is thus equal to twice
the probability that a Gaussian noise variable Nk of variance σ2 = N0/2 exceeds α, namely
2Q (α/σ) , whereas for the two outer signals it is just Q (α/σ). The average probability of error
with equiprobable signals per M -PAM symbol is thus

M − 2 2
Pr(E) = 2Q (α/σ) + Q (α/σ) =

2(M − 1)
Q (α/σ) .

M M M

For M = 2, this reduces to the usual expression for 2-PAM. For M ≥ 4, the “error coefficient”
2(M − 1)/M quickly approaches 2, so Pr(E) ≈ 2Q (α/σ).

Since an (M × M)-QAM signal set A′ = A2 is equivalent to two independent M -PAM trans-
missions, we can easily extend this calculation to (M × M)-QAM. The bit rate (nominal spectral
efficiency) is again ρ = 2 log2 M b/2D, and the average signal energy per two dimensions (per
QAM symbol) is again Es = 2α2(M 2 − 1)/3. The same dimension-by-dimension decision method
and calculation of probability of error per dimension Pr(E) hold. The probability of error per
(M × M)-QAM symbol, or per two dimensions, is given by

Ps(E) = 1 − (1 − Pr(E))2 = 2 Pr(E) − (Pr(E))2 ≈ 2 Pr(E).

Therefore for (M × M)-QAM we obtain a probability of error per two dimensions of

Ps(E) ≈ 2 Pr(E) ≈ 4Q (α/σ) . (4.4)

4.4.4 Bandwidth-limited baseline vs. the Shannon limit

In the bandwidth-limited regime, we will take (M × M)-QAM with M ≥ 4 as our baseline
uncoded system, we will normalize everything per two dimensions, and we will use SNRnorm as
our normalized signal-to-noise ratio.

For M ≥ 4, the probability of error per two dimensions is given by (4.4):

Ps(E) ≈ 4Q (α/σ) .
1This calculation is actually somewhat fundamental, since it is based on a perfect one-dimensional sphere-

packing and on the fact that the difference between the average energy of a continuous random variable and the
average energy of an optimally quantized discrete version thereof is the average energy of the quantization error.
As the same principle is used in the calculation of channel capacity, in the relation Sy = Sx + Sn, we can even say
that the “1” that appears in the capacity formula is the same “1” as appears in the formula for E(A). Therefore
the cancellation of this term below is not quite as miraculous as it may at first seem.

� � �

41 4.4. PERFORMANCE OF M -PAM AND (M × M)-QAM

Substituting the average energy Es = 2α2(M 2 − 1)/3 per two dimensions, the noise variance
σ2 = N0/2, and the normalized signal-to-noise ratio

SNR
SNRnorm = 2ρ − 1

=
Es/N0

M 2 − 1
,

we find that the factors of M 2 − 1 cancel (cf. footnote 1) and we obtain the performance curve

Ps(E) ≈ 4Q 3SNRnorm . (4.5)

Note that this curve does not depend on M , which shows that SNRnorm is correctly normalized
for the bandwidth-limited regime.

The bandwidth-limited baseline performance curve (4.5) of Ps(E) vs. SNRnorm for uncoded
(M × M)-QAM is plotted in Figure 2.

Uncoded QAM
100

10−3

Uncoded QAM
Shannon Limit

10−1

10−2

P
(E

)
s

10−4

10−5

10−6

0 1 2 3 4 5 6 7 8 9 10
SNR norm [dB]

Figure 2. Ps(E) vs. SNRnorm for uncoded (M × M)-QAM.

Figure 2 gives us another universal design tool. For example, if we want to achieve Ps(E) ≈
10−5 with uncoded (M × M)-QAM (or M -PAM), then we know that we will need to achieve
SNRnorm ≈ 8.4 dB. (Notice that SNRnorm, unlike Eb/N0, is already normalized for spectral
efficiency.)

The Shannon limit on SNRnorm for any spectral efficiency is SNRnorm > 1 (0 dB). Thus if our
target error rate is Ps(E) ≈ 10−5, then Shannon says that we can achieve a coding gain of up to
about 8.4 dB with powerful codes, at any spectral efficiency. (This result holds approximately
even for M = 2, as we have already seen in the previous subsection.)

Chapter 5

Performance of small signal sets

In this chapter, we show how to estimate the performance of small-to-moderate-sized signal
constellations on the discrete-time AWGN channel.

With equiprobable signal points in iid Gaussian noise, the optimum decision rule is a minimum-
distance rule, so the optimum decision regions are minimum-distance (Voronoi) regions.

We develop useful performance estimates for the error probability based on the union bound.
These are based on exact expressions for pairwise error probabilities, which involve the Gaussian
probability of error Q(·) function. An appendix develops the main properties of this function.

Finally, we use the union bound estimate to find the “coding gain” of small-to-moderate-
sized signal constellations in the power-limited and bandwidth-limited regimes, compared to the
2-PAM or (M × M)-QAM baselines, respectively.

5.1 Signal constellations for the AWGN channel

In general, a coding scheme for the discrete-time AWGN channel model Y = X + N is a
method of mapping an input bit sequence into a transmitted real symbol sequence x, which is
called encoding, and a method for mapping a received real symbol sequence y into an estimated
transmitted signal sequence x̂, which is called decoding.

Initially we will consider coding schemes of the type considered by Shannon, namely block
codes with a fixed block length N . With such codes, the transmitted sequence x consists of
a sequence (. . . ,xk ,xk+1, . . .) of N -tuples xk ∈ RN that are chosen independently from some
block code of length N with M codewords. Block codes are not the only possible kinds of coding
schemes, as we will see when we study convolutional and trellis codes.

Usually the number M of codewords is chosen to be a power of 2, and codewords are chosen by
some encoding map from blocks of log2 M bits in the input bit sequence. If the input bit sequence
is assumed to be an iid random sequence of equiprobable bits, then the transmitted sequence
will be an iid random sequence X = (. . . ,Xk ,Xk+1, . . .) of equiprobable random codewords Xk .
We almost always assume equiprobability, because this is a worst-case (minimax) assumption.
Also, the bit sequence produced by an efficient source coder must statistically resemble an iid
equiprobable bit sequence.

43

�

44 CHAPTER 5. PERFORMANCE OF SMALL SIGNAL SETS

In digital communications, we usually focus entirely on the code, and do not care what encoding
map is used from bits to codewords. In other contexts the encoding map is also important; e.g.,
in the “Morse code” of telegraphy.

If the block length N and the number of codewords M are relatively small, then a block code
for the AWGN channel may alternatively be called a signal set, signal constellation, or signal
alphabet. A scheme in which the block length N is 1 or 2, corresponding to a single signaling
interval of PAM or QAM, may be regarded as an “uncoded” scheme.

Figure 1 illustrates some 1-dimensional and 2-dimensional signal constellations.

√ r 3 r r r r r r 2
√

3

r 1 r r r 1 r r r r r r r r 3
−1 1 −3 −1 1 3 −2.r5−0.r5 1.r5 3.r5r −1 r r r −1 r r r r r r r r −√

3r −3 r r r r	 r −2
√

3r
(a) (b) (c) (d) 	 (e)

Figure 1. Uncoded signal constellations: (a) 2-PAM; (b) (2 × 2)-QAM; (c) 4-PAM;
(d) (4 × 4)-QAM; (e) hexagonal 16-QAM.

An N -dimensional signal constellation (set, alphabet) will be denoted by

A = {aj , 1 ≤ j ≤ M }.

Its M elements aj ∈ RN will be called signal points (vectors, N -tuples).

The basic parameters of a signal constellation A = {aj , 1 ≤ j ≤ M } are its dimension N ; its
1size M (number of signal points); its average energy E(A) = M j ||aj ||2; and its minimum

squared distance d2
min(A), which is an elementary measure of its noise resistance. A secondary

parameter is the average number Kmin(A) of nearest neighbors (points at distance dmin(A)).

From these basic parameters we can derive such parameters as:

•	 The bit rate (nominal spectral efficiency) ρ = (2/N) log2 M b/2D;

•	 The average energy per two dimensions Es = (2/N)E(A),
or the average energy per bit Eb = E(A)/(log2 M) = Es/ρ;

•	 Energy-normalized figures of merit such as d2 or d2
min(A)/Es min(A)/Eb,min(A)/E(A), d2

which are independent of scale.

For example, in Figure 1, the bit rate (nominal spectral efficiency) of the 2-PAM and (2 × 2)-
QAM constellations is ρ = 2 b/2D, whereas for the other three constellations it is ρ = 4 b/2D.
The average energy per two dimensions of the 2-PAM and (2 × 2)-QAM constellations is Es = 2,
whereas for the 4-PAM and (4 × 4)-QAM constellations it is Es = 10, and for the hexagonal
16-QAM constellation it is Es = 8.75. For all constellations, d2

min = 4. The average numbers of
nearest neighbors are Kmin = 1, 2, 1.5, 3, and 4.125, respectively.

′

′
′

5.1. SIGNAL CONSTELLATIONS FOR THE AWGN CHANNEL	 45

5.1.1 Cartesian-product constellations

Some of these relations are explained by the fact that an (M × M)-QAM constellation is the
Cartesian product of two M -PAM constellations. In general, a Cartesian-product constellation
AK is the set of all sequences of K points from an elementary constellation A; i.e.,

AK = {(x1,x2, . . . ,xK) | xk ∈ A}.
If the dimension and size of A are N and M , respectively, then the dimension of A = AK is
N ′ = KN and its size is M ′ = MK .

Exercise 1 (Cartesian-product constellations). (a) Show that if A = AK , then the parameters
N, log2 M,E(A′) and Kmin(A′) of A are K times as large as the corresponding parameters of
A, whereas the normalized parameters ρ,Es, Eb and d2

min(A) are the same as those of A. Verify
that these relations hold for the (M × M)-QAM constellations of Figure 1.

Notice that there is no difference between a random input sequence X with elements from A
and a sequence X with elements from a Cartesian-product constellation AK . For example, there
is no difference between a random M -PAM sequence and a random (M × M)-QAM sequence.
Thus Cartesian-product constellations capture in a non-statistical way the idea of independent
transmissions. We thus may regard a Cartesian-product constellation AK as equivalent to (or a
“version” of) the elementary constellation A. In particular, it has the same ρ,Es, Eb and d2

min.

We may further define a “code over A” as a subset C ⊂ AK of a Cartesian-product constellation
AK . In general, a code C over A will have a lower bit rate (nominal spectral efficiency) ρ than
A, but a higher minimum squared distance d2

min. Via this tradeoff, we hope to achieve a “coding
gain.” Practically all of the codes that we will consider in later chapters will be of this type.

5.1.2 Minimum-distance decoding

Again, a decoding scheme is a method for mapping the received sequence into an estimate of the
transmitted signal sequence. (Sometimes the decoder does more than this, but this definition
will do for a start.)

If the encoding scheme is a block scheme, then it is plausible that the receiver should decode
block-by-block as well. That there is no loss of optimality in block-by-block decoding can be
shown from the theorem of irrelevance, or alternatively by an extension of the exercise involving
Cartesian-product constellations at the end of this subsection.

We will now recapitulate how for block-by-block decoding, with equiprobable signals and iid
Gaussian noise, the optimum decision rule is a minimum-distance (MD) rule.

For block-by-block decoding, the channel model is Y = X + N, where all sequences are N -
tuples. The transmitted sequence X is chosen equiprobably from the M N -tuples aj in a signal
constellation A. The noise pdf is

pN (n) =
(2πσ	

1
e−||n||2/2σ2

2)N/2 ,

where the symbol variance is σ2 = N0/2.

In digital communications, we are usually interested in the minimum-probability-of-error
(MPE) decision rule: given a received vector y, choose the signal point â ∈ A to minimize
the probability of decision error Pr(E).

′

′

′

� �

� �

46 CHAPTER 5. PERFORMANCE OF SMALL SIGNAL SETS

a is correct is simply the a posteriori probability p(ˆ |Since the probability that a decision ˆ a y),
the MPE rule is equivalent to the maximum-a-posteriori-probability (MAP) rule: choose the
a ∈ A such that p(ˆ |ˆ a y) is maximum among all p(aj | y), aj ∈ A.

By Bayes’ law,

p(aj | y) =
p(y aj)p(aj) |

p(y)
.

If the signals aj are equiprobable, so p(aj) = 1/M for all j, then the MAP rule is equivalent to
a ∈ A such that p(y a) is maximum among all the maximum-likelihood (ML) rule: choose the ˆ | ˆ

p(y | aj), aj ∈ A.

Using the noise pdf, we can write

| 1
e−||y−aj ||2/2σ2

p(y aj) = pN (y − aj) =
(2πσ2)N/2 .

Therefore the ML rule is equivalent to the minimum-distance (MD) rule: choose the â ∈ A such
that ||y − â||2 is minimum among all ||y − aj ||2 , aj ∈ A.

In summary, under the assumption of equiprobable inputs and iid Gaussian noise, the MPE
rule is the minimum-distance rule. Therefore from this point forward we consider only MD
detection, which is easy to understand from a geometrical point of view.

Exercise 1 (Cartesian-product constellations, cont.).

(b) Show that if the signal constellation is a Cartesian product AK , then MD detection can
be performed by performing independent MD detection on each of the K components of the
received KN -tuple y = (y1, y2, . . . , yK). Using this result, sketch the decision regions of the
(4 × 4)-QAM signal set of Figure 1(d).

(c) Show that if Pr(E) is the probability of error for MD detection of A, then the probability
of error for MD detection of A′ is

Pr(E)′ = 1 − (1 − Pr(E))K ,

Show that Pr(E)′ ≈ K Pr(E) if Pr(E) is small.

Example 1. The K-fold Cartesian product A = AK of a 2-PAM signal set A = {±α}
corresponds to independent transmission of K bits using 2-PAM. Geometrically, A′ is the vertex
set of a K-cube of side 2α. For example, for K = 2, A is the (2 × 2)-QAM constellation of
Figure 1(b).

From Exercise 1(a), the K-cube constellation A = AK has dimension N ′ = K, size M ′ = 2K ,
bit rate (nominal spectral efficiency) ρ = 2 b/2D, average energy E(A′) = Kα2, average energy
per bit Eb = α2, minimum squared distance d2 ′) = 4α2, and average number of nearest min(A
neighbors K ′ ′) = K. From Exercise 1(c), its probability of error is approximately K timesmin(A
the single-bit error probability:

Pr(E)′ ≈ KQ

the curve of (4.3) for all K-cube constellations:

Pb(E) ≈ Q

�
2Eb/N0 .

Pb(E) = Pr(E)′/K

2Eb/N0

�
,

Consequently, if we define the probability of error per bit as , then we obtain

including the (2 × 2)-QAM constellation of Figure 1(b).

A code over the 2-PAM signal set A is thus simply a subset of the vertices of a K-cube.

5.1. SIGNAL CONSTELLATIONS FOR THE AWGN CHANNEL 47

5.1.3 Decision regions

Under a minimum-distance (MD) decision rule, real N -space RN is partitioned into M decision
regions Rj , 1 ≤ j ≤ M , where Rj consists of the received vectors y ∈ RN that are at least as
close to aj as to any other point in A:

Rj = {y ∈ RN : ||y − aj ||2 ≤ ||y − aj′ ||2 for all j′ =� j}. (5.1)

The minimum-distance regions Rj are also called Voronoi regions. Under the MD rule, given
a received sequence y, the decision is aj only if y ∈ Rj . The decision regions Rj cover all of
N -space RN , and are disjoint except on their boundaries.

Since the noise vector N is a continuous random vector, the probability that y will actually
fall precisely on the boundary of Rj is zero, so in that case it does not matter which decision is
made.

The decision region Rj is the intersection of the M − 1 pairwise decision regions Rjj′ defined
by

2Rjj′ = {y ∈ RN : ||y − aj ||2 ≤ ||y − aj′ || }.
Geometrically, it is obvious that Rjj′ is the half-space containing aj that is bounded by the
perpendicular bisector hyperplane Hjj′ between aj and aj′ , as shown in Figure 2.

6
aj′aj′|aj′ −aj r
6
m yy|aj′ −aj = m|aj′ −aj r '$'$Hjj′ ��

aj|aj′ −aj r aj��&%&%
-

Figure 2. The boundary hyperplane Hjj′ is the perpendicular bisector between aj and aj′ .

Algebraically, since Hjj′ is the set of points in RN that are equidistant from aj and aj′ , it is
characterized by the following equivalent equations:

2||y − aj ||
2

= ||y − aj′ ||2;
−2〈y, aj〉 + ||aj || = −2〈y, aj′ 〉 + ||aj′ ||2;

aj + aj′ 〈y, aj′ − aj〉 = 〈
2

, aj′ − aj〉 = 〈m, aj′ − aj〉. (5.2)

where m denotes the midvector m = (aj + aj′)/2. If the difference vector between aj′ and aj is
aj′ − aj and

aj′ − aj
φj→j′ = ||aj′ − aj ||

is the normalized difference vector, so that ||φj→j′ ||2 = 1, then the projection of any vector x
onto the difference vector aj′ − aj is

〈x, aj′ − aj〉 x|aj′ −aj = 〈x, φj→j′ 〉φj→j′ = ||aj′ − aj ||2 (aj′ − aj).

�

� � �

′

�

48 CHAPTER 5. PERFORMANCE OF SMALL SIGNAL SETS

The geometric meaning of Equation (5.2) is thus that y ∈ Hjj′ if and only if the projection
y|aj′ −aj of y onto the difference vector aj′ −aj is equal to the projection m|aj′ −aj of the midvector
m = (aj + aj′)/2 onto the difference vector aj − aj′ , as illustrated in Figure 2.

The decision region Rj is the intersection of these M − 1 half-spaces:

Rj = Rjj′ .
j′ �=j

(Equivalently, the complementary region Rj is the union of the complementary half-spaces
Rjj′ .) A decision region Rj is therefore a convex polytope bounded by portions of a subset
{Hjj′ ,aj′ ∈ N (aj)} of the boundary hyperplanes Hjj′ , where the subset N (aj) ⊆ A of neighbors
of aj that contribute boundary faces to this polytope is called the relevant subset. It is easy to
see that the relevant subset must always include the nearest neighbors to aj .

5.2 Probability of decision error

The probability of decision error given that aj is transmitted is the probability that Y = aj + N
falls outside the decision region Rj , whose “center” is aj . Equivalently, it is the probability that
the noise variable N falls outside the translated region Rj − aj , whose “center” is 0:

Pr(E | aj) = 1 − pY (y | aj) dy = 1 − pN (y − aj) dy = 1 − pN (n) dn.
Rj Rj Rj −aj

Exercise 2 (error probability invariance). (a) Show that the probabilities of error Pr(E | aj)
are unchanged if A is translated by any vector v; i.e., the constellation A = A + v has the
same error probability Pr(E) as A.

(b) Show that Pr(E) is invariant under orthogonal transformations; i.e., the constellation
A′ = UA has the same Pr(E) as A when U is any orthogonal N × N matrix (i.e., U−1 = UT).

(c) Show that Pr(E) is unchanged if both the constellation A and the noise N are scaled by
the same scale factor α > 0.

Exercise 3 (optimality of zero-mean constellations). Consider an arbitrary signal set A =
1{aj , 1 ≤ j ≤ M}. Assume that all signals are equiprobable. Let m(A) = j aj be the M

average signal, and let A′ be A translated by m(A) so that the mean of A′ is zero:

A′ = A− m(A) = {aj − m(A), 1 ≤ j ≤ M}.
Let E(A) and E(A′) denote the average energies of A and A′, respectively.

(a) Show that the error probability of an optimum detector is the same for A′ as it is for A.

(b) Show that E(A′) = E(A) − ||m(A)||2. Conclude that removing the mean m(A) is always
a good idea.

(c) Show that a binary antipodal signal set A = {±a} is always optimal for M = 2.

In general, there is no closed-form expression for the Gaussian integral Pr(E | aj). However,
we can obtain an upper bound in terms of pairwise error probabilities, called the union bound,
which is usually quite sharp. The first term of the union bound, called the union bound estimate,
is usually an excellent approximation, and will be the basis for our analysis of coding gains of
small-to-moderate-sized constellations. A lower bound with the same exponential behavior may
be obtained by considering only the worst-case pairwise error probability.

�

� �

5.2. PROBABILITY OF DECISION ERROR 49

5.2.1 Pairwise error probabilities

We now show that each pairwise probability has a simple closed-form expression that depends
only on the squared distance d2(aj , aj′) = ||aj − aj′ ||2 and the noise variance σ2 = N0/2.

From Figure 2, it is clear that whether y = aj + n is closer to aj′ than to aj depends only on
the projection y|aj′ −aj of y onto the difference vector aj′ − aj . In fact, from (5.2), an error can
occur if and only if

′ − aj 〉| 〈aj′ − aj , aj′ − aj 〉 =
||aj′ − aj ||

.|n|aj′ −aj | = |〈n, φj→j′ 〉| =
|〈n, aj ≥ ||aj′ − aj || 2||aj′ − aj || 2

In other words, an error can occur if and only if the magnitude of the one-dimensional noise
component n1 = n|aj′ −aj , the projection of n onto the difference vector aj′ − aj , exceeds half
the distance d(aj′ , aj) = ||aj′ − aj || between aj′ and aj .

We now use the fact that the distribution pN (n) of the iid Gaussian noise vector N is spherically
symmetric, so the pdf of any one-dimensional projection such as n1 is

2
pN (n1) = √ 1

e −n1/2σ2
.

2πσ2

In other words, N is an iid zero-mean Gaussian vector with variance σ2 in any coordinate system,
including a coordinate system in which the first coordinate axis is aligned with the vector aj′ −aj .

Consequently, the pairwise error probability Pr{aj → aj′ } that if aj is transmitted, the received
vector y = aj + n will be at least as close to aj′ as to aj is given simply by

� ∞ d(aj′ , aj)Pr{aj → aj′ } = √ 1
e −x2/2σ2

dx = Q
�

2σ
, (5.3)

2πσ2 d(aj′ ,aj)/2

where Q(·) is again the Gaussian probability of error function.

As we have seen, the probability of error for a 2-PAM signal set {±α} is Q(α/σ). Since the
distance between the two signals is d = 2α, this is just a special case of this general formula.

In summary, the spherical symmetry of iid Gaussian noise leads to the remarkable result that
the pairwise error probability from aj to aj′ depends only on the squared distance d2(aj′ , aj) =
||aj′ − aj ||2 between aj and aj′ and the noise variance σ2 .

Exercise 4 (non-equiprobable signals).

Let aj and aj′ be two signals that are not equiprobable. Find the optimum (MPE) pairwise
decision rule and pairwise error probability Pr{aj → aj′ }.

5.2.2 The union bound and the UBE

The union bound on error probability is based on the elementary union bound of probability
theory: if A and B are any two events, then Pr(A ∪ B) ≤ Pr(A)+Pr(B). Thus the probability of
detection error Pr(E | aj) with minimum-distance detection if aj is sent— i.e., the probability
that y will be closer to some other aj′ ∈ A than to aj – is upperbounded by the sum of the
pairwise error probabilities to all other signals aj′ �= aj ∈ A:

Pr(E | aj) ≤
�

Pr{aj → aj′ } =
�

Q
d(aj , aj′)

.
2σ

aj =� aj′ ∈A aj =� aj′ ∈A

�

�

�

� �

50 CHAPTER 5. PERFORMANCE OF SMALL SIGNAL SETS

Let D denote the set of distances between signal points in A; then we can write the union
bound as � � � d

Pr(E | aj) ≤ Kd(aj)Q
2σ

, (5.4)
d∈D

where Kd(aj) is the number of signals aj′ �= aj ∈ A at distance d from aj . Because Q(x)
decreases exponentially as e−x2/2 (see Appendix), the factor Q(d/2σ) will be largest for the
minimum Euclidean distance

j′ ∈A
||aj′ − aj ||,dmin(A) = min

aj �=a

and will decrease rapidly for larger distances.

The union bound estimate (UBE) of Pr(E | aj) is based on the idea that the nearest neighbors
to aj at distance dmin(A) (if there are any) will dominate this sum. If there are Kmin(aj)
neighbors at distance dmin(A) from aj , then

dmin(A)
�

Pr(E | aj) ≈ Kmin(aj) Q
2σ

. (5.5)

Of course this estimate is valid only if the next nearest neighbors are at a significantly greater
distance and there are not too many of them; if these assumptions are violated, then further
terms should be used in the estimate.

The union bound may be somewhat sharpened by considering only signals in the relevant
subset N (aj) that determine faces of the decision region Rj . However, since N (aj) includes all
nearest neighbors at distance dmin(A), this will not affect the UBE.

Finally, if there is at least one neighbor aj′ at distance dmin(A) from aj , then we have the
pairwise lower bound

Pr(E | aj) ≥ Pr{aj → aj′ } = Q
dmin(A)

�
, (5.6)

2σ

since there must be a detection error if y is closer to aj′ than to aj . Thus we are usually able
to obtain upper and lower bounds on Pr(E | aj) that have the same “exponent” (argument of
the Q(·) function) and that differ only by a small factor of the order of Kmin(aj).

We can obtain similar upper and lower bounds and estimates for the total error probability

Pr(E) = Pr(E | aj),

where the overbar denotes the expectation over the equiprobable ensemble of signals in A. For
example, if Kmin(A) = Kmin(aj) is the average number of nearest neighbors at distance dmin(A),
then the union bound estimate of Pr(E) is

dmin(A)
�

Pr(E) ≈ Kmin(A)Q . (5.7)
2σ

Exercise 5 (UBE for M -PAM constellations). For an M -PAM constellation A, show that
Kmin(A) = 2(M − 1)/M . Conclude that the union bound estimate of Pr(E) is

M − 1
� �

d
Pr(E) ≈ 2 Q .

M 2σ

Show that in this case the union bound estimate is exact. Explain why.

5.3. PERFORMANCE ANALYSIS IN THE POWER-LIMITED REGIME 51

5.3 Performance analysis in the power-limited regime

Recall that the power-limited regime is defined as the domain in which the nominal spectral
efficiency ρ is not greater than 2 b/2D. In this regime we normalize all quantities “per bit,” and
generally use Eb/N0 as our normalized measure of signal-to-noise ratio.

The baseline uncoded signal set in this regime is the one-dimensional 2-PAM signal set A =
{±α}, or equivalently a K -cube constellation AK . Such a constellation has bit rate (nominal
spectral efficiency) ρ = 2 b/2D, average energy ber bit Eb = α2, minimum squared distance
d2

min(A) = 4α2, and average number of nearest neighbors per bit Kb(A) = 1. By the UBE (5.7),
its error probability per bit is given by

√
Pb(E) ≈ Q (2Eb/N0), (5.8)

√ √ √
where we now use the “Q-of-the-square-root-of” function Q , defined by Q (x) = Q(x) (see
Appendix). This baseline curve of Pb(E) vs. Eb/N0 is plotted in Chapter 4, Figure 1.

The effective coding gain γeff (A) of a signal set A at a given target error probability per bit
Pb(E) will be defined as the difference in dB between the Eb/N0 required to achieve the target
Pb(E) with A and the Eb/N0 required to achieve the target Pb(E) with 2-PAM (i.e., no coding).

For example, we have seen that the maximum possible effective coding gain at Pb(E) ≈ 10−5

is approximately 11.2 dB. For lower Pb(E), the maximum possible gain is higher, and for higher
Pb(E), the maximum possible gain is lower.

In this definition, the effective coding gain includes any gains that result from using a lower
nominal spectral efficiency ρ < 2 b/2D, which as we have seen can range up to 3.35 dB. If ρ is
held constant at ρ = 2 b/2D, then the maximum possible effective coding gain is lower; e.g.,
at Pb(E) ≈ 10−5 it is approximately 8 dB. If there is a constraint on ρ (bandwidth), then it is
better to plot Pb(E) vs. SNRnorm, especially to measure how far A is from achieving capacity.

The UBE allows us to estimate the effective coding gain as follows. The probability of error
per bit (not in general the same as the bit error probability!) is

Pr(E) Kmin(A) √
�

d2
min(A)

�
Pb(E) =

log2 |A| ≈ Q
2N0

,
log2 |A|

√ � �
since Q d2 = Q(dmin(A)/2σ). In the power-limited regime, we define the nominalmin(A)/2N0
coding gain γc(A) as

d2
min(A)

γc(A) = . (5.9)
4Eb

This definition is normalized so that for 2-PAM, √ γc(A) = 1. Because nominal coding gain is
a multiplicative factor in the argument of the Q (·) function, it is often measured in dB. The
UBE then becomes √

Pb(E) ≈ Kb(A)Q (2γc(A)Eb/N0), (5.10)

where Kb(A) = Kmin(A)/ log2 |A| is the average number of nearest neighbors per transmitted
bit. Note that for 2-PAM, this expression is exact.

Given γc(A) and Kb(A), we may obtain a plot of the UBE (5.10) simply by moving the baseline
curve (Figure 1 of Chapter 4) to the left by γc(A) (in dB), and then up by a factor of Kb(A),
since Pb(E) is plotted on a log scale. (This is an excellent reason why error probability curves
are always plotted on a log-log scale, with SNR measured in dB.)

52 CHAPTER 5. PERFORMANCE OF SMALL SIGNAL SETS

Thus if Kb(A) = 1, then the effective coding gain γeff (A) is equal to the nominal coding gain
γc(A) for all Pb(E), to the accuracy of the UBE. However, if Kb(A) > 1, then the effective
coding gain is less than the nominal coding gain by an amount which depends on the steepness
of the Pb(E) vs. Eb/N0 curve at the target Pb(E). At Pb(E) ≈ 10−5, a rule of thumb which is
fairly accurate if Kb(A) is not too large is that an increase of a factor of two in Kb(A) costs
about 0.2 dB in effective coding gain; i.e.,

γeff (A) ≈ γc(A) − (0.2)(log2 Kb(A)) (in dB). (5.11)

A more accurate estimate may be obtained by a plot of the union bound estimate (5.10).

Exercise 6 (invariance of coding gain). Show that the nominal coding gain γc(A) of (5.9), the
UBE (5.10) of Pb(E), and the effective coding gain γeff (A) are invariant to scaling, orthogonal
transformations and Cartesian products.

5.4 Orthogonal and related signal sets

Orthogonal, simplex and biorthogonal signal sets are concrete examples of large signal sets that
are suitable for the power-limited regime when bandwidth is truly unconstrained. Orthogonal
signal sets are the easiest to describe and analyze. Simplex signal sets are believed to be optimal
for a given constellation size M when there is no constraint on dimension. Biorthogonal signal
sets are slightly more bandwidth-efficient. For large M , all become essentially equivalent.

The following exercises develop the parameters of these signal sets, and show that they can
achieve reliable transmission for Eb/N0 within 3 dB from the ultimate Shannon limit.1 The
drawback of these signal sets is that the number of dimensions (bandwidth) becomes very large
and the spectral efficiency ρ very small as M → ∞. Also, even with the “fast” Walsh-Hadamard
transform (see Chapter 1, Problem 2), decoding complexity is of the order of M log2 M , which
increases exponentially with the number of bits transmitted, log2 M , and thus is actually “slow.”

Exercise 7 (Orthogonal signal sets). An orthogonal signal set is a set A = {aj , 1 ≤ j ≤ M }
of M orthogonal vectors in RM with equal energy E (A); i.e., 〈aj , aj′ 〉 = E(A)δjj′ (Kronecker
delta).

(a) Compute the nominal spectral efficiency ρ of A in bits per two dimensions. Compute the
average energy Eb per information bit.

(b) Compute the minimum squared distance d2
min(A). Show that every signal has Kmin(A) =

M − 1 nearest neighbors.

(c) Let the noise variance be σ2 = N0/2 per dimension. Show that the probability of error of
an optimum detector is bounded by the UBE

√
Pr(E) ≤ (M − 1)Q (E(A)/N0).

(d) Let M → ∞ with Eb held constant. Using an asymptotically accurate upper bound for √
the Q (·) function (see Appendix), show that Pr(E) → 0 provided that Eb/N0 > 2 ln 2 (1.42
dB). How close is this to the ultimate Shannon limit on Eb/N0? What is the nominal spectral
efficiency ρ in the limit?

1Actually, it can be shown that with optimum detection orthogonal signal sets can approach the ultimate
Shannon limit on Eb/N0 as M → ∞; however, the union bound is too weak to prove this.

�

53 5.4. ORTHOGONAL AND RELATED SIGNAL SETS

Exercise 8 (Simplex signal sets). Let A be an orthogonal signal set as above.

(a) Denote the mean of A by m(A). Show that m(A) = 0, and compute ||m(A)||2 .

The zero-mean set A′ = A − m(A) (as in Exercise 2) is called a simplex signal set. It is
universally believed to be the optimum set of M signals in AWGN in the absence of bandwidth
constraints, except at ridiculously low SNRs.

(b) For M = 2, 3, 4, sketch A and A′ .

(c) Show that all signals in A′ have the same energy E(A′). Compute E(A′). Compute the
inner products 〈aj , aj′ 〉 for all aj , aj′ ∈ A′ .

(d) [Optional]. Show that for ridiculously low SNRs, a signal set consisting of M − 2 zero
signals and two antipodal signals {±a} has a lower Pr(E) than a simplex signal set. [Hint: see
M. Steiner, “The strong simplex conjecture is false,” IEEE Transactions on Information
Theory, pp. 721-731, May 1994.]

Exercise 9 (Biorthogonal signal sets). The set A′′ = ±A of size 2M consisting of the M
signals in an orthogonal signal set A with symbol energy E(A) and their negatives is called a
biorthogonal signal set.

(a) Show that the mean of A′′ is m(A′′) = 0, and that the average energy per symbol is E(A).

(b) How much greater is the nominal spectral efficiency ρ of A′′ than that of A, in bits per
two dimensions?

(c) Show that the probability of error of A′′ is approximately the same as that of an orthogonal
signal set with the same size and average energy, for M large.

(d) Let the number of signals be a power of 2: 2M = 2k . Show that the nominal spectral
efficiency is ρ(A′′) = 4k2−k b/2D, and that the nominal coding gain is γc(A′′) = k/2. Show that
the number of nearest neighbors is Kmin(A′′) = 2k − 2.

Example 2 (Biorthogonal signal sets). Using Exercise 9, we can estimate the effective coding
gain of a biorthogonal signal set using our rule of thumb (5.11), and check its accuracy against
a plot of the UBE (5.10).

The 2k = 16 biorthogonal signal set A has dimension N = 2k−1 = 8, rate k = 4 b/sym, and
nominal spectral efficiency ρ(A) = 1 b/2D. With energy E(A) per symbol, it has Eb = E(A)/4
and d2

min(A) = 2E(A), so its nominal coding gain is

γc(A) = d2
min(A)/4Eb = 2 (3.01 dB),

The number of nearest neighbors is Kmin(A) = 2k − 2 = 14, so Kb(A) = 14/4 = 3.5, and the
estimate of its effective coding gain at Pb(E) ≈ 10−5 by our rule of thumb (5.11) is thus

γeff (A) ≈ 3 − 2(0.2) = 2.6 dB.

A more accurate plot of the UBE (5.10) may be obtained by shifting the baseline curve (Figure √
1 of Chapter 4) left by 3 dB and up by half a vertical unit (since 3.5 ≈ 10), as shown in Figure
3. This plot shows that the rough estimate γeff (A) ≈ 2.6 dB is quite accurate at Pb(E) ≈ 10−5 .

Similarly, the 64-biorthogonal signal set A′ has nominal coding gain γc(A′) = 3 (4.77 dB),
Kb(A′) = 62/6 ≈ 10, and effective coding gain γeff (A′) ≈ 4.8 - 3.5(0.2) = 4.1 dB by our rule
of thumb. The 256-biorthogonal signal set A′′ has nominal coding gain γc(A′′) = 4 (6.02 dB),
Kb(A′′) = 254/8 ≈ 32, and effective coding gain γeff (A′′) ≈ 6 - 5(0.2) = 5.0 dB by our rule of
thumb. Figure 3 also shows plots of the UBE (5.10) for these two signal constellations, which
show that our rule of thumb continues to be fairly accurate.

54 CHAPTER 5. PERFORMANCE OF SMALL SIGNAL SETS

Biorthogonal signal sets
100

P b (E
)

10−1

10−2

10−3

10−4

10−5

10−6

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Uncoded 2−PAM
biorthogonal M=16
biorthogonal M=64
biorthogonal M=256

Eb/N0 [dB]

Figure 3. Pb(E) vs. Eb/N0 for biorthogonal signal sets with 2k = 16, 64 and 256.

5.5 Performance in the bandwidth-limited regime

Recall that the bandwidth-limited regime is defined as the domain in which the nominal spectral
efficiency ρ is greater than 2 b/2D; i.e., the domain of nonbinary signaling. In this regime we
normalize all quantities “per two dimensions,” and use SNRnorm as our normalized measure of
signal-to-noise ratio.

The baseline uncoded signal set in this regime is the M -PAM signal set A =
α{±1,±3, . . . ,±(M − 1)}, or equivalently the (M × M)-QAM constellation A2. Typically M is
a power of 2. Such a constellation has bit rate (nominal spectral efficiency) ρ = 2 log2 M b/2D
and minimum squared distance d2

min(A2) = 4α2. As shown in Chapter 4, its average energy per
two dimensions is

2α2(M2 − 1)
=

d2
Es = min(A)(2ρ − 1)

. (5.12)
3 6

The average number of nearest neighbors per two dimensions is twice that of M -PAM, namely
Ks(A) = 4(M − 1)/M , which rapidly approaches Ks(A) ≈ 4 as M becomes large. By the UBE
(5.7), the error probability per two dimensions is given by

√
Ps(E) ≈ 4Q (3SNRnorm). (5.13)

This baseline curve of Ps(E) vs. SNRnorm was plotted in Figure 2 of Chapter 4.

5.6. DESIGN OF SMALL SIGNAL CONSTELLATIONS 55

In the bandwidth-limited regime, the effective coding gain γeff (A) of a signal set A at a given
target error rate Ps(E) will be defined as the difference in dB between the SNRnorm required
to achieve the target Ps(E) with A and the SNRnorm required to achieve the target Ps(E) with
M -PAM or (M × M)-QAM (no coding).

For example, we saw from Figure 2 of Chapter 4 that the maximum possible effective coding
gain at Ps(E) ≈ 10−5 is approximately 8.4 dB, which is about 3 dB less than in the power-limited
regime (due solely to the fact that the bandwidth is fixed).

The effective coding gain is again estimated by the UBE, as follows. The probability of error
per two dimensions is

Ps(E) =
2 Pr(E) 2Kmin(A) √

�
d2

min(A)
�

≈ Q .
N N 2N0

In the bandwidth-limited regime, we define the nominal coding gain γc(A) as

γc(A) =
(2ρ − 1)d2

6Es

min(A)
. (5.14)

This definition is normalized so that for M -PAM or (M × M)-QAM, γc(A) = 1. Again, γc(A)
is often measured in dB. The UBE (5.10) then becomes

√
Ps(E) ≈ Ks(A)Q (3γc(A)SNRnorm), (5.15)

where Ks(A) = 2Kmin(A)/N is the average number of nearest neighbors per two dimensions.
Note that for M -PAM or (M × M)-QAM, this expression reduces to (5.13).

Given γc(A) and Ks(A), we may obtain a plot of (5.15) by moving the baseline curve (Figure
2 of Chapter 4) to the left by γc(A) (in dB), and up by a factor of Ks(A)/4. The rule of thumb
that an increase of a factor of two in Ks(A) over the baseline Ks(A) = 4 costs about 0.2 dB in
effective coding gain at Ps(E) ≈ 10−5 may still be used if Ks(A) is not too large.

Exercise 6 (invariance of coding gain, cont.) Show that in the bandwidth-limited regime the
nominal coding gain γc(A) of (5.14), the UBE (5.15) of Ps(E), and the effective coding gain
γeff (A) are invariant to scaling, orthogonal transformations and Cartesian products.

5.6 Design of small signal constellations

The reader may now like to try to find the best constellations of small size M in N dimensions,
using coding gain γc(A) as the primary figure of merit, and Kmin(A) as a secondary criterion.

Exercise 10 (small nonbinary constellations).

(a) For M = 4, the (2 × 2)-QAM signal set is known to be optimal in N = 2 dimensions. Show
however that there exists at least one other inequivalent two-dimensional signal set A′ with the
same coding gain. Which signal set has the lower “error coefficient” Kmin(A)?

(b) Show that the coding gain of (a) can be improved in N = 3 dimensions. [Hint: consider
the signal set A′′ = {(1, 1, 1), (1, −1, −1), (−1, 1, −1), (−1, −1, 1)}.] Sketch A′′ . What is the
geometric name of the polytope whose vertex set is A′′?

(c) For M = 8 and N = 2, propose at least two good signal sets, and determine which one is
better. [Open research problem: Find the optimal such signal set, and prove that it is optimal.]

(d) [Open research problem.] For M = 16 and N = 2, the hexagonal signal set of Figure 1(e),
Chapter 4, is thought to be near-optimal. Prove that it is optimal, or find a better one.

56 CHAPTER 5. PERFORMANCE OF SMALL SIGNAL SETS

5.7 Summary: Performance analysis and coding gain

The results of this chapter may be summarized very simply.

In the power-limited regime, the nominal coding gain is γc(A) = d2
min(A)/4Eb. To the accuracy √

of the UBE, Pb(E) ≈ Kb(A)Q (2γc(A)Eb/N0). This curve may be plotted by moving the √
power-limited baseline curve Pb(E) ≈ Q (2Eb/N0) to the left by γc(A) in dB and up by a
factor of Kb(A). An estimate of the effective coding gain at Pb(E) ≈ 10−5 is γeff (A) ≈ γc(A) −
(0.2)(log2 Kb(A)) dB.

In the bandwidth-limited regime, the nominal coding gain is γc(A) = (2ρ − 1)d2
√ min(A)/6Es.

To the accuracy of the UBE, Ps(E) ≈ Ks(A)Q (3γc(A)SNRnorm). This curve may be plotted √
by moving the bandwidth-limited baseline curve Ps(E) ≈ 4Q (3SNRnorm) to the left by γc(A)
in dB and up by a factor of Ks(A)/4. An estimate of the effective coding gain at Ps(E) ≈ 10−5

is γeff (A) ≈ γc(A) − (0.2)(log2 Ks(A)/4) dB.

Appendix: The Q function

The Gaussian probability of error (or Q) function, defined by
� ∞

Q(x) = √ 1
e −y2/2 dy,

x 2π

arises frequently in error probability calculations on Gaussian channels. In this appendix we
discuss some of its properties.

As we have seen, there is very often a square root in the argument of the Q function. This
suggests that it might have been more useful to define a “Q-of-the-square-root-of” function √ √
Q (x) such that Q (x2) = Q(x); i.e.,

√ 1
Q (x) = Q(

√
x) =

�

√
∞

√ e −y2/2 dy.
x 2π

√
From now on we will use this Q function instead of the Q function. For example, our baseline
curves for 2-PAM and (M × M)-QAM will be

√
Pb(E) = Q (2Eb/N0); √
Ps(E) ≈ 4Q (3SNRnorm).

√
The Q or Q functions do not have a closed-form expression, but must be looked up in tables.

Non-communications texts usually tabulate the complementary error function, namely
� ∞

erfc(x) = √ 1
e −y2

dy.
πx

√ √ �
Evidently Q(x) = erfc(x/ 2), and Q (x) = erfc(x/2).

√
The main property of the Q or Q function is that it decays exponentially with x2 according

to √ −x2/2Q (x 2) = Q(x) ≈ e .

� �

�

57 5.7. SUMMARY: PERFORMANCE ANALYSIS AND CODING GAIN

The following exercise gives several ways to prove this, including upper bounds, a lower bound,
and an estimate.

√
Exercise A (Bounds on the Q function).

(a) As discussed in Chapter 3, the Chernoff bound on the probability that a real random
variable Z exceeds b is given by

Pr{Z ≥ b} ≤ es(Z−b), s ≥ 0

(since es(z−b) ≥ 1 when z ≥ b, and es(z−b) ≥ 0 otherwise). When optimized over s ≥ 0, the
Chernoff exponent is asymptotically correct.

Use the Chernoff bound to show that
√ −x2/2Q (x 2) ≤ e . (5.16)

(b) Integrate by parts to derive the upper and lower bounds

√
Q (x 2) < √ 1

e −x2/2; (5.17)
2πx2

√
�

1
�

Q (x 2) > 1 −
2 √ 1

e −x2/2 . (5.18)
x 2πx2

(c) Here is another way to establish these tight upper and lower bounds. By using a simple
change of variables, show that

√ 1 −x 2
� ∞ � �

Q (x 2) = √
2π

e 2

0
exp

−
2
y2

− xy dy.

Then show that
2

1 − y ≤ exp
−y2

≤ 1.
2 2

Putting these together, derive the bounds of part (b).

For (d)-(f), consider a circle of radius x inscribed in a square of side 2x as shown below. '$

x-

&%

(d) Show that the probability that a two-dimensional iid real Gaussian random variable X √
with variance σ2 = 1 per dimension falls inside the square is equal to (1 − 2Q (x2))2 .

(e) Show that the probability that X falls inside the circle is 1 − e−x2/2. [Hint: write
1 pX (x) in polar coordinates: i.e., pRΘ(r, θ) = 2π re

−r2/2 . You can then compute the integral � 2π
dθ x

dr pRΘ(r, θ) in closed form.] 0 0

(f) Show that (d) and (e) imply that when x is large,

√
Q (x 2) ≤

1
e −x2/2 .

4

Chapter 6

Introduction to binary block codes

In this chapter we begin to study binary signal constellations, which are the Euclidean-space
images of binary block codes. Such constellations have bit rate (nominal spectral efficiency)
ρ ≤ 2 b/2D, and are thus suitable only for the power-limited regime.

We will focus mainly on binary linear block codes, which have a certain useful algebraic
structure. Specifically, they are vector spaces over the binary field F2. A useful infinite family
of such codes is the set of Reed-Muller codes.

We discuss the penalty incurred by making hard decisions and then performing classical error-
correction, and show how the penalty may be partially mitigated by using erasures, or rather
completely by using generalized minimum distance (GMD) decoding.

6.1 Binary signal constellations

In this chapter we will consider constellations that are the Euclidean-space images of binary codes
via a coordinatewise 2-PAM map. Such constellations will be called binary signal constellations.

A binary block code of length n is any subset C ⊆ {0, 1}n of the set of all binary n-tuples
of length n. We will usually identify the binary alphabet {0, 1} with the finite field F2 with
two elements, whose arithmetic rules are those of mod-2 arithmetic. Moreover, we will usually
impose the requirement that C be linear ; i.e., that C be a subspace of the n-dimensional vector
space (F2)n of all binary n-tuples. We will shortly begin to discuss such algebraic properties.

Each component xk ∈ {0, 1} of a codeword x ∈ C will be mapped to one of the two points ±α
of a 2-PAM signal set A = {±α} ⊂ R according to a 2-PAM map s: {0, 1} → A. Explicitly, two
standard ways of specifying such a 2-PAM map are

s(x) = α(−1)x;
s(x) = α(1 − 2x).

The first map is more algebraic in that, ignoring scaling, it is an isomorphism from the additive
binary group Z2 = {0, 1} to the multiplicative binary group {±1}, since s(x)·s(x′) = (−1)x+x′

=
s(x + x′). The second map is more geometric, in that it is the composition of a map from
{0, 1} ∈ F2 to {0, 1} ∈ R, followed by a linear transformation and a translation. However,
ultimately both formulas specify the same map:

{s(0) = α, s(1) = −α}.

59

�
� �

� �

60 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

Under the 2-PAM map, the set (F2)n of all binary n-tuples maps to the set of all real n-tuples
of the form (±α, ±α, . . . , ±α). Geometrically, this is the set of all 2n vertices of an n-cube of
side 2α centered on the origin. It follows that a binary signal constellation A′ = s(C) based on
a binary code C ⊆ (F2)n maps to a subset of the vertices of this n-cube.

The size of an N -dimensional binary constellation A′ is thus bounded by |A′| ≤ 2n , and its bit
rate ρ = (2/n) log2 |A′| is bounded by ρ ≤ 2 b/2D. Thus binary constellations can be used only
in the power-limited regime.

Since the n-cube constellation An = s((F2)n) = (s(F2))n is simply the n-fold Cartesian product
An of the 2-PAM constellation A = s(F2) = {±α}, its normalized parameters are the same as
those of 2-PAM, and it achieves no coding gain. Our hope is that by restricting to a subset
A′ ⊂ An , a distance gain can be achieved that will more than offset the rate loss, thus yielding
a coding gain.
Example 1. Consider the binary code C = {000, 011, 110, 101}, whose four codewords are

binary 3-tuples. The bit rate of C is thus ρ = 4/3 b/2D. Its Euclidean-space image s(C) is a set
of four vertices of a 3-cube that form a regular tetrahedron, as shown in Figure 1. The minimum
squared Euclidean distance of s(C) is d2 = 8α2 , and every signal point in s(C) has 3min(s(C))
nearest neighbors. The average energy of s(C) is E(s(C)) = 3α2 , so its average energy per bit is
Eb = (3/2)α2 , and its nominal coding gain is

d2 4
γc(s(C)) = min(s(C))

= (1.25 dB).
4Eb 3

t000� �� ���
((((((((((((

�� ��t � � �110 JJ@
J@

J@ �
J @ � �
J @� �

101J�@t �� �� HHHH
@ � �� �� @��t011

Figure 1. The Euclidean image of the binary code C = {000, 011, 110, 101}
is a regular tetrahedron in R3 .

It might at first appear that the restriction of constellation points to vertices of an n-cube
might force binary signal constellations to be seriously suboptimal. However, it turns out that
when ρ is small, this apparently drastic restriction does not hurt potential performance very
much. A capacity calculation using a random code ensemble with binary alphabet A = {±α}
rather than R shows that the Shannon limit on Eb/N0 at ρ = 1 b/2D is 0.2 dB rather than 0
dB; i.e., the loss is only 0.2 dB. As ρ → 0, the loss becomes negligible. Therefore at spectral
efficiencies ρ ≤ 1 b/2D, binary signal constellations are good enough.

�

6.2. BINARY LINEAR BLOCK CODES AS BINARY VECTOR SPACES 61

6.2 Binary linear block codes as binary vector spaces

Practically all of the binary block codes that we consider will be linear. A binary linear block
code is a set of n-tuples of elements of the binary finite field F2 = {0, 1} that form a vector space
over the field F2. As we will see in a moment, this means simply that C must have the group
property under n-tuple addition.

We therefore begin by studying the algebraic structure of the binary finite field F2 = {0, 1}
and of vector spaces over F2. In later chapters we will study codes over general finite fields.

In general, a field F is a set of elements with two operations, addition and multiplication, which
satisfy the usual rules of ordinary arithmetic (i.e., commutativity, associativity, distributivity).
A field contains an additive identity 0 such that a + 0 = a for all field elements a ∈ F, and
every field element a has an additive inverse −a such that a + (−a) = 0. A field contains a
multiplicative identity 1 such that a · 1 = a for all field elements a ∈ F, and every nonzero field
element a has a multiplicative inverse a−1 such that a · a−1 = 1.

The binary field F2 (sometimes called a Galois field, and denoted by GF(2)) is the finite field
with only two elements, namely 0 and 1, which may be thought of as representatives of the even
and odd integers, modulo 2. Its addition and multiplication tables are given by the rules of
mod 2 (even/odd) arithmetic, with 0 acting as the additive identity and 1 as the multiplicative
identity:

0 + 0 = 0 0 · 0 = 0
0 + 1 = 1 0 · 1 = 0
1 + 0 = 1 1 · 0 = 0
1 + 1 = 0 1 · 1 = 1

In fact these rules are determined by the general properties of 0 and 1 in any field. Notice that
the additive inverse of 1 is 1, so −a = a for both field elements.

In general, a vector space V over a field F is a set of vectors v including 0 such that addition
of vectors and multiplication by scalars in F is well defined, and such that various other vector
space axioms are satisfied.

For a vector space over F2, multiplication by scalars is trivially well defined, since 0v = 0 and
1v = v are automatically in V . Therefore all that really needs to be checked is additive closure,
or the group property of V under vector addition; i.e., for all v, v′ ∈ V , v + v′ is in V . Finally,
every vector is its own additive inverse, −v = v, since

v + v = 1v + 1v = (1 + 1)v = 0v = 0.

In summary, over a binary field, subtraction is the same as addition.
A vector space over F2 is called a binary vector space. The set (F2)n of all binary n-tuples

v = (v1, . . . , vn) under componentwise binary addition is an elementary example of a binary
vector space. Here we consider only binary vector spaces which are subspaces C ⊆ (F2)n, which
are called binary linear block codes of length n.

If G = {g1, . . . ,gk } is a set of vectors in a binary vector space V , then the set C(G) of all
binary linear combinations

C(G) = { aj gj , aj ∈ F2, 1 ≤ j ≤ k}
j

62 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

is a subspace of V , since C(G) evidently has the group property. The set G is called linearly
independent if these 2k binary linear combinations are all distinct, so that the size of C(G) is
|C(G)| = 2k . A set G of linearly independent vectors such that C(G) = V is called a basis for
V , and the elements {gj , 1 ≤ j ≤ k} of the basis are called generators. The set G = {g1, . . . ,gk}
may be arranged as a k × n matrix over F2, called a generator matrix for C(G).

The dimension of a binary vector space V is the number k of generators in any basis for V .
As with any vector space, the dimension k and a basis G for V may be found by the following
greedy algorithm:

Initialization: set k = 0 and G = ∅ (the empty set);
Do loop: if C(G) = V we are done, and dim V = k;

otherwise, increase k by 1 and take any v ∈ V − C(G) as gk.

Thus the size of V is always |V | = 2k for some integer k = dim V ; conversely, dim V = log2 |V |.
An (n, k) binary linear code C is any subspace of the vector space (F2)n with dimension k, or

equivalently size 2k . In other words, an (n, k) binary linear code is any set of 2k binary n-tuples
including 0 that has the group property under componentwise binary addition.
Example 2 (simple binary linear codes). The (n, n) binary linear code is the set (F2)n of all

binary n-tuples, sometimes called the universe code of length n. The (n, 0) binary linear code
is {0}, the set containing only the all-zero n-tuple, sometimes called the trivial code of length
n. The code consisting of 0 and the all-one n-tuple 1 is an (n, 1) binary linear code, called the
repetition code of length n. The code consisting of all n-tuples with an even number of ones
is an (n, n − 1) binary linear code, called the even-weight or single-parity-check (SPC) code of
length n.

6.2.1 The Hamming metric

The geometry of (F2)n is defined by the Hamming metric:

wH (x) = number of ones in x.

The Hamming metric satisfies the axioms of a metric:

(a) Strict positivity: wH (x) ≥ 0, with equality if and only if x = 0;

(b) Symmetry: wH (−x) = wH (x) (since −x = x);

(c) Triangle inequality: wH (x + y) ≤ wH (x) + wH (y).

Therefore the Hamming distance,

dH (x,y) = wH (x − y) = wH (x + y),

may be used to define (F2)n as a metric space, called a Hamming space.
We now show that the group property of a binary linear block code C leads to a remarkable

symmetry in the distance distributions from each of the codewords of C to all other codewords.
Let x ∈ C be a given codeword of C, and consider the set {x + y | y ∈ C} = x + C as y

runs through the codewords in C. By the group property of C, x + y must be a codeword in C.

�

6.2. BINARY LINEAR BLOCK CODES AS BINARY VECTOR SPACES 63

Moreover, since x + y = x + y′ if and only if y = y′, all of these codewords must be distinct.
But since the size of the set x + C is |C|, this implies that x + C = C; i.e., x + y runs through
all codewords in C as y runs through C. Since dH (x, y) = wH (x + y), this implies the following
symmetry:

Theorem 6.1 (Distance invariance) The set of Hamming distances dH (x, y) from any code-
word x ∈ C to all codewords y ∈ C is independent of x, and is equal to the set of distances from
0 ∈ C, namely the set of Hamming weights wH (y) of all codewords y ∈ C.

An (n, k) binary linear block code C is said to have minimum Hamming distance d, and is
denoted as an (n, k, d) code, if

d = min dH (x, y).
x�=y∈C

Theorem 6.1 then has the immediate corollary:

Corollary 6.2 (Minimum distance = minimum nonzero weight) The minimum Ham-
ming distance of C is equal to the minimum Hamming weight of any nonzero codeword of C.
More generally, the number of codewords y ∈ C at distance d from any codeword x ∈ C is equal
to the number Nd of weight-d codewords in C, independent of x.

Example 2 (cont.) The (n, n) universe code has minimum Hamming distance d = 1, and the
number of words at distance 1 from any codeword is N1 = n. The (n, n − 1) SPC code has
minimum weight and distance d = 2, and N2 = n(n −1)/2. The (n, 1) repetition code has d = n
and Nn = 1. By convention, the trivial (n, 0) code {0} is said to have d = ∞.

6.2.2 Inner products and orthogonality

A symmetric, bilinear inner product on the vector space (F2)n is defined by the F2-valued dot
product

〈x, y〉 = x · y = xyT = xiyi,
i

where n-tuples are regarded as row vectors and “T ” denotes “transpose.” Two vectors are said
to be orthogonal if 〈x, y〉 = 0.

However, this F2 inner product does not have a property analogous to strict positivity: 〈x, x〉 =
0 does not imply that x = 0, but only that x has an even number of ones. Thus it is perfectly
possible for a nonzero vector to be orthogonal to itself. Hence 〈x, x〉 does not have a key
property of the Euclidean squared norm and cannot be used to define a metric space analogous
to Euclidean space. The Hamming geometry of (F2)n is very different from Euclidean geometry.

In particular, the projection theorem does not hold, and it is therefore not possible in general
to find an orthogonal basis G for a binary vector space C.
Example 3. The (3, 2) SPC code consists of the four 3-tuples C = {000, 011, 101, 110}. Any

two nonzero codewords form a basis for C, but no two such codewords are orthogonal.
The orthogonal code (dual code) C⊥ to an (n, k) code C is defined as the set of all n-tuples

that are orthogonal to all elements of C:

C⊥ = {y ∈ (F2)n | 〈x, y〉 = 0 for all x ∈ C}.

64 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

Here are some elementary facts about C⊥:
1(a) C⊥ is an (n, n − k) binary linear code, and thus has a basis H of size n − k.

(b) If G is a basis for C, then a set H of n − k linearly independent n-tuples in C⊥ is a basis
for C⊥ if and only if every vector in H is orthogonal to every vector in G.

(c) (C⊥)⊥ = C.
A basis G for C consists of k linearly independent n-tuples in C, and is usually written as a

k × n generator matrix G of rank k. The code C then consists of all binary linear combinations
⊥C = {aG, a ∈ (F2)k}. A basis H for C⊥ consists of n − k linearly independent n-tuples in C ,

and is usually written as an (n − k) × n matrix H; then C⊥ = {bH, b ∈ (F2)n−k }. According
to property (b) above, C and C⊥ are dual codes if and only if their generator matrices satisfy
GHT = 0. The transpose HT of a generator matrix H for C⊥ is called a parity-check matrix for
C; it has the property that a vector x ∈ (F2)n is in C if and only if xHT = 0, since x is in the

⊥dual code to C⊥ if and only if it is orthogonal to all generators of C .
Example 2 (cont.; duals of simple codes). In general, the (n, n) universe code and the (n, 0)

trivial code are dual codes. The (n, 1) repetition code and the (n, n − 1) SPC code are dual
codes. Note that the (2, 1) code {00, 11} is both a repetition code and an SPC code, and is its
own dual; such a code is called self-dual. (Self-duality cannot occur in real or complex vector
spaces.)

6.3 Euclidean-space images of binary linear block codes

In this section we derive the principal parameters of a binary signal constellation s(C) from
the parameters of the binary linear block code C on which it is based, namely the parameters
(n, k, d) and the number Nd of weight-d codewords in C.

The dimension of s(C) is N = n, and its size is M = 2k . It thus supports k bits per block.
The bit rate (nominal spectral efficiency) is ρ = 2k/n b/2D. Since k ≤ n, ρ ≤ 2 b/2D, and we
are in the power-limited regime.

Every point in s(C) is of the form (±α, ±α, . . . , ±α), and therefore every point has energy nα2;
i.e., the signal points all lie on an n-sphere of squared radius nα2 . The average energy per block
is thus E(s(C)) = nα2, and the average energy per bit is Eb = nα2/k.

If two codewords x, y ∈ C have Hamming distance dH (x, y), then their Euclidean images
s(x), s(y) will be the same in n − dH (x, y) places, and will differ by 2α in dH (x, y) places, so

1The standard proof of this fact involves finding a systematic generator matrix G = [Ik | P] for C, where Ik

is the k × k identity matrix and P is a k × (n − k) check matrix. Then C = {(u, uP), u ∈ (F2)
k }, where u is a

free information k-tuple and uP is a check (n − k)-tuple. The dual code C⊥ is then evidently the code generated
by H = [−P T | In−k], where P T is the transpose of P ; i.e., C⊥ = {(−vP T , v), v ∈ (F2)

n−k }, whose dimension is
n − k.

A more elegant proof based on the fundamental theorem of group homomorphisms (which the reader is not
expected to know at this point) is as follows. Let M be the |C⊥| ×n matrix whose rows are the codewords of C⊥ .

→ (F2)
|C⊥ |Consider the homomorphism M T : (F2)

n defined by y �→ yM T ; i.e., yM T is the set of inner products
of an n-tuple y ∈ (F2)

n with all codewords x ∈ C⊥ . The kernel of this homomorphism is evidently C. By the
fundamental theorem of homomorphisms, the image of M T (the row space of M T) is isomorphic to the quotient
space (F2)

n/C, which is isomorphic to (F2)
n−k . Thus the column rank of M is n − k. But the column rank is

equal to the row rank, which is the dimension of the row space C⊥ of M .

� �

�
′

6.4. REED-MULLER CODES 65

their squared Euclidean distance will be2

‖s(x) − s(y)‖2 = 4α2dH (x, y).

Therefore
d2

min(s(C)) = 4α2dH (C) = 4α2d,

where d = dH (C) is the minimum Hamming distance of C.
It follows that the nominal coding gain of s(C) is

d2 kd
γc(s(C)) = min(s(C))

= . (6.1)
4Eb n

Thus the parameters (n, k, d) directly determine γc(s(C)) in this very simple way. (This gives
another reason to prefer Eb/N0 to SNRnorm in the power-limited regime.)

Moreover, every vector s(x) ∈ s(C) has the same number of nearest neighbors Kmin(s(x)),
namely the number Nd of nearest neighbors to x ∈ C. Thus Kmin(s(C)) = Nd, and Kb(s(C)) =
Nd/k.

Consequently the union bound estimate of Pb(E) is
√

Pb(E) ≈ Kb(s(C))Q (γc(s(C))(2Eb/N0))
Nd √ dk

= Q 2Eb/N0 . (6.2)
k n

In summary, the parameters and performance of the binary signal constellation s(C) may be
simply determined from the parameters (n, k, d) and Nd of C.
Exercise 1. Let C be an (n, k, d) binary linear code with d odd. Show that if we append an

overall parity check p = i xi to each codeword x, then we obtain an (n + 1, k, d + 1) binary
linear code C with d even. Show that the nominal coding gain γc(C′) is always greater than
γc(C) if k > 1. Conclude that we can focus primarily on linear codes with d even.
Exercise 2. Show that if C is a binary linear block code, then in every coordinate position

either all codeword components are 0 or half are 0 and half are 1. Show that a coordinate
in which all codeword components are 0 may be deleted (“punctured”) without any loss in
performance, but with savings in energy and in dimension. Show that if C has no such all-zero
coordinates, then s(C) has zero mean: m(s(C)) = 0.

6.4 Reed-Muller codes

The Reed-Muller (RM) codes are an infinite family of binary linear codes that were among the
first to be discovered (1954). For block lengths n ≤ 32, they are the best codes known with
minimum distances d equal to powers of 2. For greater block lengths, they are not in general
the best codes known, but in terms of performance vs. decoding complexity they are still quite
good, since they admit relatively simple ML decoding algorithms.

2Moreover, the Eudlidean-space inner product of s(x) and s(y) is
2 2〈s(x), s(y)〉 = (n − dH (x, y))α2 + dH (x, y)(−α) = (n − 2dH (x, y))α .

Therefore s(x) and s(y) are orthogonal if and only if dH (x, y) = n/2. Also, s(x) and s(y) are antipodal (s(x) =
−s(y)) if and only if dH (x, y) = n.

� �

� �

66 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

For any integers m ≥ 0 and 0 ≤ r ≤ m, there exists an RM code, denoted by RM(r,m), that
has length n = 2m and minimum Hamming distance d = 2m−r , 0 ≤ r ≤ m.

For r = m, RM(m, m) is defined as the universe (2m , 2m , 1) code. It is helpful also to define
RM codes for r = −1 by RM(−1, m) = (2m , 0,∞), the trivial code of length 2m. Thus for
m = 0, the two RM codes of length 1 are the (1, 1, 1) universe code RM(0, 0) and the (1, 0,∞)
trivial code RM(−1, 0).

The remaining RM codes for m ≥ 1 and 0 ≤ r < m may be constructed from these elementary
codes by the following length-doubling construction, called the |u|u+ v| construction (originally
due to Plotkin). RM(r,m) is constructed from RM(r − 1, m − 1) and RM(r,m − 1) as

RM(r,m) = {(u,u + v) | u ∈ RM(r,m − 1),v ∈ RM(r − 1, m − 1)}. (6.3)

From this construction, it is easy to prove the following facts by recursion:

(a) RM(r,m) is a binary linear block code with length n = 2m and dimension

k(r,m) = k(r,m − 1) + k(r − 1, m − 1).

(b) The codes are nested, in the sense that RM(r − 1, m) ⊆ RM(r,m).

(c) The minimum distance of RM(r,m) is d = 2m−r if r ≥ 0 (if r = −1, then d = ∞).

We verify that these assertions hold for RM(0, 0) and RM(−1, 0).
For m ≥ 1, the linearity and length of RM(r,m) are obvious from the construction. The

dimension (size) follows from the fact that (u,u + v) = 0 if and only if u = v = 0.
Exercise 5 below shows that the recursion for k(r,m) leads to the explicit formula

� m
k(r,m) = , (6.4)

j
0≤j≤r

m m!where denotes the combinatorial coefficient j!(m−j)! .j

The nesting property for m follows from the nesting property for m − 1.
Finally, we verify that the minimum nonzero weight of RM(r,m) is 2m−r as follows:

(a) if u = 0, then wH ((0,v)) = wH (v) ≥ 2m−r if v
= 0, since v ∈ RM(r − 1, m − 1).

(b) if u + v = 0, then u = v ∈ RM(r − 1, m − 1) and wH ((v,0)) ≥ 2m−r if v
= 0.

= 0 and u + v
(c) if u
 = 0, then both u and u + v are in RM(r,m− 1) (since RM(r− 1, m− 1)
is a subcode of RM(r,m − 1)), so

wH ((u,u + v)) = wH (u) + wH (u + v) ≥ 2 · 2m−r−1 = 2m−r .

Equality clearly holds for (0,v), (v,0) or (u,u) if we choose v or u as a minimum-weight
codeword from their respective codes.

67 6.4. REED-MULLER CODES

The |u|u + v| construction suggests the following tableau of RM codes:

r = m, d = 1;
*� universe codes ���(32, 32, 1)����

(16, 16, 1) r = m − 1, d = 2; ��� *� SPC codes � �� �� �(8, 8, 1) (32, 31, 2)� �� �� �
�� �� r = m − 2, d = 4;

� � *�(4, 4, 1) �(16, 15, 2) � ext. Hamming codes � � �� � �� � �(2, 2, 1) (8, 7, 2) (32, 26, 4)� � �� � �� � �� � �� � �(1, 1, 1) (4, 3, 2) (16, 11, 4)� � �� �� �� �� �� � -(2, 1, 2) (8, 4, 4) (32, 16, 8) k = n/2;
�� self-dual codes

�

HHHHHHHHHHHHHHHHHHHHHHHHH

�(1, 0,∞) (4, 1, 4) (16, 5, 8)�

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

(2, 0,∞) (8, 1, 8) (32, 6, 16)

(4, 0,∞) (16, 1, 16) j r = 1, d = n/2;
biorthogonal codes

(8, 0,∞) (32, 1, 32)

(16, 0,∞) j
r = 0, d = n;
repetition codes

(32, 0,∞)

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHj r = −1, d = ∞;
trivial codes

Figure 2. Tableau of Reed-Muller codes.

In this tableau each RM code lies halfway between the two codes of half the length that are
used to construct it in the |u|u + v| construction, from which we can immediately deduce its
dimension k.
Exercise 3. Compute the parameters (k, d) of the RM codes of lengths n = 64 and 128.
There is a known closed-form formula for the number Nd of codewords of minimum weight

d = 2m−r in RM(r,m): � 2m−i − 1
Nd = 2r

2m−r−i − 1
. (6.5)

0≤i≤m−r−1

Example 4. The number of weight-8 words in the (32, 16, 8) code RM(2, 5) is
31 · 15 · 7

N8 = 4 = 620.
7 · 3 · 1

The nominal coding gain of RM(2, 5) is γc(C) = 4 (6.02 dB); however, since Kb = N8/k = 38.75,
the effective coding gain by our rule of thumb is only about γeff (C) ≈ 5.0 dB.

′

68 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

The codes with r = m − 1 are single-parity-check (SPC) codes with d = 2. These codes
have nominal coding gain 2(k/n), which goes to 2 (3.01 dB) as n → ∞; however, since Nd =
2m(2m − 1)/2, we have Kb = 2m−1 → ∞, which ultimately limits the effective coding gain.

The codes with r = m − 2 are extended Hamming (EH) codes with d = 4. These codes
have nominal coding gain 4(k/n), which goes to 4 (6.02 dB) as n → ∞; however, since Nd =
2m(2m − 1)(2m − 2)/24, we again have Kb → ∞.
Exercise 4 (optimizing SPC and EH codes). Using the rule of thumb that a factor of two

increase in Kb costs 0.2 dB in effective coding gain, find the value of n for which an (n, n − 1, 2)
SPC code has maximum effective coding gain, and compute this maximum in dB. Similarly, find
m such that a (2m , 2m −m − 1, 4) extended Hamming code has maximum effective coding gain,
using Nd = 2m(2m − 1)(2m − 2)/24, and compute this maximum in dB.

The codes with r = 1 (first-order Reed-Muller codes) are interesting, because as shown in
Exercise 5 they generate biorthogonal signal sets of dimension n = 2m and size 2m+1, with
nominal coding gain (m + 1)/2 → ∞. It is known that as n → ∞ this sequence of codes can
achieve arbitrarily small Pr(E) for any Eb/N0 greater than the ultimate Shannon limit, namely
Eb/N0 > ln 2 (-1.59 dB).
Exercise 5 (biorthogonal codes). We have shown that the first-order Reed-Muller codes

RM(1, m) have parameters (2m, m+1, 2m−1), and that the (2m , 1, 2m) repetition code RM(0, m)
is a subcode.

(a) Show that RM(1, m) has one word of weight 0, one word of weight 2m, and 2m+1 − 2
words of weight 2m−1 . [Hint: first show that the RM(1, m) code consists of 2m complementary
codeword pairs {x, x + 1}.]

(b) Show that the Euclidean image of an RM(1, m) code is an M = 2m+1 biorthogonal signal
set. [Hint: compute all inner products between code vectors.]

(c) Show that the code C′ consisting of all words in RM(1, m) with a 0 in any given coordinate
position is a (2m, m, 2m−1) binary linear code, and that its Euclidean image is an M = 2m

orthogonal signal set. [Same hint as in part (a).]
(d) Show that the code C′′ consisting of the code words of C′ with the given coordinate deleted

(“punctured”) is a binary linear (2m − 1, m, 2m−1) code, and that its Euclidean image is an
M = 2m simplex signal set. [Hint: use Exercise 7 of Chapter 5.]

In Exercise 2 of Chapter 1, it was shown how a 2m-orthogonal signal set A can be constructed
as the image of a 2m × 2m binary Hadamard matrix. The corresponding 2m+1-biorthogonal
signal set ±A is identical to that constructed above from the (2m, m + 1, 2m−1) first-order RM
code.

The code dual to RM(r, m) is RM(m − r − 1, m); this can be shown by recursion from the
facts that the (1, 1) and (1, 0) codes are duals and that by bilinearity

〈(u, u + v), (u , u′ + v′)〉 = 〈u, u′〉 + 〈u + v, u′ + v′〉 = 〈u, v′〉 + 〈v, u′〉 + 〈v, v′〉,
since 〈u, u′〉 + 〈u, u′〉 = 0. In particular, this confirms that the repetition and SPC codes are
duals, and shows that the biorthogonal and extended Hamming codes are duals.

This also shows that RM codes with k/n = 1/2 are self-dual. The nominal coding gain of a
rate-1/2 RM code of length 2m (m odd) is 2(m−1)/2, which goes to infinity as m → ∞. It seems
likely that as n → ∞ this sequence of codes can achieve arbitrarily small Pr(E) for any Eb/N0
greater than the Shannon limit for ρ = 1 b/2D, namely Eb/N0 > 1 (0 dB).

� �

� �

� � � �

� � �

6.4. REED-MULLER CODES 69

Exercise 6 (generator matrices for RM codes). Let square 2m × 2m matrices Um, m ≥ 1, be
specified recursively as follows. The matrix U1 is the 2 × 2 matrix

1 0
U1 = 1 .

1

The matrix Um is the 2m × 2m matrix

Um−1 0
Um = .

Um−1 Um−1

(In other words, Um is the m-fold tensor product of U1 with itself.)
(a) Show that RM(r, m) is generated by the rows of Um of Hamming weight 2m−r or greater.

[Hint: observe that this holds for m = 1, and prove by recursion using the |u|u+ v| construction.]
For example, give a generator matrix for the (8, 4, 4) RM code.

m m(b) Show that the number of rows of Um of weight 2m−r is r . [Hint: use the fact that r
is the coefficient of zm−r in the integer polynomial (1 + z)m.]

m(c) Conclude that the dimension of RM(r, m) is k(r, m) = 0≤j≤r j .

6.4.1 Effective coding gains of RM codes

We provide below a table of the nominal spectral efficiency ρ, nominal coding gain γc, number
of nearest neighbors Nd, error coefficient per bit Kb, and estimated effective coding gain γeff at
Pb(E) ≈ 10−5 for various Reed-Muller codes, so that the student can consider these codes as
components in system design exercises.

In later lectures, we will consider trellis representations and trellis decoding of RM codes. We
give here two complexity parameters of the minimal trellises for these codes: the state complexity
s (the binary logarithm of the maximum number of states in a minimal trellis), and the branch
complexity t (the binary logarithm of the maximum number of branches per section in a minimal
trellis). The latter parameter gives a more accurate estimate of decoding complexity.

code ρ γc (dB) Nd Kb γeff (dB) s t
(8,7,2) 1.75 7/4 2.43 28 4 2.0 1 2
(8,4,4) 1.00 2 3.01 14 4 2.6 2 3

(16,15,2) 1.88 15/8 2.73 120 8 2.1 1 2
(16,11,4) 1.38 11/4 4.39 140 13 3.7 3 5
(16, 5,8) 0.63 5/2 3.98 30 6 3.5 3 4
(32,31, 2) 1.94 31/16 2.87 496 16 2.1 1 2
(32,26, 4) 1.63 13/4 5.12 1240 48 4.0 4 7
(32,16, 8) 1.00 4 6.02 620 39 4.9 6 9
(32, 6,16) 0.37 3 4.77 62 10 4.2 4 5
(64,63, 2) 1.97 63/32 2.94 2016 32 1.9 1 2
(64,57, 4) 1.78 57/16 5.52 10416 183 4.0 5 9
(64,42, 8) 1.31 21/4 7.20 11160 266 5.6 10 16
(64,22,16) 0.69 11/2 7.40 2604 118 6.0 10 14
(64, 7,32) 0.22 7/2 5.44 126 18 4.6 5 6

Table 1. Parameters of RM codes with lengths n ≤ 64.

�

� �

�

70 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

6.5 Decoding of binary block codes

In this section we will first show that with binary codes MD decoding reduces to “maximum-
reliability decoding.” We will then discuss the penalty incurred by making hard decisions and
then performing classical error-correction. We show how the penalty may be partially mitigated
by using erasures, or rather completely by using generalized minimum distance (GMD) decoding.

6.5.1 Maximum-reliability decoding

All of our performance estimates assume minimum-distance (MD) decoding. In other words,
given a received sequence r ∈ R

n, the receiver must find the signal s(x) for x ∈ C such that the
squared distance ‖r − s(x)‖2 is minimum. We will show that in the case of binary codes, MD
decoding reduces to maximum-reliability (MR) decoding.

Since ‖s(x)‖2 = nα2 is independent of x with binary constellations s(C), MD decoding is
equivalent to maximum-inner-product decoding : find the signal s(x) for x ∈ C such that the
inner product

〈r, s(x)〉 = rk s(xk)
k

is maximum. Since s(xk) = (−1)xk α, the inner product may be expressed as

〈r, s(x)〉 = α rk (−1)xk = α |rk| sgn(rk)(−1)xk

k k

The sign sgn(rk) ∈ {±1} is often regarded as a “hard decision” based on rk , indicating which of
the two possible signals {±α} is more likely in that coordinate without taking into account the
remaining coordinates. The magnitude |rk | may be viewed as the reliability of the hard decision.
This rule may thus be expressed as: find the codeword x ∈ C that maximizes the reliability

r(x | r) = |rk |(−1)e(xk ,rk),
k

where the “error” e(xk , rk) is 0 if the signs of s(xk) and rk agree, or 1 if they disagree. We call
this rule maximum-reliability decoding.

Any of these optimum decision rules is easy to implement for small constellations s(C). How-
ever, without special tricks they require at least one computation for every codeword x ∈ C, and
therefore become impractical when the number 2k of codewords becomes large. Finding simpler
decoding algorithms that give a good tradeoff of performance vs. complexity, perhaps only for
special classes of codes, has therefore been the major theme of practical coding research.

For example, the Wagner decoding rule, the earliest “soft-decision” decoding algorithm (circa
1955), is an optimum decoding rule for the special class of (n, n− 1, 2) SPC codes that requires
many fewer than 2n−1 computations.
Exercise 7 (“Wagner decoding”). Let C be an (n, n − 1, 2) SPC code. The Wagner decoding

rule is as follows. Make hard decisions on every symbol rk , and check whether the resulting
binary word is in C. If so, accept it. If not, change the hard decision in the symbol rk for which
the reliability metric |rk | is minimum. Show that the Wagner decoding rule is an optimum
decoding rule for SPC codes. [Hint: show that the Wagner rule finds the codeword x ∈ C that
maximizes r(x | r).]

6.5. DECODING OF BINARY BLOCK CODES 71

6.5.2 Hard decisions and error-correction

Early work on decoding of binary block codes assumed hard decisions on every symbol, yielding
a hard-decision n-tuple y ∈ (F2)n . The main decoding step is then to find the codeword x ∈ C
that is closest to y in Hamming space. This is called error-correction.

If C is a linear (n, k, d) code, then, since the Hamming metric is a true metric, no error can
occur when a codeword x is sent unless the number of hard decision errors t = dH (x,y) is at
least as great as half the minimum Hamming distance, t ≥ d/2. For many classes of binary
block codes, efficient algebraic error-correction algorithms exist that are guaranteed to decode
correctly provided that 2t < d. This is called bounded-distance error-correction.
Example 5 (Hamming codes). The first binary error-correction codes were the Hamming

codes (mentioned in Shannon’s original paper). A Hamming code C is a (2m − 1, 2m −m− 1, 3)
code that may be found by puncturing a (2m , 2m −m− 1, 4) extended Hamming RM(m− 2, m)
code in any coordinate. Its dual C⊥ is a (2m − 1, m, 2m−1) code whose Euclidean image is a
2m-simplex constellation. For example, the simplest Hamming code is the (3, 1, 3) repetition
code; its dual is the (3, 2, 2) SPC code, whose image is the 4-simplex constellation of Figure 1.

The generator matrix of C⊥ is an m × (2m − 1) matrix H whose 2m − 1 columns must run
through the set of all nonzero binary m-tuples in some order (else C would not be guaranteed
to correct any single error; see next paragraph).

Since d = 3, a Hamming code should be able to correct any single error. A simple method for
doing so is to compute the “syndrome”

yHT = (x + e)HT = eHT ,

where e = x + y. If yHT = 0, then y ∈ C and y is assumed to be correct. If yHT
= 0, then
the syndrome yHT is equal to one of the rows in HT , and a single error is assumed to have
occurred in the corresponding position. Thus it is always possible to change any y ∈ (F2)n into
a codeword by changing at most one bit.

This implies that the 2n−m “Hamming spheres” of radius 1 and size 2m centered on the 2n−m

codewords x, which consist of x and the n = 2m − 1 n-tuples y within Hamming distance 1 of
x, form an exhaustive partition of the set of 2n n-tuples that comprise Hamming n-space (F2)n .

In summary, Hamming codes form a “perfect” Hamming sphere-packing of (F2)n, and have a
simple single-error-correction algorithm.

We now show that even if an error-correcting decoder does optimal MD decoding in Hamming
space, there is a loss in coding gain of the order of 3 dB relative to MD Euclidean-space decoding.

Assume an (n, k, d) binary linear code C with d odd (the situation is worse when d is even).
Let x be the transmitted codeword; then there is at least one codeword at Hamming distance
d from x, and thus at least one real n-tuple in s(C) at Euclidean distance 4α2d from s(x). For
any ε > 0, a hard-decision decoding error will occur if the noise exceeds α + ε in any (d + 1)/2
of the places in which that word differs from x. Thus with hard decisions the minimum squared
distance to the decision boundary in Euclidean space is α2(d + 1)/2. (For d even, it is α2d/2.)

On the other hand, with “soft decisions” (reliability weights) and MD decoding, the minimum
squared distance to any decision boundary in Euclidean space is α2d. To the accuracy of √
the union bound estimate, the argument of the Q function thus decreases with hard-decision
decoding by a factor of (d + 1)/2d, or approximately 1/2 (−3 dB) when d is large. (When d is
even, this factor is exactly 1/2.)

� -
�

�

72 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

Example 6 (Hard and soft decoding of antipodal codes). Let C be the (2, 1, 2) binary code;
then the two signal points in s(C) are antipodal, as shown in Figure 3(a) below. With hard
decisions, real 2-space R2 is partitioned into four quadrants, which must then be assigned to one
or the other of the two signal points. Of course, two of the quadrants are assigned to the signal
points that they contain. However, no matter how the other two quadrants are assigned, there
will be at least one decision boundary at squared distance α2 from a signal point, whereas with
MD decoding the decision boundary is at distance 2α2 from both signal points. The loss in the
error exponent of Pb(E) is therefore a factor of 2 (3 dB).

� �� R0 ���R0 �� �� � �� �� R1 ���R0 �� �� � � R0� α
t ���R0α ��? �R0 R1 R0 R0�? �

6 6 �� R1 �? �R1 √ R1 R1α α �2α ��
t - t ��α α �

(a) (b)

Figure 3. Decision regions in Rn with hard decisions. (a) (2, 1, 2) code; (b) (3, 1, 3) code.

Similarly, if C is the (3, 1, 3) code, then R3 is partitioned by hard decisions into 8 octants, as
shown in Figure 3(b). In this case (the simplest example of a Hamming code), it is clear how
best to assign four octants to each signal point. The squared distance from each signal point
to the nearest decision boundary is now 2α2, compared to 3α2 with “soft decisions” and MD
decoding in Euclidean space, for a loss of 2/3 (1.76 dB) in the error exponent.

6.5.3 Erasure-and-error-correction

A decoding method halfway between hard-decision and “soft-decision” (reliability-based) tech-
niques involves the use of “erasures.” With this method, the first step of the receiver is to map
each received signal rk into one of three values, say {0, 1, ?}, where for some threshold T ,

rk → 0 if rk > T ;
rk → 1 if rk < −T ;
rk → ? if −T ≤ rk ≤ T.

The decoder subsequently tries to map the ternary-valued n-tuple into the closest codeword
x ∈ C in Hamming space, where the erased positions are ignored in measuring Hamming distance.

If there are s erased positions, then the minimum distance between codewords is at least
d−s in the unerased positions, so correct decoding is guaranteed if the number t of errors in the
unerased positions satisfies t < (d−s)/2, or equivalently if 2t+ s < d. For many classes of binary
block codes, efficient algebraic erasure-and-error-correcting algorithms exist that are guaranteed
to decode correctly if 2t + s < d. This is called bounded-distance erasure-and-error-correction.

�

73 6.5. DECODING OF BINARY BLOCK CODES

Erasure-and-error-correction may be viewed as a form of MR decoding in which all reliabilities
|rk | are made equal in the unerased positions, and are set to 0 in the erased positions.

The ternary-valued output allows a closer approximation to the optimum decision regions in
Euclidean space than with hard decisions, and therefore reduces the loss. With an optimized
threshold T , the loss is typically only about half as much (in dB).

� b t
�

? �a b
�	

6 ? ?
b �

�� a ?
t -

b

Figure 4. Decision regions with hard decisions and erasures for the (2, 1, 2) code.

Example 6 (cont.). Figure 4 shows the 9 decision regions for the (2, 1, 2) code that result from
hard decisions and/or erasures on each symbol. Three of the resulting regions are ambiguous.
The minimum squared distances to these regions are

2 a = 2(α − T)2

b2 = (α + T)2 .
√

To maximize the minimum of a2 and b2, we make a2 = b2 by choosing T = √2−1 α, which yields
2+1

8
a 2 = b2 √ α2 = 1.372α2 .

(2 + 1)2

This is about 1.38 dB better than the squared Euclidean distance α2 achieved with hard decisions
only, but is still 1.63 dB worse than the 2α2 achieved with MD decoding.
Exercise 8 (Optimum threshold T). Let C be a binary code with minimum distance d, and

let received symbols be mapped into hard decisions or erasures as above. Show that:
(a) For any integers t and s such that 2t + s ≥ d and for any decoding rule, there exists some

pattern of t errors and s erasures that will cause a decoding error;
(b) The minimum squared distance from any signal point to its decoding decision boundary is

equal to at least min2t+s≥d {s(α − T)2 + t(α + T)2};
√

(c) The value of T that maximizes this minimum squared distance is T = √2−1 α, in which
2+1

case the minimum squared distance is equal to
(
√ 4 α2d = 0.686 α2d. Again, this is a loss of

2+1)2

1.63 dB relative to the squared distance α2d that is achieved with MD decoding.

74 CHAPTER 6. INTRODUCTION TO BINARY BLOCK CODES

6.5.4 Generalized minimum distance decoding

A further step in this direction that achieves almost the same performance as MD decoding,
to the accuracy of the union bound estimate, yet still permits algebraic decoding algorithms, is
generalized minimum distance (GMD) decoding.

In GMD decoding, the decoder keeps both the hard decision sgn(rk) and the reliability |rk | of
each received symbol, and orders them in order of their reliability.

The GMD decoder then performs a series of erasure-and-error decoding trials in which the
s = d− 1, d− 3, . . . least reliable symbols are erased. (The intermediate trials are not necessary
because if d− s is even and 2t < d− s, then also 2t < d− s− 1, so the trial with one additional
erasure will find the same codeword.) The number of such trials is d/2 if d is even, or (d + 1)/2
if d is odd; i.e., the number of trials needed is �d/2�.

Each trial may produce a candidate codeword. The set of �d/2� trials may thus produce up
to �d/2� distinct candidate codewords. These words may finally be compared according to their
reliability r(x | r) (or any equivalent optimum metric), and the best candidate chosen.
Example 7. For an (n, n − 1, 2) SPC code, GMD decoding performs just one trial with

the least reliable symbol erased; the resulting candidate codeword is the unique codeword that
agrees with all unerased symbols. Therefore in this case the GMD decoding rule is equivalent
to the Wagner decoding rule (Exercise 7), which implies that it is optimum.

It can be shown that no error can occur with a GMD decoder provided that the squared norm
||n||2 of the noise vector is less than α2d; i.e., the squared distance from any signal point to its
decision boundary is α2d, just as for MD decoding. Thus there is no loss in coding gain or error
exponent compared to MD decoding.

It has been shown that for the most important classes of algebraic block codes, GMD decoding
can be performed with little more complexity than ordinary hard-decision or erasures-and-errors
decoding. Furthermore, it has been shown that not only is the error exponent of GMD decod-
ing equal to that of optimum MD decoding, but also the error coefficient and thus the union
bound estimate are the same, provided that GMD decoding is augmented to include a d-erasure-
correction trial (a purely algebraic solution of the n − k linear parity-check equations for the d
unknown erased symbols).

However, GMD decoding is a bounded-distance decoding algorithm, so its decision regions are
like spheres of squared radius α2d that lie within the MD decision regions Rj . For this reason
GMD decoding is inferior to MD decoding, typically improving over erasure-and-error-correction
by 1 dB or less. GMD decoding has rarely been used in practice.

6.5.5 Summary

In conclusion, hard decisions allow the use of efficient algebraic decoding algorithms, but incur
a significant SNR penalty, of the order of 3 dB. By using erasures, about half of this penalty
can be avoided. With GMD decoding, efficient algebraic decoding algorithms can in principle
be used with no loss in performance, at least as estimated by the the union bound estimate.

Chapter 7

Introduction to finite fields

This chapter provides an introduction to several kinds of abstract algebraic structures, partic-
ularly groups, fields, and polynomials. Our primary interest is in finite fields, i.e., fields with
a finite number of elements (also called Galois fields). In the next chapter, finite fields will be
used to develop Reed-Solomon (RS) codes, the most useful class of algebraic codes. Groups and
polynomials provide the requisite background to understand finite fields.

A field is more than just a set of elements: it is a set of elements under two operations,
called addition and multiplication, along with a set of properties governing these operations.
The addition and multiplication operations also imply inverse operations called subtraction and
division. The reader is presumably familiar with several examples of fields, such as the real field
R, the complex field C, the field of rational numbers Q, and the binary field F2.

7.1 Summary

In this section we briefly summarize the results of this chapter. The main body of the chapter
will be devoted to defining and explaining these concepts, and to proofs of these results.

For each prime p and positive integer m ≥ 1, there exists a finite field Fpm with pm elements,
mand there exists no finite field with q elements if q is not a prime power. Any two fields with p

elements are isomorphic.
The integers modulo p form a prime field Fp under mod-p addition and multiplication. The

polynomials Fp[x] over Fp modulo an irreducible polynomial g(x) ∈ Fp[x] of degree m form a
finite field with pm elements under mod-g(x) addition and multiplication. For every prime p,
there exists at least one irreducible polynomial g(x) ∈ Fp[x] of each positive degree m ≥ 1, so
all finite fields may be constructed in this way.

Under addition, Fpm is isomorphic to the vector space (Fp)m. Under multiplication, the nonzero
m−2elements of Fpm form a cyclic group {1, α, . . . , αp } generated by a primitive element α ∈ Fpm .

The elements of Fpm are the pm roots of the polynomial xpm − x ∈ Fp[x]. The polynomial
m

xp − x is the product of all monic irreducible polynomials g(x) ∈ Fp[x] such that deg g(x)
divides m. The roots of a monic irreducible polynomial g(x) ∈ Fp[x] form a cyclotomic coset of
deg g(x) elements of Fpm which is closed under the operation of raising to the pth power.

For every n that divides m, Fpm contains a subfield with pn elements.

75

76 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

For further reading on this beautiful subject, see [E. R. Berlekamp, Algebraic Coding The-
ory, Aegean Press, 1984], [R. Lidl and H. Niederreiter, Introduction to Finite Fields and their
Applications, Cambridge University Press, 1986] or [R. J. McEliece, Finite Fields for Com-
puter Scientists and Engineers, Kluwer, 1987], [M. R. Schroeder, Number Theory in Science and
Communication, Springer, 1986], or indeed any book on finite fields or algebraic coding theory.

7.2 The integers

We begin with a brief review of the familiar factorization properties of the set Z of integers. We
will use these properties immediately in our discussion of cyclic groups and their subgroups and
of prime fields. Moreover, we will model our later discussion of the factorization properties of
polynomials on the discussion here.

7.2.1 Definitions

An integer n is said to be a divisor of an integer i if i is an integer multiple of n; i.e., i = qn for
some integer q. Thus all integers are trivially divisors of 0.

The integers that have integer inverses, namely ±1, are called the units of Z. If u is a unit
and n is a divisor of i, then un is a divisor of i and n is a divisor of ui. Thus the factorization
of an integer can only be unique up to a unit u, and ui has the same divisors as i. We therefore
consider only factorizations of positive integers into products of positive integers.

Every nonzero integer i is divisible by 1 and i; these divisors are called trivial. An integer n
is said to be a factor of an integer i if n is positive and a nontrivial divisor of i. For example, 1
has no nontrivial divisors and thus no factors.

A positive integer that has no nontrivial divisors is called a prime integer.

7.2.2 Mod-n arithmetic

Given a positive integer n, every integer i may be uniquely expressed as i = qn + r for some
integer remainder r in the interval 0 ≤ r ≤ n − 1 and some integer quotient q. This may be
proved by the Euclidean division algorithm, which if i ≥ n just subtracts n from i repeatedly
until the remainder lies in the desired interval.

The remainder r, denoted by r = i mod n, is the more important part of this expression. The
set of possible mod-n remainders is the set of n integers Rn = {0, 1, . . . , n − 1}. Evidently n is
a divisor of i if and only if i mod n = 0.

Remainder arithmetic using the mod-n remainder set Rn is called “mod-n arithmetic.” The
rules for mod-n arithmetic follow from the rules for integer arithmetic as follows. Let r = i mod n
and s = j mod n; then, as integers, r = i − qn and s = j − tn for some quotients q and t. Then

r + s = i + j − (q + t)n;
2 rs = ij − (qj + ti)n + qtn .

Hence (r + s) mod n = (i + j) mod n and rs mod n = ij mod n; i.e., the mod-n remainder of
the sum or product of two integers is equal to the mod-n remainder of the sum or product of
their mod-n remainders, as integers.

7.3. GROUPS 77

The mod-n addition and multiplication rules are therefore defined as follows:

r ⊕ s = (r + s) mod n;
r ∗ s = (rs) mod n,

where “r” and “s” denote elements of the remainder set Rn on the left and the corresponding
ordinary integers on the right. This makes mod-n arithmetic consistent with ordinary integer
arithmetic in the sense expressed in the previous paragraph.

7.2.3 Unique factorization

Given a positive integer i, we may factor i into a unique product of prime factors by simply
factoring out primes no greater than i until we arrive at the quotient 1, as the reader has known
since grade school. For the time being, we will take this unique factorization property as given.
A proof will be given as an exercise after we prove the corresponding property for polynomials.

7.3 Groups

We now introduce groups.

Definition 7.1 A group is a set of elements G = {a, b, c, . . .} and an operation ⊕ for which the
following axioms hold:

• Closure: for any a ∈ G, b ∈ G, the element a ⊕ b is in G.

• Associative law: for any a, b, c ∈ G, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

• Identity: There is an identity element 0 in G for which a ⊕ 0 = 0 ⊕ a = a for all a ∈ G.

• Inverse: For each a ∈ G, there is an inverse (−a) such that a ⊕ (−a) = 0.

In general it is not necessary that a ⊕ b = b ⊕ a. A group G for which a ⊕ b = b ⊕ a for all
a, b ∈ G is called abelian or commutative. In these notes all groups will be abelian.

In view of the associative law, we may write (a⊕b)⊕c as a⊕b⊕c without ambiguity. Moreover,
in an abelian group the elements a, b, c may be written in any order.

Frequently, the operation in a group is called multiplication, usually represented either by ∗
or juxtaposition. The identity is then denoted by 1 (or e) and the inverse of a by a−1 . Additive
notation is generally used only for abelian groups, whereas multiplicative notation is used for
both abelian and nonabelian groups. Since we consider only abelian groups, we will use additive
notation when the nature of the group is unspecified.

As an example, the set of integers Z with the usual addition operation + forms an abelian
group. Also, the real field R forms an additive abelian group under ordinary addition in which
the identity is 0 and the inverse of a is −a. More interestingly, as the reader should verify,
the nonzero elements of R form a multiplicative abelian group under ordinary multiplication, in
which the identity is 1 and the inverse of a is a−1 = 1/a. We will see that every field has similar
additive and multiplicative group properties.

78 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

This example illustrates that the group structure (i.e., the properties stemming from the group
operation ⊕) may reflect only part of the structure of the given set of elements; e.g., the additive
group structure of R takes no account of the fact that real numbers may also be multiplied, and
the multiplicative group structure of R −{0} takes no account of the fact that real numbers may
also be added.

We abbreviate b ⊕ (−a) for any a, b ∈ G by b − a and regard “−” as an additional opera-
tion implicitly defined by the axioms. In an additive group, “−” is called subtraction; in a
multiplicative group, “−” is called division and denoted by / or ÷.

Because of the inverse operation, cancellation is always permissible; i.e., if x ⊕ a = y ⊕ a, we
can add −a to both sides, showing that x = y. Similarly, one can move terms from one side of
an equation to the other; i.e., x ⊕ a = y implies x = y − a.
Exercise 1 (Inverses and cancellation)
(a) Verify the following set of implications for arbitrary elements a, b of a group G which is

not necessarily abelian:

b ⊕ a = 0 ⇒ b = −a ⇒ a ⊕ b = 0 ⇒ a = −b ⇒ b ⊕ a = 0.

(b) Use this result to show that the inverse is unique, i.e., that a ⊕ b = 0 ⇒ b = −a, and
that the inverse also works on the left, i.e., b ⊕ a = 0 ⇒ b = −a. Note that this shows that
cancellation is permitted on either the right or the left.

(c) Show that the identity element is unique, i.e., that for a, b ∈ G, a ⊕ b = a ⇒ b = 0 and
b ⊕ a = a ⇒ b = 0.

= ak , then ai ⊕aj �

If G has a finite number of elements, G = {a1, a2, . . . , an}, then G is said to be finite and
|G| = n is said to be the order of G. The group operation ⊕ may then be specified by an n× n
“addition table” whose entry at row i, column j is ai ⊕ aj . The cancellation property implies
that if aj � = ai ⊕ak . This means that all elements in any row i of the addition
table are distinct; i.e., each row contains each element of G exactly once. Similarly, each column
contains each element of G exactly once. Thus the group axioms restrict the group operation ⊕
more than might be immediately evident.

7.3.1 Alternative group axioms

The property that a “row of the addition table,” namely a ⊕ G = {a ⊕ b | b ∈ G} is just the set
of elements of G in a different order (i.e., a permutation of G) is a fundamental property of any
group G. We will now show that this permutation property may be taken as one of the group
axioms. Subsequently we will use this property to prove that certain sets are groups.

Theorem 7.1 (Alternative group axioms) Let G = {a, b, c, . . .} be a set of elements on
which an operation ⊕ is defined. Then G is a group under the operation ⊕ if and only if the
following axioms hold:

• Associative law: for any a, b, c ∈ G, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

• Identity: There is an identity element 0 in G for which a ⊕ 0 = 0 ⊕ a = a for all a ∈ G.

• Permutation property: For each a ∈ G, a ⊕ G = {a ⊕ b | b ∈ G} is a permutation of G.

� �� �

7.3. GROUPS 79

Proof. (⇒) If G is a group under ⊕, then by the closure property every element a ⊕ b is in G.
Moreover, the fact that a ∈ G has an inverse −a ∈ G implies that every element b ∈ G may be
written as a⊕ (−a⊕ b) ∈ a⊕G, so every element of G is in a⊕G. Finally, from the cancellation
property, a⊕ b = a⊕ c implies b = c. Thus the correspondence between G and a⊕G defined by
b ↔ a ⊕ b is one-to-one; i.e., a permutation.

(⇐) Conversely, if a⊕G is a permutation of G for every a ∈ G, then (a) the closure property
holds; i.e., a ⊕ b ∈ G for all a, b ∈ G; (b) since 0 ∈ a ⊕ G, there must exist a unique b ∈ G such
that a⊕ b = 0, so a has a unique inverse −a = b under ⊕. Thus G is a group under ⊕.

The properties of “rows” a⊕G hold equally for “columns” G⊕ a, even when G is nonabelian.
For example, the set R ∗ of nonzero elements of the real field R form an abelian group under

real multiplication, because real multiplication is associative and commutative with identity 1,
and αR ∗ is a permutation of R ∗ for any α ∈ R ∗ .
Exercise 2 (Invertible subsets).
(a) Let H be a set of elements on which an associative operation ⊕ is defined with identity 0,

and let G be the subset of elements h ∈ H which have unique inverses −h such that h⊕−h = 0.
Show that G is a group under ⊕.

(b) Show that the nonzero elements of the complex field form a group under complex multi-
plication.

(c) Show that the set of invertible n × n real matrices forms a (nonabelian) group under real
matrix multiplication.

(d) What are the invertible elements of Z under multiplication? Do they form a group?

7.3.2 Cyclic groups

An important example of a finite abelian group is the set of remainders Rn = {0, 1, . . . , n − 1}
under mod-n addition, where n is a given positive integer. This group is called “the integers
mod n” and is denoted by Zn. Note that Z1 is the trivial group {0}.

A finite cyclic group is a finite group G with a particular element g ∈ G, called the generator,
such that each element of G can be expressed as the sum, g⊕· · ·⊕g, of some number of repetitions

1of g. Thus each element of G appears in the sequence of elements {g, g⊕ g, g⊕ g⊕ g, . . .}. We
denote such an i-fold sum by ig, where i is a positive integer and g is a group element; i.e.,

1g = g, 2g = g ⊕ g, . . . , ig = g ⊕ · · · ⊕ g, . . .
i terms

Since g generates G and G includes the identity element 0, we must have ig = 0 for some positive
integer i. Let n be the smallest such integer; thus ng = 0 and ig �= 0 for 1 ≤ i ≤ n − 1. Adding

= 0 results in (i + j)g �the sum of j g’s for any j > 0 to each side of ig � = jg. Thus the elements
{1g, 2g, . . . , ng = 0} must all be different.

1Mathematicians say also that an infinite group G = {. . . ,−1g, 0g, 1g, 2g, . . .} generated by a single element g
is cyclic; e.g., the group of integers Z is an infinite cyclic group with generator 1. Although such infinite cyclic
groups have the single-generator property of finite cyclic groups, they do not “cycle.” Hereafter, “cyclic group”
will mean “finite cyclic group.”

80 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

We can also add jg to both sides of the equality ng = 0, yielding (j + n)g = jg for any j > 0.
Thus for each i > n, ig is equal to some earlier element in the sequence, namely (i − n)g. The
elements {1g, 2g, . . . , ng = 0} therefore constitute all of the distinct elements in G, and the order
of G is |G| = n. If we define 0g to be the identity 0, then the elements of G may be conveniently
represented as G = {0g = 0, 1g, . . . , (n − 1)g}.

Figure 1 illustrates the cyclic structure of G that arises from the relation (j + n)g = jg.

0 = ng = 2ng = · · ·
r

g = (n + 1)g = · · ·
rr(n − 1)g =

(2n − 1)g = · · ·

r r 2g = (n + 2)g = · · ·

r r 3g = (n + 3)g = · · ·
r
4g = (n + 4)g = · · ·

Figure 1. The cyclic structure of a cyclic group: the sequence {1g, 2g, . . .} goes from the group
element g up to ng = 0, then returns to g and continues to cycle.

Addition in a cyclic group of order n can be understood in terms of mod-n addition. In
particular, since ng = 0, we also have 2ng = 0, 3ng = 0, etc. Since any integer i may be uniquely
written as i = qn + r where the remainder r = i mod n is in the set Rn = {0, 1, . . . , n − 1}, we
have ig = (qn)g + rg = rg, where rg = (i mod n)g is one of the elements of G. The addition
rule of G is thus as follows: for each 0 ≤ i, j < n,

ig ⊕ jg = (i + j mod n)g.

Evidently 0g is the identity, and the inverse of a nonzero element ig is (n − i)g.
We thus see that any cyclic group G of order n is essentially identical to Zn. More precisely,

the correspondence ig ∈ G ↔ i ∈ Zn is preserved under addition; i.e., ig ⊕ jg ↔ i ⊕ j for each
i, j ∈ Zn. This type of correspondence is called an isomorphism. Specifically, two finite groups
G and H are isomorphic if there exists an invertible2 function h : G → H mapping each α ∈ G
into a β = h(α) ∈ H such that h(α ⊕ α′) = h(α) ⊕ h(α′), where ⊕ denotes the group operation
of G on the left and that of H on the right. In summary:

Theorem 7.2 (Cyclic groups) The elements of a cyclic group G of order n with generator
g are {0g, 1g, 2g, . . . , (n − 1)g}. The addition rule is ig ⊕ jg = (i + j mod n)g, the identity is
0g, and the inverse of ig �= 0g is (n− i)g. Finally, G is isomorphic to Zn under the one-to-one
correspondence ig ↔ i.

Since Zn is abelian, it follows that all cyclic groups are abelian.
In multiplicative notation, the elements of a cyclic group G of order n with generator g are

1 2denoted by {g0 = 1, g , g , . . . , gn−1}, the multiplication rule is gi ∗gj = g(i+j mod n), the identity
is g0 = 1, and the inverse of g �i = 1 is gn−i. For example, if ω = e2πi/n , the set {1, ω, ω2, . . . , ωn−1}
of complex nth roots of unity is a cyclic group under complex multiplication, isomorphic to Zn.

2A function h : G → H is called invertible if for each β ∈ H there is a unique α ∈ G such that β = h(α). An
invertible function is also called a one-to-one correspondence, denoted by G ↔ H.

7.3. GROUPS 81

7.3.3 Subgroups

A subgroup S of a group G is a subset of the elements of the group such that if a, b ∈ S, then
a ⊕ b ∈ S and −a ∈ S. A subgroup S therefore includes the identity element of G and the
inverse of each element in S. The associative law holds for S since it holds for G. Therefore a
subgroup S ⊆ G is itself a group under the group operation of G.

For example, the set of integers Z is a subgroup of the additive group of R.
If G is abelian, then S must be abelian; however, S may be abelian even if G is nonabelian.
For any g ∈ G, we define the coset (translate) S ⊕ g = {s ⊕ g | s ∈ S}. The zero coset S ⊕ 0 is

thus equal to S itself; moreover, by Theorem 7.1, S ⊕ g = S whenever g ∈ S.
The following theorem states a more general result:

Lemma 7.3 (Cosets) Two cosets S ⊕ g and S ⊕ h are the same if g − h ∈ S, but are disjoint
if g − h /∈ S.

Proof. If g − h ∈ S, then the elements of S ⊕ h include (g − h) ⊕ h = g and therefore all
elements of S ⊕ g, so S ⊕ g ⊆ S ⊕ h; similarly S ⊕ h ⊆ S ⊕ g.

On the other hand, if S ⊕ g and S ⊕ h have any element in common, say s ⊕ g = s′ ⊕ h, then
g − h = s′ − s ∈ S; thus, g − h /∈ S implies that S ⊕ g and S ⊕ h are disjoint.

It follows that the distinct cosets S ⊕ g of a subgroup S ⊆ G form a disjoint partition of G,
since every element g ∈ G lies in some coset, namely S ⊕ g.

The elements s⊕g of a coset S ⊕g are all distinct, since s⊕g = s′ ⊕g implies s = s′. Therefore
if S is finite, then all cosets of S have the same size, namely the size |S| of S = S ⊕ 0. If G is
finite, G is therefore the disjoint union of a finite number |C| of cosets of S ⊆ G, each of size
|S|, so |G| = |C||S|. This proves Lagrange’s theorem:

Theorem 7.4 (Lagrange) If S is a subgroup of a finite group G, then |S| divides |G|.

7.3.4 Cyclic subgroups

Given any finite group G and any element g ∈ G, the set of elements generated by g, namely
S(g) = {g, g ⊕ g, . . .}, is a cyclic subgroup of G. The order of g is defined as the order |S(g)|
of S(g). By Lagrange’s theorem, |S(g)| divides |G|, and by the cyclic groups theorem, S(g) is
isomorphic to Z|S(g)|. (If g = 0, then S(g) = {0} and |S(g)| = 1. We will assume g �= 0.)

As a fundamental example, let G be the cyclic group Zn = {0, 1, . . . , n − 1}, and let S(m) be
the cyclic subgroup {m, 2m, . . .} generated by m ∈ Zn. Here im = m⊕· · ·⊕m is simply the sum
of m with itself i times; i.e., im ∈ G is the ordinary product im mod n. The order |S(m)| of
S(m) is the least positive integer k such that km = 0 mod n; i.e., such that the integer product
km is divisible by n. Thus km is the least common multiple of m and n, denoted lcm(m, n), and
|S(m)| = k = lcm(m, n)/m. By elementary number theory, lcm(m, n) = mn/ gcd(m, n) for any
positive integers m, n, so we may alternatively write |S(m)| = n/ gcd(m, n), where gcd(m, n)
denotes the greatest common divisor of m and n. This shows explicitly that |S(m)| divides n.

For example, suppose n = 10 and m = 4. Then S(4) = {4, 8, 2, 6, 0}. Thus |S(4)| = 5,
consistent with |S(4)| = lcm(4, 10)/4 = 20/4 or |S(4)| = 10/ gcd(4, 10)/4 = 10/2.

�

82 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Now when does S(m) = Zn? This occurs if and only if gcd(m, n) = 1; i.e., if and only if m is
relatively prime to n. In short, m generates Zn and has order |S(m)| = n if and only if m and
n are relatively prime. The number of integers in the set {0, 1, . . . , n − 1} that have order n is
called the Euler number φ(n).

For example, in Z10 the integers that are relatively prime to 10 are {1, 3, 7, 9}, so φ(10) = 4.
The order of the other elements of Z10 are as follows:

• 0 is the only element of order 1, and S(0) = {0}.
• 5 is the only element of order 2, and S(5) = {0, 5}.
• {2, 4, 6, 8} have order 5, and S(2) = S(4) = S(6) = S(8) = {0, 2, 4, 6, 8}.

In general, Zn has a cyclic subgroup Sd of order d for each positive integer d that divides n,
including 1 and n. Sd consists of {0, n/d, 2n/d, . . . , (d−1)n/d}, and is isomorphic to Zd. Sd thus
contains φ(d) elements that are relatively prime to d, each of which has order d and generates
Sd. The remaining elements of Sd belong also to smaller cyclic subgroups.

For example, Z10 has a subgroup S5 = {0, 2, 4, 6, 8} with 5 elements. Four of these elements,
namely {2, 4, 6, 8}, are relatively prime to 5 and generate S5. The remaining element of S5,
namely 0, has order 1.

Since every element of Zn has some definite order d that divides n, we have

n = φ(d). (7.1)
d: d|n

The notation d : d|n means the set of positive integers d, including 1 and n, that divide n.
All Euler numbers may be determined recursively from this expression. For example, φ(1) =
1, φ(2) = 2 − φ(1) = 1, φ(3) = 3 − φ(1) = 2, φ(4) = 4 − φ(1) − φ(2) = 2,
Exercise 3. Show that φ(n) ≥ 1 for all n ≥ 1. [Hint: Find the order of 1 in Zn.]
Since every cyclic group G of size n is isomorphic to Zn, these results apply to every cyclic

group. In particular, every cyclic group G of size n has φ(n) generators that generate G, which
are called the primitive elements of G. G also contains one cyclic subgroup of size d for each d
that divides n.
Exercise 4. Show that every subgroup of Zn is cyclic. [Hint: Let s be the smallest nonzero

element in a subgroup S ⊆ Zn, and compare S to the subgroup generated by s.]

7.4. FIELDS 83

7.4 Fields

Definition 7.2 A field is a set F of at least two elements, with two operations ⊕ and ∗, for
which the following axioms are satisfied:

• The set F forms an abelian group (whose identity is called 0) under the operation ⊕.

• The set F ∗ = F − {0} = {a ∈ F, a �= 0} forms an abelian group (whose identity is called 1)
under the operation ∗.

• Distributive law: For all a, b, c ∈ F, (a ⊕ b) ∗ c = (a ∗ c) ⊕ (b ∗ c).

The operation ⊕ is called addition (and often denoted by +), and the operation ∗ is called
multiplication (and often denoted by juxtaposition). As in ordinary arithmetic, we often omit the
parentheses around a product of elements, using the convention “multiplication before addition;”
e.g., we interpret a ⊕ b ∗ c as a ⊕ (b ∗ c).

The reader may verify that R, C, Q and F2 each form a field according to this definition under
conventional addition and multiplication.
Exercise 5. Show that for any element a ∈ F, a ∗ 0 = 0.

7.4.1 Prime fields

A fundamental example of a finite (Galois) field is the set Fp of mod-p remainders, where p is
a given prime number. Here, as in Zp, the set of elements is Rp = {0, 1, · · · , p − 1}, and the
operation ⊕ is mod-p addition. The multiplicative operation ∗ is mod-p multiplication; i.e.,
multiply integers as usual and then take the remainder after division by p.

Theorem 7.5 (Prime fields) For every prime p, the set Rp = {0, 1, · · · , p − 1} forms a field
(denoted by Fp) under mod-p addition and multiplication.

Proof. We have already seen that the elements of Fp form an abelian group under addition
modulo p, namely the cyclic group Zp.

The associative and commutative properties of multiplication mod p follow from the corre-
sponding properties of ordinary multiplication; the distributive law follows from the correspond-
ing property for ordinary addition and multiplication. The multiplicative identity is 1.

To see that the nonzero elements F ∗ = Fp − {0} form a group under multiplication, we use p
Theorem 7.1. By unique factorization, the product of two nonzero integers a, b < p cannot

∗equal 0 mod p. Therefore the nonzero elements Fp are closed under multiplication mod p. Also,
∗for a, b, c ∈ Fp and b � = 0. Thus ab �= c we have a(b − c) mod p � = ac mod p, which implies

a ∗ b �= a ∗ c. Consequently there are no zeroes or repetitions in the set of p − 1 elements
{a ∗ 1, a ∗ 2, . . . , a ∗ (p − 1)}, which means they must be a permutation of F ∗ .p

We next show that Fp is essentially the only field with p elements. More precisely, we show
that all fields with p elements are isomorphic. Two fields F and G are isomorphic if there
is an invertible function h : F → G mapping each α ∈ F into a β = h(α) ∈ G such that
h(α ⊕ α′) = h(α) ⊕ h(α′) and h(α ∗ α′) = h(α) ∗ h(α′). Less formally, F and G are isomorphic
if there is a one-to-one correspondence F ↔ G that translates the addition and multiplication
tables of F to those of G and vice versa.

� �� �

84 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Let F be any field with a prime p number of elements. By the field axioms, F has an additive
identity 0 and multiplicative identity 1. Consider the additive cyclic subgroup generated by 1,
namely S(1) = {1, 1 ⊕ 1, . . .}. By Lagrange’s theorem, the order of S(1) divides |F| = p, and
therefore must be equal to 1 or p. But 1 ⊕ 1 �= 1, else 1 = 0, so 1 must have order p. In other
words, S(1) = F, and the additive group of F is isomorphic to that of Zp. We may therefore
denote the elements of F by {0, 1, 2, . . . , p − 1}, and use mod-p addition as the addition rule.

The only remaining question is whether this correspondence F ↔ Zp under addition extends
to multiplication. The distributive law shows that it does: j ∗ i is the sum of j terms each equal
to i, so j ∗ i = (ji mod p). Therefore, in summary:

Theorem 7.6 (Prime field uniqueness) Every field F with a prime number p of elements is
isomorphic to Fp via the correspondence 1 ⊕ · · · ⊕ 1 ∈ F ↔ i ∈ Fp.

i terms

In view of this elementary isomorphism, we will denote any field with a prime number p of
elements by Fp.

It is important to note that the set Zn of integers mod n does not form a field if n is not prime.
The reason is that n = ab for some positive integers a, b < n ∈ Zn; thus ab = 0 mod n, so the
set of nonzero elements of Zn is not closed under multiplication mod n.

However, we will see shortly that there do exist finite fields with non-prime numbers of elements
that use other rules for addition and multiplication.

7.4.2 The prime subfield of a finite field

A subfield G of a field F is a subset of the field that is itself a field under the operations of F.
For example, the real field R is a subfield of the complex field C. We now show that every finite
field Fq has a subfield that is isomorphic to a prime field Fp.

Let Fq be a finite field with q elements. By the field axioms, Fq has an additive identity 0 and
a multiplicative identity 1.

Consider the cyclic subgroup of the additive group of Fq that is generated by 1, namely
S(1) = {1, 1 ⊕ 1, . . .}. Let n = |S(1)|. By the cyclic group theorem, S(1) is isomorphic to Zn,
and its elements may be denoted by {0, 1, 2, . . . , n − 1}, with mod-n addition.

By the distributive law in Fq , the product i∗j (in Fq) of two nonzero elements in S(1) is simply
the sum of ij ones, which is an element of S(1), namely ij mod n. Since this is a product of
nonzero elements of Fq , by the field axioms ij mod n must be nonzero for all nonzero i, j. This
will be true if and only if n is a prime number p.

Thus S(1) forms a subfield of Fq with a prime number p of elements. By the prime field
theorem of the previous subsection, S(1) is isomorphic to Fp. Thus the elements of S(1), which
are called the integers of Fq , may be denoted by Fp = {0, 1, . . . , p − 1}, and the addition and
multiplication rules of Fq reduce to mod-p addition and multiplication in Fp.

The prime p is called the characteristic of Fq . Since the p-fold sum of the identity 1 with itself
is 0, the p-fold sum of every field element β ∈ Fq with itself is 0: pβ = 0.

In summary:

Theorem 7.7 (Prime subfields) The integers {1, 1 ⊕ 1, . . .} of any finite field Fq form a sub-
field Fp ⊆ Fq with a prime number p of elements, where p is the characteristic of Fq .

�

7.5. POLYNOMIALS 85

7.5 Polynomials

We now consider polynomials over Fp, namely polynomials whose coefficients lie in Fp and
for which polynomial addition and multiplication is performed in Fp. We will see that the
factorization properties of polynomials are similar to those of the integers, and that the analogue
to mod-n arithmetic is arithmetic modulo a polynomial f (x).

A nonzero polynomial f (x) of degree m over a field F is an expression of the form

mf (x) = f0 + f1x + f2x 2 + · · · + fmx ,

where fi ∈ F, 0 ≤ i ≤ m, and fm �= 0. We say that deg f (x) = m. The symbol x represents
an indeterminate (or “placeholder”), not an element of F; i.e., two polynomials are different if
and only if their coefficients are different3 . The nonzero polynomials of degree 0 are simply the
nonzero field elements f0 ∈ F. There is also a special zero polynomial f (x) = 0 whose degree
is defined by convention as deg 0 = −∞; we will explain the reason for this convention shortly.
The set of all polynomials over F in an indeterminate x is denoted by F[x].

The rules for adding, subtracting or multiplying polynomials are the same over a general field
F as over the real field R, except that coefficient operations are in F. In particular, addition and
subtraction are performed componentwise. For multiplication, the coefficients of a polynomial
product f (x) = h(x)g(x) are determined by convolution:

i

fi = hj gi−j .
j=0

If two nonzero polynomials are multiplied, then their degrees add; i.e., deg(h(x)g(x)) =
deg h(x) + deg g(x). The convention deg 0 = −∞ ensures that this formula continues to hold
when h(x) or g(x) is the zero polynomial.

The set F[x] has many of the properties of a field. It is evidently an abelian group under
addition whose identity is the zero polynomial 0 ∈ F[x]. It is closed under multiplication, which
is both associative and commutative and which distributes over addition. It has a multiplicative
identity 1 ∈ F[x], and the cancellation law holds.

However, in general we cannot divide evenly by a nonzero polynomial, since a polynomial f (x)
with deg f (x) > 0 has no multiplicative inverse. Therefore F[x] is a ring, 4 not a field, like the
ring of integers Z. We now develop a series of properties of F[x] that resemble those of Z.

3Over the real field R, a polynomial f (x) is sometimes regarded as a function f : R → R. This alternative
viewpoint makes little difference in the real case, since two polynomials over R are different if and only if the
corresponding polynomial functions are different. However, over finite fields it is important to maintain the
distinction. For example, over F2 the polynomial functions x and x 2 both map 0 → 0, 1 → 1, yet the polynomials
x and x 2 are different.

4The axioms of a ring are similar to those for a field, except that there is no multiplicative inverse. For example,
Z and Zn (for n not a prime) are rings. In fact, Z and F[x] are integer domains, which are the nicest kind of
rings. An integer domain is a ring with commutative multiplication and a multiplicative identity 1 such that the
nonzero elements are closed under multiplication.

Exercise 6. Show that an integer domain with a finite number of elements must be a finite field. [Hint:
consider its cyclic multiplicative subgroups.]

86 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

7.5.1 Definitions

A polynomial g(x) is said to be a divisor of an polynomial f(x) if f(x) is a polynomial multiple
of g(x); i.e., f(x) = q(x)g(x) for some polynomial q(x). Thus all polynomials are trivially
divisors of the zero polynomial 0.

The polynomials that have polynomial inverses are the nonzero degree-0 polynomials β ∈ F ∗ =
F − {0}. These are called the units of F[x]. If u(x) is a unit polynomial and g(x) is a divisor of
f(x), then u(x)g(x) is a divisor of f(x) and g(x) is a divisor of u(x)f(x). Thus the factorization
of a polynomial can be unique only up to a unit polynomial u(x), and u(x)f(x) has the same
divisors as f(x).

A monic polynomial is a nonzero polynomial f(x) of degree m with high-order coefficient fm
equal to 1; i.e., f(x) = f0 + f1x + f2x

2 + · · · + xm . Every nonzero polynomial g(x) may be
written as the product g(x) = gmf(x) of a monic polynomial f(x) of the same degree with a unit
polynomial u(x) = gm, and the product of two monic polynomials is monic. We may therefore
consider only factorizations of monic polynomials into products of monic polynomials.

Every nonzero polynomial f(x) is divisible by 1 and f(x); these divisors are called trivial. A
polynomial g(x) is said to be a factor of a polynomial f(x) if g(x) is monic and a nontrivial
divisor of f(x). Thus the degree of any factor g(x) of f(x) satisfies 1 ≤ deg g(x) < deg f(x).

A polynomial g(x) of degree 1 or more that has no factors is called an irreducible polynomial,
and a monic irreducible polynomial is called a prime polynomial. Our goal now is to show that
every monic polynomial has a unique factorization into prime polynomial factors.

7.5.2 Mod-g(x) arithmetic

Given a monic polynomial g(x) of degree m, every polynomial f(x) may be expressed as f(x) =
q(x)g(x)+r(x) for some polynomial remainder r(x) such that deg r(x) < m and some polynomial
quotient q(x). This may be proved by the Euclidean long division algorithm of high school, with
component operations in F; i.e., divide g(x) into f(x) by long division, high-degree terms first,
stopping when the degree of the remainder is less than that of g(x). The following exercise
shows that the resulting quotient q(x) and remainder r(x) are unique.
Exercise 7 (Euclidean division algorithm).
(a) For the set F[x] of polynomials over any field F, show that the distributive law holds:

(f1(x) + f2(x))h(x) = f1(x)h(x) + f2(x)h(x).
(b) Use the distributive law to show that for any given f(x) and g(x) in F[x], there is a unique

q(x) and r(x) with deg r(x) < deg g(x) such that f(x) = q(x)g(x) + r(x).
The remainder polynomial r(x), denoted by r(x) = f(x) mod g(x), is the more important

part of this decomposition. The set of all possible remainder polynomials is the set RF,m =
{r0 + r1x + · · · + rm−1x

m−1 | rj ∈ F, 0 ≤ j ≤ m − 1}, whose size is |RF,m| = |F|m . Evidently
g(x) is a divisor of f(x) if and only if f(x) mod g(x) = 0.

Remainder arithmetic using the remainder set RF,m is called “mod-g(x) arithmetic.” The
rules for mod-g(x) arithmetic follow from the rules for polynomial arithmetic as follows. Let
r(x) = f(x) mod g(x) and s(x) = h(x) mod g(x); then, as polynomials, r(x) = f(x) − q(x)g(x)
and s(x) = h(x) − t(x)g(x) for some quotient polynomials q(x) and t(x). Then

�

7.5. POLYNOMIALS 87

f(x) + h(x) = r(x) + s(x) − (q(x) + t(x))g(x);
f(x)h(x) = r(x)s(x) − (q(x)s(x) + t(x)r(x))g(x) + q(x)t(x)g 2(x).

Hence (f(x) + h(x)) mod g(x) = (r(x) + s(x)) mod g(x) and f(x)h(x) mod g(x) = r(x)s(x)
mod g(x). In other words, the mod-g(x) remainder of the sum or product of two polynomials is
equal to the mod-g(x) remainder of the sum or product of their mod-g(x) remainders.

The mod-g(x) addition and multiplication rules are therefore defined as follows:

r(x) ⊕ s(x) = (r(x) + s(x)) mod g(x);
r(x) ∗ s(x) = (r(x)s(x)) mod g(x),

where “r(x)” and “s(x)” denote elements of the remainder set RF,m on the left and the corre-
sponding ordinary polynomials on the right. This makes mod-g(x) arithmetic consistent with
ordinary polynomial arithmetic in the sense of the previous paragraph.

Note that the mod-g(x) addition rule is just componentwise addition of coefficients in F. In this
sense the additive groups of RF,m and of the vector space Fm of m-tuples over F are isomorphic.

7.5.3 Unique factorization

By definition, every monic polynomial f(x) is either irreducible or can be factored into a product
of monic polynomial factors, each of lower degree. In turn, if a factor is not irreducible, it can
be factored further. Since factor degrees are decreasing but bounded below by 1, we must
eventually arrive at a product of monic irreducible (prime) polynomials. The following theorem
shows that there is only one such set of prime polynomial factors, regardless of the order in
which the polynomial is factored.

Theorem 7.8 (Unique factorization of polynomials) Over any field F, every monic poly-
nomial f(x) ∈ F[x] of degree m ≥ 1 may be written in the form

k

f(x) = ai(x),
i=1

where each ai(x), 1 ≤ i ≤ k, is a prime polynomial in F[x]. This factorization is unique, up to
the order of the factors.

Proof. We have already shown that f(x) may be factored in this way, so we need only prove
uniqueness. Thus assume hypothetically that the theorem is false and let m be the smallest
degree such that there exists a degree-m monic polynomial f(x) with more than one such
factorization,

f(x) = a1(x) · · · ak (x) = b1(x) · · · bj (x); j, k ≥ 1, (7.2)

where a1(x), . . . , ak (x) and b1(x), . . . , bj (x) are prime polynomials. We will show that this implies
a polynomial f ′(x) with degree less than m with non-unique factorization, and this contradiction
will prove the theorem. Now a1(x) cannot appear on the right side of (7.2), else it could be
factored out for an immediate contradiction. Similarly, b1(x) cannot appear on the left. Without
loss of generality, assume deg b1(x) ≤ deg a1(x). By the Euclidean division algorithm, a1(x) =
q(x)b1(x) + r(x). Since a1(x) is irreducible, r(x) �= 0 and 0 ≤ deg r(x) < deg b1(x) ≤ deg a1(x).

88 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Thus r(x) has a prime factorization r(x) = βr1(x) · · · rn(x), where β is the high-order coefficient
of r(x), and b1(x) is not a divisor of any of the ri(x), since it has greater degree. Substituting
into (7.2), we have

(q(x)b1(x) + βr1(x) · · · rn(x))a2(x) · · · ak(x) = b1(x) · · · bj (x),

or, defining f ′(x) = r1(x) · · · rn(x)a2(x) · · · ak (x) and rearranging terms,

f ′(x) = r1(x) · · · rn(x)a2(x) · · · ak (x) = β−1b1(x)(b2(x) · · · bj (x) − q(x)a2(x) · · · ak (x)).

Now f ′(x) is monic, because it is a product of monic polynomials; it has degree less than f(x),
since deg r(x) < deg a1(x); and it has two different factorizations, with b1(x) a factor in one but
not a divisor of any of the factors in the other; contradiction.
Exercise 8. Following this proof, prove unique factorization for the integers Z.

7.5.4 Enumerating prime polynomials

The prime polynomials in F[x] are analogous to the prime numbers in Z. One way to enumerate
the prime polynomials is to use an analogue of the sieve of Eratosthenes. For integers, this
method goes as follows: Start with a list of all integers greater than 1. The first integer on the
list is 2, which is prime. Erase all multiples of 2 (even integers). The next remaining integer
is 3, which must be the next prime. Erase all multiples of 3. The next remaining integer is 5,
which must be the next prime. Erase all multiples of 5. And so forth.

Similarly, to find the prime polynomials in F2[x], for example, first list all polynomials of degree
1 or more in F2[x] in order of degree. (Note that all nonzero polynomials in F2[x] are monic.)
No degree-1 polynomial can have a factor, so the two degree-1 polynomials, x and x + 1, are
both prime. Next, erase all degree-2 multiples of x and x + 1, namely

x 2 = x ∗ x;
x 2 + x = x ∗ (x + 1);
x 2 + 1 = (x + 1) ∗ (x + 1)

from the list of four degree-2 polynomials. This leaves one prime degree-2 polynomial, namely
x2 + x + 1. Next, erase all degree-3 multiples of x, x + 1, and x2 + x + 1 from the list of eight
degree-3 polynomials, namely the six polynomials

x 3 = x ∗ x ∗ x;
2 x 3 + x = (x + 1) ∗ x ∗ x;

x 3 + x = (x + 1) ∗ (x + 1) ∗ x;
x 3 + x 2 + x = x ∗ (x 2 + x + 1);

x 3 + 1 = (x + 1) ∗ (x 2 + x + 1);
x 3 + x 2 + x + 1 = (x + 1) ∗ (x + 1) ∗ (x + 1).

The remaining two polynomials, namely x3 + x2 + 1 and x3 + x + 1, must therefore be prime.
Exercise 9. Find all prime polynomials in F2[x] of degrees 4 and 5. [Hint: There are three

prime polynomials in F2[x] of degree 4 and six of degree 5.]
Continuing in this way, we may list all prime polynomials in F2[x] up to any desired degree.

7.6. A CONSTRUCTION OF A FIELD WITH PM ELEMENTS 89

It turns out that the number N(m) of prime polynomials of F2[x] of degree m is N(m) =
2, 1, 2, 3, 6, 9, 18, 30, 56, 99, . . . for m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, (In Section 7.9 we will give a
simpler method to compute N(m), and will show that N(m) > 0 for all m.)

A similar sieve algorithm may be used to find the prime polynomials in F[x] over any finite
field F. The algorithm starts with a listing of the monic polynomials ordered by degree, and
successively erases the multiples of lower-degree prime polynomials.

7.6 A construction of a field with pm elements

We now show how to construct a field with pm elements for any prime integer p and positive
integer m ≥ 1. Its elements will be the set RF,m of remainder polynomials of degree less than m,
and multiplication will be defined modulo an irreducible polynomial g(x) of degree m. We will
subsequently show that that every finite field is isomorphic to a finite field that is constructed
in this way.

The construction assumes the existence of a prime polynomial g(x) ∈ Fp[x] of degree m. The
proof that such a polynomial exists for all prime p and m ≥ 1 will be deferred until later. The
field that we construct will be denoted by Fg(x).

The set of elements of Fg(x) will be taken to be the mod-g(x) remainder set RFp,m = {r0 +
mr1x + · · · + rm−1x

m−1 | rj ∈ Fp, 0 ≤ j ≤ m − 1}, whose size is |RFp,m| = p .
The addition and multiplication rules will be taken to be those of mod-g(x) arithmetic. We

must show that the axioms of a field are satisfied with these definitions.
The associative, commutative and distributive laws for mod-g(x) arithmetic follow from the

corresponding laws for ordinary polynomial arithmetic.
Mod-g(x) addition of two remainder polynomials in Fg(x) yields a remainder polynomial of

degree < m in Fg(x). Fg(x) evidently forms an abelian group under mod-g(x) addition. (As
already mentioned, this group is isomorphic to the additive group of (Fp)m.)

Mod-g(x) multiplication of two remainder polynomials r(x), s(x) yields the remainder polyno-
mial t(x) = r(x)s(x) mod g(x). The following exercise shows that the nonzero elements of Fg(x)
form an abelian group under mod-g(x) multiplication:
Exercise 10. Let g(x) be a prime polynomial of degree m, and let r(x), s(x), t(x) be polyno-

mials in Fg(x).
(a) Prove the distributive law, i.e., (r(x)+ s(x)) ∗t(x) = r(x) ∗t(x)+ s(x) ∗t(x). [Hint: Express

each product as a remainder using the Euclidean division algorithm.]
= 0, show that r(x) ∗ s(x) � = t(x).(b) For r(x) � = r(x) ∗ t(x) if s(x) �

(c) For r(x) �= 0, show that as s(x) runs through all nonzero polynomials in Fg(x), the product
r(x) ∗ s(x) also runs through all nonzero polynomials in Fg(x).

(d) Using part (c) and Theorem 7.1, show that the nonzero elements of Fg(x) form an abelian
group under mod-g(x) multiplication.

Since we have verified the three field axioms, we have proved:

Theorem 7.9 (Construction of Fg(x)) If g(x) is an prime polynomial of degree m over a
prime field Fp, then the set of remainder polynomials RFp,m with mod-g(x) arithmetic forms a
finite field Fg(x) with pm elements.

90 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Example 1. Let us construct a finite field with 22 = 4 elements using the prime degree-2
polynomial g(x) = x2 + x + 1 ∈ F2[x].

There are four remainder polynomials mod x2 + x + 1, namely {0, 1, x, x + 1}. Addition is
componentwise mod 2. For multiplication, note that x∗x = x+1 since x2 mod (x2 +x+1) = x+1.
Also x ∗ x ∗ x = x ∗ (x + 1) = 1 since x3 mod (x2 + x + 1) = 1. The three nonzero elements
{1, x, x + 1} thus form a cyclic group under mod-g(x) multiplication, which verifies the second
field axiom for this example.

The complete mod-g(x) addition and multiplication tables are as follows:

⊕ 0 1 x x + 1 ∗ 0 1 x x + 1
0 0 1 x x + 1 0 0 0 0 0
1 1 0 x + 1 x 1 0 1 x x + 1
x x x + 1 0 1 x 0 x x + 1 1

x + 1 x + 1 x 1 0 1 + x 0 x + 1 1 x

∗7.7 The multiplicative group of Fq is cyclic

In this section we consider an arbitrary finite field Fq with q elements. By the second field axiom,
the set F ∗ of all q − 1 nonzero elements must form a finite abelian group under multiplication. q
In this section we will show that this group is actually cyclic.

∗We start by showing that every element of Fq is a root of the polynomial xq−1 − 1 ∈ Fq [x].
Thus we first need to discuss roots of polynomials over arbitrary fields.

7.7.1 Roots of polynomials

Let F[x] be the set of polynomials over an arbitrary field F. If f(x) ∈ F[x] has a degree-1 factor
x − α for some α ∈ F, then α is called a root of f(x).

Since any f(x) may be uniquely expressed as f(x) = q(x)(x−α)+β for some quotient q(x) and
some β ∈ F (i.e., for some remainder r(x) = β of degree less than 1), it follows that f(α) = β.
Therefore α is a root of f(x) if and only if f(α) = 0 — i.e., if and only if α is a root of the
polynomial equation f(x) = 0.

By degree additivity, the degree of a polynomial f(x) is equal to the sum of the degrees of
its prime factors, which are unique by unique factorization. Therefore a polynomial of degree
m can have at most m degree-1 factors. This yields what is sometimes called the fundamental
theorem of algebra:

Theorem 7.10 (Fundamental theorem of algebra) Over any field F, a monic polynomial
f(x) ∈ F[x] of degree m can have no more than m roots in F. If it does have m roots {β1, . . . , βm},
then the unique factorization of f(x) is f(x) = (x − β1) · · · (x − βm).

Since the polynomial xn − 1 can have at most n roots in F, we have an important corollary:

Theorem 7.11 (Cyclic multiplicative subgroups) In any field F, the multiplicative group
∗ F of nonzero elements has at most one cyclic subgroup of any given order n. If such a subgroup

exists, then its elements {1, β, . . . , βn−1} satisfy

x n − 1 = (x − 1)(x − β) · · · (x − βn−1).

� �

�

�

91 ∗7.7. THE MULTIPLICATIVE GROUP OF FQ IS CYCLIC

For example, the complex multiplicative group C ∗ has precisely one cyclic subgroup of each
finite size n, consisting of the n complex nth roots of unity. The real multiplicative group R ∗

has cyclic subgroups of size 1 ({1}) and 2 ({±1}), but none of any larger size.
Exercise 11. For 1 ≤ j ≤ n, the jth elementary symmetric function σj (S) of a set S of n

nelements of a field F is the sum of all products of j distinct elements of S. In particular, j
σ1(S) is the sum of all elements of S, and σn(S) is the product of all elements of S.

∗(a) Show that if S = {1, β, . . . , βn−1} is a cyclic subgroup of F , then σj (S) = 0 for 1 ≤ j ≤ n−1
and σn(S) = (−1)n+1. In particular,

n−1 n−1 � �
βj = 0, if n > 1; βj = (−1)n+1 .

j=0 j=0

Verify for S = {±1,±i} (the four complex 4th roots of unity).
(b) Prove that for any odd prime integer p,

(p − 1)! = 1 · 2 · 3 · · · (p − 1) = −1 mod p.

Verify for p = 3, 5 and 7.

7.7.2 Factoring xq − x over Fq

∗ ∗For any β ∈ Fq , consider the cyclic subgroup S(β) = {1, β, β2, β3 , . . .} of F generated by β.q
The size |S(β)| of this subgroup is called the multiplicative order of β.

By the cyclic group theorem, β|S(β)| = 1, and by Lagrange’s theorem, |S(β)| must divide
∗ ∗|F | = q − 1. It follows that βq−1 = 1 for all β ∈ Fq .q

∗In other words, every β ∈ Fq is a root of the polynomial equation xq−1 = 1, or equivalently
of the polynomial xq−1 − 1 ∈ Fq [x]. By the polynomial roots theorem, xq−1 − 1 can have at
most q − 1 roots in Fq , so these are all the roots of xq−1 − 1. Thus xq−1 − 1 factors into the

∗product of the degree-1 polynomials x− β for all β ∈ Fq . Moreover, since 0 ∈ Fq is a root of the
polynomial x and x(xq−1 − 1) = xq − x, the polynomial xq − x factors into the product of the
degree-1 polynomials x − β for all β ∈ Fq .

To summarize:

Theorem 7.12 In a finite field Fq with q elements, every nonzero field element β ∈ Fq satisfies
βq−1 = 1 and has a multiplicative order |S(β)| that divides q − 1. The nonzero elements of Fq
are the q − 1 distinct roots of the polynomial xq−1 − 1 ∈ Fq [x]; i.e.,

xq−1 − 1 = (x − β). (7.3)
β∈F∗

q

The elements of Fq are the q distinct roots of the polynomial xq − x ∈ Fq [x]; i.e.,

xq − x = (x − β). (7.4)
β∈Fq

Exercise 12.
(a) Verify (7.3) for the prime field F5.
(b) Verify (7.3) for the field F4 that was constructed in Example 1. [Hint: use a symbol other

than x for the indeterminate in (7.3).]

�

�

92 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

7.7.3 Every finite field has a primitive element

A primitive element of a finite field Fq is an element α whose multiplicative order |S(α)| equals
−2q − 1. If α is a primitive element, then the cyclic group {1, α, α2, . . . , αq } is a set of q − 1

distinct nonzero elements of Fq, which therefore must be all the nonzero elements. Thus if we can
show that Fq has at least one primitive element, we will have shown that its nonzero elements
∗ Fq form a cyclic group under multiplication of size q − 1.
By Lagrange’s theorem, the multiplicative order |S(β)| of each nonzero element β ∈ F ∗ dividesq ∗ q − 1. Therefore the size d of each cyclic subgroup of Fq divides q − 1. As we have seen, the

number of elements in a cyclic group or subgroup of size d that have order d is the Euler number
∗φ(d). Since by the cyclic subgroups theorem Fq has at most one cyclic subgroup of each size d,

the number of elements in F ∗ with order less than q − 1 is at most q

φ(d).
d: d|(q−1), d�=q−1

But since the Euler numbers satisfy the relationship (7.1), which in this case is

q − 1 = φ(d),
d: d|(q−1)

∗we conclude that there must be at least φ(q − 1) elements of Fq with order q − 1. Indeed, since
∗ F has at most φ(q − 1) elements of order q − 1, all inequalities must be satisfied with equality; q ∗i.e., Fq has precisely φ(d) elements of order d for each divisor d of q − 1.
We saw in Exercise 3 that φ(q − 1) ≥ 1, so a primitive element α of order q − 1 exists. Thus
∗ Fq is cyclic and has one cyclic subgroup of each order d that divides q − 1. This proves the

following theorem:

Theorem 7.13 (Primitive elements) Given any field Fq with q elements, the nonzero ele-
−2 ∗ments of Fq form a multiplicative cyclic group F ∗ = {1, α, α2, . . . , αq }. Consequently Fq hasq

φ(d) ≥ 1 elements of multiplicative order d for every d that divides q − 1, and no elements of
∗any other order. In particular, Fq has φ(q − 1) ≥ 1 primitive elements.

−2Henceforth we will usually write the elements of a finite field Fq as {0, 1, α, α2, . . . , αq }, where
α denotes a primitive element. For Fg(x), denoting a field element β as a power of α rather than
as a remainder polynomial helps to avoid confusion when we consider polynomials in β.
Example 2. The prime field F5 has φ(1) = 1 element of order 1 (the element 1), φ(2) = 1

element of order 2 (namely 4 = -1), and φ(4) = 2 primitive elements of order 4 (namely, 2 and
3). We can therefore write F5 = {0, 1, 2, 22 , 23}, since 22 = 4 and 23 = 3 mod 5.
Example 3. A field F16 = {0, 1, α, . . . , α14} with 16 elements has

• φ(1) = 1 element of order 1 (the element 1);

• φ(3) = 2 elements of order 3 (α5 and α10);

• φ(5) = 4 elements of order 5 (α3, α6, α9, α12), and

• φ(15) = 8 primitive elements of order 15 (α, α2, α4, α7, α8, α11, α13, α14).

�

� �

�

7.8. EVERY FINITE FIELD IS ISOMORPHIC TO A FIELD FG(X) 93

The “logarithmic” representation of the nonzero elements of Fq as distinct powers of a primitive
element α is obviously highly convenient for multiplication and division. Multiplication in Fq is
often carried out by using such a “log table” to convert a polynomial f(x) ∈ Fq to the exponent
i such that f(x) = αi, and then using an inverse “antilog table” to convert back after adding or
subtracting exponents. (Note that the zero element can be included in this scheme if we define
0 = α−∞.)

7.8 Every finite field is isomorphic to a field Fg(x)

We now wish to show that every finite field Fq is isomorphic to a field Fg(x) of the type that
we have previously constructed. In particular, this will show that the number of elements of a
finite field must be q = pm, a prime power.

The development relies on the properties of minimal polynomials, which are the factors that
appear in the unique factorization of xq − x over the prime subfield Fp of Fq .

7.8.1 Factoring xq − x into minimal polynomials over Fp

Again, consider any field Fq with q elements. We have seen in Theorem 7.12 that the polynomial
xq − x ∈ Fq [x] factors completely into q deqree-1 factors x − β ∈ Fq [x], β ∈ Fq .

We have also seen that if Fq has characteristic p, then Fq has a prime subfield Fp with p
elements. The prime subfield Fp contains the integers of Fq , which include {0,±1}. Therefore
we may regard xq − x alternatively as a polynomial in Fp[x].

By unique factorization, xq − x factors over Fp into a unique product of prime polynomials
gi(x) ∈ Fp[x]:

xq − x = gi(x). (7.5)
i

Since each coefficient of gi(x) is an element of Fp ⊆ Fq , it is also an element of Fq , so gi(x) is
also a monic polynomial in Fq [x]. We therefore have the following two factorizations of xq − x
in Fq [x]:

xq − x = (x − β) = gi(x). (7.6)
β∈Fq i

Since the first factorization is the unique prime factorization, it follows that each monic polyno-
mial gi(x) of degree greater than 1 must be reducible over Fq , and must factor into a product
of degree-1 monic polynomials; i.e.,

deg gi(x)

gi(x) = (x − βij). (7.7)
j=1

The prime polynomials gi(x) are called the minimal polynomials of Fq . Since each β ∈ Fq
appears exactly once on the left side of (7.6), it also appears as a factor in exactly one minimal
polynomial in (7.7). Thus the elements of Fq are partitioned into disjoint sets {βi1, . . . , βik}
where k = deg gi(x), and each β ∈ Fq is a root of exactly one minimal polynomial of Fq , called
the minimal polynomial of β.

The key property of the minimal polynomial of β is the following:

�

�

94 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Lemma 7.14 Let g(x) be the minimal polynomial of any given β ∈ Fq . Then g(x) is the monic
polynomial of least degree in Fp[x] such that g(β) = 0. Moreover, for any f(x) ∈ Fp[x], f(β) = 0
if and only if g(x) divides f(x).

Proof: Let h(x) ∈ Fp[x] be a monic polynomial of least degree such that h(β) = 0. Using
the Euclidean division algorithm, g(x) = q(x)h(x) + r(x) where deg r(x) < deg h(x). Since
h(β) = g(β) = 0, we must have r(β) = 0. By the smallest degree property of h(x), this implies
that r(x) = 0, so h(x) divides g(x). But since g(x) is irreducible, h(x) cannot have degree less
than g(x); i.e., deg h(x) = deg g(x). Moreover, since both h(x) and g(x) are monic, this implies
that h(x) = g(x). Thus g(x) is the monic polynomial of least degree in Fp[x] such that g(β) = 0.

Now let f(x) be any polynomial in Fp[x] that satisfies f(β) = 0. By Euclidean division, f(x) =
q(x)g(x) + r(x) with deg r(x) < deg g(x). Thus r(β) = f(β) = 0. Since deg r(x) < deg g(x),
r(β) = 0 if and only if r(x) = 0; i.e., if and only if g(x) divides f(x).
Example 1 (cont.). Again consider the field F4 of Example 1, whose elements we now write

as {0, 1, α, α2}, where α may be taken as x or x + 1. This field has characteristic 2. The prime
factorization of the binary polynomial x4 − x = x4 + x ∈ F2[x] is

x 4 + x = x(x + 1)(x 2 + x + 1),

so the minimal polynomials of F4 are x, x + 1 and x2 + x + 1. The elements 0 and 1 ∈ F4 are
the roots of x and x + 1, respectively. From (7.7), the other two elements of F4, namely α and
α2, must be roots of x2 + x + 1 ∈ F2[x]. We verify that

x 2 + x + 1 = (x + α)(x + α2)

since α + α2 = 1 and α ∗ α2 = α3 = 1.

7.8.2 Valuation maps, minimal polynomials and subfields

Given a field Fq with prime subfield Fp, we now consider evaluating a nonzero polynomial
f(x) = fix

i ∈ Fp[x] at an element β ∈ Fq to give a value i

deg f (x)

f(β) = fiβ
i

i=0

in Fq , where fi is taken as an element of Fq for the purposes of this evaluation. The value of the
zero polynomial at any β is 0.

The value f(β) depends on both the polynomial f(x) and the field element β ∈ Fq . Rather than
regarding f(β) as a function of β, as the notation suggests, we will regard f(β) as a function of
the polynomial f(x) ∈ Fp[x] for a fixed β. In other words, we consider the map mβ : Fp[x] → Fq
that is defined by mβ (f(x)) = f(β).

The set of values mβ (Fp[x]) of this map as f(x) ranges over polynomials in Fp[x] is by definition
the subset of elements Gβ ⊆ Fq that can be expressed as linear combinations over Fp of powers of
β. We will show that Gβ forms a subfield of Fq that is isomorphic to the polynomial remainder
field Fg(x), where g(x) is the minimal polynomial of β, namely the monic polynomial of least
degree such that g(β) = 0.

�

7.8. EVERY FINITE FIELD IS ISOMORPHIC TO A FIELD FG(X) 95

We observe that the map mβ : Fp[x] → Fq preserves addition and multiplication; i.e.,
mβ (f1(x) + f2(x)) = mβ (f1(x)) + mβ (f2(x)) since both sides equal f1(β) + f2(β), and
mβ (f1(x)f2(x)) = mβ (f1(x))mβ (f2(x)) since both sides equal f1(β)f2(β).

We can now prove the desired isomorphism between the fields Fg(x) and Gβ :

Theorem 7.15 (Subfields generated by β ∈ Fq) For any β ∈ Fq , let g(x) be the minimal
polynomial of β. Then the set of all linear combinations Gβ = {f(β) = fiβ

i, f(x) ∈ Fp[x]}i
over Fp of powers of β is equal to the set {r(β), r(x) ∈ RFp,m} of values of remainder polynomials
r(x) ∈ RFp,m, and Gβ is a field which is isomorphic to the field Fg(x) under the correspondence
r(β) ∈ Gβ ↔ r(x) ∈ RFp,m.

Proof. We first verify that the correspondence mβ : RFp,m → Gβ is one-to-one (invertible).
First, if f(β) is any element of Gβ , then by Euclidean division we can write f(x) = q(x)g(x)+r(x)
where r(x) ∈ RFp,m, and then f(β) = q(β)g(β)+r(β) = r(β), so f(β) = r(β) for some remainder
polynomial r(x). Thus mβ (RFp,m) = mβ (Fp[x]) = Gβ . On the other hand, no two remainder
polynomials r(x), s(x) with degrees less than m can evaluate to the same element of Gβ , because
if r(β) = s(β), then r(x) − s(x) is a nonzero polynomial of degree less than g(x) that evaluates
to 0, contradiction.

Now, as we have already seen, mβ (r(x) + s(x)) = mβ (r(x)) + mβ (s(x)) and mβ (r(x)s(x)) =
mβ (r(x))mβ (s(x)), which verifies that this correspondence is an isomorphism.

We remark that Gβ may be viewed as the smallest subfield of Fq containing the element β,
because any subfield containing β must also contain all powers of β and all linear combinations
of powers over Fp.

7.8.3 Isomorphism theorems

We have shown that every finite field Fq contains a primitive element α. In this case, the subfield
Gα consisting of all linear combinations over Fp of powers of α must evidently be the whole field
Fq . Thus we obtain our main theorem:

Theorem 7.16 (Every finite field is isomorphic to a field Fg(x)) Every finite field Fq of
characteristic p with q elements is isomorphic to a polynomial remainder field Fg(x), where g(x)
is a prime polynomial in Fp[x] of degree m. Hence q = pm for some positive integer m.

Exercise 13. For which integers q, 1 ≤ q ≤ 12, does a finite field Fq exist?
Finally, we wish to show that all fields with pm elements are isomorphic. The following lemma

shows that every prime polynomial g(x) of degree m (we are still assuming that there exists at
least one) is a minimal polynomial of every field with pm elements:

Lemma 7.17 Every prime polynomial g(x) ∈ Fp[x] of degree m divides xpm − x.

Proof. If g(x) is a prime polynomial in Fp[x] of degree m, then the set RFp,m with mod-g(x)
arithmetic forms a field Fg(x) with pm elements. The remainder polynomial x ∈ RFp,m is a field
element β ∈ Fg(x). Evidently g(β) = 0, but r(β) �= 0 if deg r(x) < m; therefore g(x) is the

m−1minimal polynomial of β. Since βp = 1, β is a root of xpm−1 − 1. This implies that g(x)
m

divides xpm−1 − 1, and thus also xp − x.

�

� � � �

� �

�

96 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Consequently every field of size pm includes m elements whose minimal polynomial is g(x).
Therefore by the same construction as above, we can prove:

Theorem 7.18 (All finite fields of the same size are isomorphic) For any prime poly-
nomial g(x) ∈ Fp[x] of degree m, every field of pm elements is isomorphic to the polynomial
remainder field Fg(x).

m
7.8.4 More on the factorization of xp − x

We can now obtain further information on the factorization of xq −x. In view of Theorem 7.16,
mwe now set q = p .

We first show that the set of roots of a minimal polynomial gi(x) ∈ Fp[x] is closed under the
operation of taking the pth power. This follows from the curious but important fact that over a
field F of characteristic p, taking the pth power is a linear operation. For example, when p = 2,
squaring is linear because

(α + β)2 = α2 + αβ + αβ + β2 = α2 + β2 .

More generally, over any field F,

p � �
(α + β)p =

p
αj βp−j ,

j
j=0

p pwhere αj βp−j denotes the sum of terms equal to αj βp−j . If F has characteristic p, then jj � �
pthe integer j = p!/(j!)((n − j)!) may be reduced mod p. Now p! contains a factor of p, but

pfor 1 ≤ j ≤ p − 1, j! and (n − j)! do not contain a factor of p. Therefore j = 0 mod p for
1 ≤ j ≤ p − 1, and

(α + β)p = αp + βp.

By taking the pth power n times, we may extend this result as follows:

Lemma 7.19 (Linearity of taking the pnth power) Over any field F of characteristic p,
for any n ≥ 1, taking the pnth power is linear; i.e.,

(α + β)pn n n
= αp + βp .

Note that if F has q = pm elements, then βpm
= β for all β ∈ F, so this lemma becomes

repetitive for n ≥ m.
mExercise 14. Using this lemma, prove that if f (x) = fix

i, then i=0

n m)pn n
+ f p

n
xpn

+ f p
n n n

xmpn
f p (x) = (f0 + f1x + f2x 2 + · · · + fmx = f p 2 x 2p + · · · + f p .0 1 m

This result yields a useful test for whether a polynomial f (x) ∈ F[x] is in Fp[x] or not, and a
useful formula in case it is:

�

� � �

7.8. EVERY FINITE FIELD IS ISOMORPHIC TO A FIELD FG(X) 97

Lemma 7.20 (Prime subfield polynomials) For any field F of characteristic p and any
f(x) ∈ F[x], fp(x) = f(xp) if and only if f(x) ∈ Fp[x]; i.e., if and only if all coefficients fi
are in the prime subfield Fp ⊆ F.

Proof. By Exercise 14, we have

xnpfp(x) = (f0 + f1x + f2x 2 + · · · + fnx n)p = fp + f1
pxp + f2

px 2p + · · · + fp .0 n

Now the elements of F that are in Fp are precisely the p roots of the polynomial xp − x; thus
βp = β if and only if β ∈ Fp. Thus the right side of this equation simplifies to f(xp) if and only
if fi ∈ Fp for all i.
Exercise 15. Prove that a positive integer n is prime if and only if (x − a)n = xn − a mod n

5for every integer a that is relatively prime to n.
Using Lemma 7.20, we now show that the roots of a minimal polynomial are a cyclotomic coset

of the form {β, βp, βp2
, . . .}:

Theorem 7.21 (Roots of minimal polynomials) Let g(x) be a minimal polynomial of a fi-
n−1

nite field F with pm elements. Then the roots of g(x) are a set of the form {β, βp, βp2
, . . . , βp },

where n is a divisor of m. Moreover, g(x) divides xpn − x.

Proof. Let β be any root of g(x). Since g(x) ∈ Fp[x], Lemma 7.20 shows that g(xp) = gp(x).
3 i

Therefore g(βp) = gp(β) = 0. Thus βp is also a root of g(x). Iterating, βp2
, βp , . . . , βp , . . . are

all roots of g(x). Because F is finite, these roots cannot all be distinct. Therefore let n be the
= βpj+k

smallest integer such that βpn
= β. Thus βpj �= β for 1 ≤ j < n. This implies that βpj �

n−1
for 0 ≤ j < n, 1 ≤ k < n; i.e., all elements of the set {β, βp, βp2

, . . . , βp } are distinct. Thus
2 m

β, βp, βp , . . . is a cyclic sequence and βpj
= β if and only if n is a divisor of j. Since βp = β,

we see that n must divide m.
Finally, we show that these roots are all of the roots of g(x); i.e., deg g(x) = n and

n−1

g(x) = (x − βpi
).

i=0

The right side of this equation is a monic polynomial h(x) ∈ F[x] of degree n. Since the roots
of h(x) are roots of g(x), h(x) must divide g(x) in F[x]. Now, using Lemma 7.20, we can prove
that h(x) is actually a polynomial in Fp[x], because

n−1 n−1 n−1

(x − βpi
)php(x) = = (xp − βpi+1

) = (xp − βpi
) = h(xp),

i=0 i=0 i=0

where we use the linearity of taking the pth power and the fact that βpn
= β. Therefore, since

g(x) has no factors in Fp[x], g(x) must actually be equal to h(x).
n

Finally, since the roots of g(x) all satisfy βpn
= β, they are all roots of the polynomial xp −x,

which implies that g(x) divides xpn − x.
5This is the basis of the polynomial-time primality test of [Agrawal, Kayal and Saxena, 2002].

�

98 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

This theorem has some important implications. First, the degree n of a minimal polynomial
g(x) of a finite field F with pm elements must be a divisor of m. Second, the subfield Gβ of F

m
generated by a root β of g(x) must have pn elements. Third, xpn − x divides xp − x, since the

m
elements of Gβ are all the roots of xpn − x and are also roots of xp − x.

Conversely, let g(x) be any prime polynomial in Fp[x] of degree n. Then there is a finite field
generated by g(x) with pn elements. This proves that g(x) divides xpn − x, and thus g(x) divides

m
xp − x for every multiple m of n. Thus the divisors of xpm − x include every prime polynomial
in Fp[x] whose degree n divides m.

Moreover, xpm − x has no repeated factors. We proved this earlier assuming the existence of a
field F with pm elements; however, we desire a proof that does not make this assumption. The
following exercise yields such a proof.
Exercise 16 (xpm −x has no repeated factors). The formal derivative of a degree-n polynomial

f (x) ∈ Fp[x] is defined as
n

j−1f ′(x) = (j mod p)fj x
j=1

(a) Show that if f (x) = g(x)h(x), then f ′(x) = g′(x)h(x) + g(x)h′(x).
(b) Show that an prime polynomial g(x) is a repeated divisor of f (x) if and only if g(x) is a

divisor of both f (x) and f ′(x).
(c) Show that xpm − x has no repeated prime factors over Fp.
Now we can conclude our discussion of the factorization of xpm − x as follows:

m
Theorem 7.22 (Factors of xpm − x) The polynomial xp − x factors over Fp into the product
of the prime polynomials in Fp[x] whose degrees divide m, with no repetitions.

For example, over F2, we have

x 2 + x = x(x + 1);
x 4 + x = x(x + 1)(x 2 + x + 1);
x 8 + x = x(x + 1)(x 3 + x 2 + 1)(x 3 + x + 1);
16 + xx = x(x + 1)(x 2 + x + 1)(x 4 + x 3 + 1)(x 4 + x 3 + x 2 + x + 1)(x 4 + x + 1).

Exercise 17. Find all prime polynomials g(x) ∈ F3[x] of degree 1 and 2 over the ternary field
F3. Show that the product of these polynomials is x9 − x = x9 + 2x. Explain, with reference to
F9.

�

�

7.9. FINITE FIELDS FP M EXIST FOR ALL PRIME P AND M ≥ 1 99

7.9 Finite fields Fpm exist for all prime p and m ≥ 1

At last we can prove that for every prime p and positive integer m there exists a prime polynomial
g(x) ∈ Fp[x] of degree m. This will prove the existence of a finite field Fg(x) with pm elements.

Using the factorization of Theorem 7.22, we will show that there do not exist enough prime
mpolynomials of degree less than m that their product could have degree p .

Let N (n) denote the number of prime polynomials over Fp of degree n. The product of these
polynomials has degree nN (n). Since xpm − x is the product of these polynomials for all divisors
n of m, and there are no repeated factors, its degree pm is equal to

m p = nN (n) (7.8)
n: n|m

This formula may be solved recursively for each N (m), starting with N (1) = p.
Exercise 18. Calculate N (m) for p = 2 for m = 1 to 10. Check your results against those

stated in Section 7.5.4.
Now we are in a position to prove the desired theorem:

Theorem 7.23 (Existence of prime polynomials) Let N (m) be the number of prime poly-
nomials in Fp[x] of degree m, which is given recursively by (7.8). For every prime p and positive
integer m, N (m) > 0.

Proof. Note first that nN (n) ≤ pn. Thus
m n p ≤ mN (m) + p ≤ mN (m) + (m/2)pm/2 ,

n<m: n|m

where we have upperbounded the number of terms in the sum by m/2 and upperbounded each
term by pm/2, since the largest divisor of m other than m is at most m/2. Thus

mN (m) ≥ p m − (m/2)pm/2 = pm/2(pm/2 − m/2).

The quantity pm/2 − m/2 is positive for p = 2, m = 2, and is increasing in both p and m. Thus
mN (m) is positive for all prime p and all m ≥ 2. Moreover N (1) = p.

Since a finite field Fg(x) with pm elements can be constructed from any prime polynomial
g(x) ∈ Fp[x] of degree m, this implies:

Theorem 7.24 (Existence of finite fields) For every prime p and positive integer m, there
exists a finite field with pm elements.

Moreover, for each n that divides m, there exists a unique subfield G with pn elements, namely
the roots of the polynomial xpn − x:

Theorem 7.25 (Existence of finite subfields) Every finite field with pm elements has a sub-
field with pn elements for each positive integer n that divides m.

In summary, the factorization of xpm − x into minimal polynomials partitions the elements of
Fpm into cyclotomic cosets whose properties are determined by their minimal polynomials. The
roots of g(x) have multiplicative order k if g(x) divides xk − 1 and does not divide xj − 1 for
j < k. Moreover, the roots of g(x) are elements of the subfield with pn elements if and only if
g(x) divides xpn − x, or equivalently if their order k divides pn − 1.

100 CHAPTER 7. INTRODUCTION TO FINITE FIELDS

Example 3 (cont.) Over F2, the polynomial x16 + x factors as follows:

16 + xx = x(x + 1)(x 2 + x + 1)(x 4 + x 3 + 1)(x 4 + x 3 + x 2 + x + 1)(x 4 + x + 1).

Moreover, x3 +1 = (x+1)(x2 + x+1) and x5 +1 = (x+1)(x4 + x3 + x2 + x+ 1). The primitive
elements are thus the roots of x4 + x + 1 and x4 + x3 + 1. If we choose a root of x4 + x + 1 as
α, then F16 = {0, 1, α, . . . , α14} partitions into cyclotomic cosets as follows:

• One zero element (0), minimal polynomial x;

• One element of order 1 (1), minimal polynomial x + 1;

• Two elements of order 3 (α5 , α10), minimal polynomial x2 + x + 1;

• Four elements of order 5 (α3, α6, α9, α12), minimal polynomial x4 + x3 + x2 + x + 1;

• Four elements of order 15 (α, α2, α4, α8), minimal polynomial x4 + x + 1;

• Four elements of order 15 (α7, α14, α13, α11), minimal polynomial x4 + x3 + 1.

F16 has a prime subfield F2 consisting of the elements whose minimal polynomials divide x2 + x,
namely 0 and 1. It also has a subfield F4 consisting of the elements whose minimal polynomials

∗divide x4 + x, namely {0, 1, α5, α10}. Alternatively, F ∗ consists of the three elements of F164
whose multiplicative orders divide 3.
Exercise 19 (construction of F32).
(a) Find the prime polynomials in F2[x] of degree 5, and determine which have primitive roots.
(b) For some minimal polynomial g(x) with a primitive root α, construct a field Fg(x) with 32

elements. Give a table with the elements partitioned into cyclotomic cosets as above. Specify the
minimal polynomial and the multiplicative order of each nonzero element. Identify the subfields
of Fg(x).

(c) Show how to do multiplication and division in Fg(x) using this “log table.” Discuss the
rules for multiplication and division in Fg(x) when one of the field elements involved is the zero
element 0 ∈ Fg(x).

(d) [Optional] If you know something about maximum-length shift-register (MLSR) sequences,
show that there exists a correspondence between the “log table” given above and a certain MLSR
sequence of length 31.

������� �

������������ 	���

�� ��� �����	
� ��
���� �� ����
���� ��� ��	������� 	� ����� ������
�� ��	��� ��
� ����� ������

� �������
���
���
� ����� ���� � �

���� � � �

� �������� �	�
�� ����� �
�� ������� � � ��

�� � 	 � �	������ ��� �� �� ����
� �	��� 	���
 ����� ���� ��

� ��� �	��
���
� �
�� �	���
�� ���

 ���!"	�	�	� � "� �	��� ��#$%�� ��	�� ������ �� ������� �	 � � �� &
� ����� �
��
�&���
��

�������	� �� � � � � ��
�� ����� �
��
 �����
� ����
��� 	� � � � � � ' � � ���� �����

����
�� �
��
����
� &	
�� �
���� ��� "������	� &	
��� " � 	 � � �
 � � �
���� ���	����
�� �
��

 ���� �
��� 	�
����

��
��	 &���(� �����	� &��
��)	��!*�

��
��!+	��
������ �)*+� �	��� ��#,#�� �����
��

&��
�� �����
����� 	� " �	���� ��� �
�
������ ��� �� �� 	�)*+ �	���
�� �	������� ��������

&����� ��
� ��	�� 	� ���!-
���� � -� �	����

��� ������ 	
���

�� ����� �����

�.� ��� �� ����
� �	�� � 	���
 ����� ���� � �

��
 �!�������	�
� �
&��
�� 	� ��� ����	� ��
�� � �

	�
�� �!�
���� 	��� � �

� /	� � � 0� ���� ���
��� �	 	
� �����	
� �������	� 	� &��
�� ����
� �	����

. �
&��� � � �

� ��
 �
&��
�� �� �� �� ��	���
���� �	��	��������
�����	� ��
� ��� ��	
� �

��	������
� ����
�
���� �
�������
��	� &� ��
�
�� ��������� 	� � �

�� . ����
� �	�� � ��
�

������
���� �	��
��� ���
��!1��	 �!�
��� ��

.�� � ����
��� ����������� � 	 � � � 	��� ���

� � � � � ��

� �����
�� �� �� ��� ����� ��
�

� �

� � � ��

��

� � �

� � �

� � � 	 � ���

���

��
� � �
� �

� �������� �	���	����

������� 	� ��� �	��	���� ���� 2!�
���� 	��� � �

�	��
 �2� 0� 3� ����
� �	�� 	��� ��� ����
��

���� � �

� �%� �� 0�� ���� �����
�	�� ��

� ����%�
�� ��

� �%�0��4

� � �%%%%� ���%� 000%� %� 0� � �0%�� 0%��� %0�0 � �% 00 � 0�%0��

)� ��� ��	
� ��	������ � � � �
 �	�
�� �	���	��
 � � � �	 ��� ��� 	� +
����� ����
����

& � � ����
�� �	���	��
 � �
��
�� 	���� �	���	��� �� ����������� 	 �
� ��� �����
� +
�!

���� ����
��� � & � � ���� �	���	��� ��
 ����
� �	�� � �� ��
� ��

� �	 ��� �����
� +
�����

�%�

��� ������� �� ���	
��
���� ��	��

������ 	
 ��
 �	����	 �	���	�� ���� ������� �������� � � � ���� � ��� ��
 	���� �	���	����

�� ��� �� ������ �	�� ���� ������� ������� �������� � �� ������ �� ��� �� �� ������ �	���

�	�� ��������
� ��� ��	�� ��	����
 � � 	 �� ���� ��� ���� � � 	
 � 	 � � � 	��� �� ������� ��������

�
�	� ��
 �	���	�� � � � �� ��� ���� �� ��

	
 �	���	��� 	
 ������� ������ � �� ��

���� 	
 ��������� ��������� �	���� ���	�
 ��� � � � � ���	��� �	 	��������� ��� ����������

��� �� �� ����� ��!������� ��� ���� �� 	
 ��� �	��
	� � ����� ������ �� ������� �������� � ���

"��� � �

� 	 � ��!������� �
	� � ����� �� � ��� �� #�� ��������� �	������	�
	� ���� �������� � � �

���� �	 ��!����� ��� ���������� ���	�$�	������	� �	��� 	
 ��� �	��� %������ ������� ��������

�� � ������ �����

��� ��� �������� ���&�����
� � �	�� ���� ������� �������� � �� ���������� �	

�	����� � �
��	� ���	�� �������� �� � � � 	� ��
��� �	 �	����� � ���	�� ��� 	 �������� ��������

�� ' 	 � �� #��� ���������
 ������ �� �	� ��� ��	�� ��	�
 ���� ������ �	 ���
	������ 	� ��

�()* �������� �	� �	�� �� ��+� ���	 ���	��� ���	���� �	����!��
 �	������ �� �� � �		� "���

������� 	
 �	�� �	����

��� ��� ���	
����
 � � � � ��� ��� �����

#�� ,������	� �	��� �� ��� �	��
���������� �	��� 	� ��� ���������� ��� �� �� 	 ��� ��
 "���-

� ' � � � ' � � � �	�� ���� ����� ���� � 	 � � � ���� �&�����
 �� ������ .��!���� ��������

���������/ ��0,��

#�� 	��
 �����
 �	��� ���� ��� �0, ��� ��� ������� ��� �� �� �������� �	���� ��� ��� � � �� ��

������$�����
$����+ �,12� �	���� ��� ��� ��� �� � � ��������	� �	���� �	������ 	��� �	������

"����� ����� �!��� ���� ���� ������� �0, �	���� �	����
 ��� 3���$,	�	�	� �	��� ��� ����� ��	��

������	���

�4�� � � � � � � �
 ��� 	
 ��� �$������ 	��� ��
 �
 � �	� �������� � 	
 ���� � 5 ���� ��� ��� ���

������� ������� �������� � � � ���� �	���	��� �� � �� �� #��� � ��	��� � � ���� �	 �	�����

��
 ��� 	
 	 5 � � � �������� ����� �
��� ���������� 	 5 � � � 	
 ��� �		��������� ��� �	���	���

���� ����� ��� ��6�� �� ��� ��������� � � 	 5 � � � ' � �		��������� #����
	�� ����� ��� � � � �

�	�� ������ �	���	��� �� �-

������� �	
 ��
������� ������ � ���� � �� 	�
��
 � ���
 ��
���� �����
� �����
�� �

���� �
 �	�
���� �� ���� � 5 ��� ��

��� �� ���� ��� � ������ ���������� ����	���
�	�� �� �
�

�
	� �� �
� ��������� ��
 �
����
 �		 �� ������	� �����	�� �
 ����� ��� �� � 5 �� �'� ������
�����

*	�� ���� ��� ,������	� �	��� �	��� ���	
	� �	������� �	���� ��
 �	�� ���� ����� ���

,������	� �	��� ���� �&�����
 �� ������ �� �0, �	���

)���� � ��	�����
 �	�������� �	�� � ���� �� �	���	��� 	��� �� �������� 	
 ���� �� � ��� 	
 �

�		�������� �� ������ �� �
��������
 ��� 	
 � �
 ��� �	���	��� ��� ���	��� ��� �� �	������ �$������

�� ���� ��� 	
 �		�������� ����� �
 ����� �� � ���&�� �	���	�� ���	������ ���� ����
 �	������ ���

	
 �
�� 	 � � ����� �� ���� ��� 	
 �		��������� 7� 	���� �	���� �� ��

����
 �����

 ��� �
�� 	 � �

�� ����� �		��������� ��� ���� ��� ��������� 	
 ��� �	���	�� �� ���&���
 �����"��� #�� ���� 	

�&�����
 � �
 �����
	�� �� �������� ��
	��	��-

��������� �	� ���������
�� ���� �� ��� ������ � �� �
 ��� ���� �� �
� �
	� �� �����

������ �� � 5 � � � ' � ������
���� �� �
 �
��������
 ��� �� ��

7
 � �� � ������ ��� �� �� �	�� 	��� � "���� "��� � �

� �� �� ��� ���� �� ��� 5 �� � #����
	��-

���� �������	�
�� ���
 ����� ���

��������� ��� 	
��
����� � � � � � ��� ������ ������ � ������ ��� �� �� ��	� � �
�� ��� ���
�

���	 � ��� � � ����� � ������
� ���	� �� ��	 ���� �� �
��� ��
 �� � ����	���
�� �� �� �������
���

��
 �� ��

�

���	
��
����� � � � � � � �� �� � � � � � � ��

��
 ����	�	��� ��

��	�� ��� ���
� ��
 �� ���	��
�� ���� ��
 �
	��� �	���	���	�� � � �	�
��

��� �� �� ��� ���
 �

� ��

	� ��!"�
�
�� �
�
�!	�
� �� ��
 "���!
�
�� �� �� � ��� �� #
 �	��

���� ��� �� �
�	

 ��

��� ����

$ ��
 ��!�
 � � ���
����� ��

� �	��
� �
	���� � !�� �

�
�	

� �	!	������

������� ��� 	��

��� ��
 ������ �� ��� �� �� ��� ��	� �
�� ��

��� � � � ��	����	�
��

��
� �����
 � �� �
��� �����
 �� � ����	���
��� ���
�
�� ������ �� ��	����	� �� �����
 � ��

��� � �

�

��

% �� � ���

�

������ &	

� � ����
� � � % � � � � � �����	���
�� ����	�
� ��
 	� ��!��	�� �
� ����	��	�� �

��
 ��!"�
!
����� � � � % � � � �����	���
� "��� ��� ��
 � ��
 �	

� �����	���
�� '	(��

��!� � �
���
� 	� ��
 � � � ��!"�
!
����� �����	���
� �� �� ��� �
� ��
 ��!� � �
���
� 	� ��

�
!�	�	�� 	� ��!��	�� �����	���
 ��� ������� ��� � ��!� ��� 	� � �

� ��	� !��� �	
�� � �)
�
��

���
����� �	�� ��� *
��
� 	� ��
 �� � ��!"�
!
����� �����	���
�� +�
 � ��
�
 ���
����� !���

�
 ��
 ���,*
�� ���
���� �� ��
 �
!�	�	�� � � � ���
����� ��

 �
	��� �� !��� �$ ��� �	��

��
 !	�	!�! ���*
�� �
	��� 	 � �� � �� ! ��� ��

 �
	��� �� ��
 ��!��� �� ��

��
� ������ ��! � �

��
 ��� ���� ��
�
 ��

� �)
�
�� ����
�� � � �����	���
��

�

�������� � ���� ���� ��
 ��!�
 � � ���
����� � �
	��� � � � 	� �� ��� �� �� �	�
�� ���

���
 	� � �� � � �

� � � �

����

% ��� � �� � �� � �� �

� � � �

��
�
 ��
 -��� �
�! 	� "��
���
�
� �
"�
�
��� ��
 ��!�
� � ���
����� �	�� �
	��� � � 	� ���

����
� � ��� �����	���
�� ��� ��
 �
���� �
�! �
"�
�
��� ��
 ��!�
� � ���
����� �	�� �
	���

���� �� ��

�������� !� .�!"��
 ��
 ��!�
 � � ���
����� � �
	���� / ��� � 	� �� ��� � � �� /� �0.

���
 �

� � �

� .�!"��
 ��
 ��!�
 � � ���
����� � �
	���� / ��� � 	� �� ��� � � �� /� �	�
��

���
 �

� � �

� .�!"��
 ��
 ��!�
 � � ���
����� � �
	���� � ��� 1 	� � �1� /� �� �	�
�� ���

�

� ��

�

��� �������	�
�� ���
 �����

'�� ��� ���
 "���!
�
�� �� �� � % � � � � � �� � � � �� ��� -�	�
 -
�� � �

� ��
�

(��� � �	�
��

��� �� �� 2� ���
 �

� � �

� �� ���� �� � � � � � � ���� 2� ���
� ��! �

�� ����
 ����� � ���

���
�� 3� ���� �� ��� �� � � � � � � �� ��� � �� ��	�� �� ��� ���
 	� 4���� ��
(��� ��
�

����
(��� �� 2� ���
 ��� ������� �� ��	"���
(�
��
� 2� ���
� �	�� ��
 ��!
 "���!
�
���

5	���� 2� ���
� ��

 �
���� �� !��� � � � � � % �� ��� ��
�
 ��
 ��
 ���

�� 	��
�
��	���

#�
� �
 �"
�4 � 2� ���
�� �
 ��
 ������� ��	�4	�� � ����	���� 2� ���
� �

� � �

� ��
�
 �

!�� �
 �
���	

�� ����
�

��� ������� �� ���	
��
���� ��	��

����� �� ���	
 �
 	��
������ ���	

��� ���	
�	�
�� ���
�	��
 �� �� ����� �� ��
 ��
�	� � � �� ��� ���
�	��
 �� �
 	�
�� �� �

��
	��
 ������	��
 ��� �
�� 	�� ��	 �� �� �� ��� ��	����� ���
 ��

	� 	�� ��	 �� �� �� ��	�����

���
 ��

�

� �

��	 	�� � �
��
��	��
 ��� ��� � ��
�	�� � � ��

� � �

� � � � � � ���

�! "��
� ��

� ��

� � � � � � � ��

�� ���	 ���� � ��

#���#� � � #�����
�

� �

$�% � 	�� ��

����
��
� ����
����� �
 	�� �
��	�
��
�	�

�� �&� � �� � ��
 	�� �
��	�
��
�	� ��
� 	� ����� ��
�����
 "�	� 	�� �
��	�
��
�	� � ���� �
 	��

����
������
��
���
	�
� 	�� �����
	� �� � �

�� ���� ���� �� �
� �� 	�� �� ����
������ ���
 ��

��

���
�� ���� 	��
 ��

��	 	�

� 	 �

� � � � 	 � 	�� � ��'�
�
	 �����
	� �� � �

�

�
��� �
 ���� �
 �	
�
� �
��
� ��� ���	

�� �
�

��
��
��
	 �

�
����
	 � � 	�

� � � 	 �

� � � 	 �

�
� � � � � 	�

�
� � � � � � 	 �

�
 �� �
�� ! "��
�

�� � �
���	��� �����
	 � � ��

�

��� �
��
��	��
 ����
����� ���� �� 	��
 ������ �
	� 	�� ��	���� ���	�

�� � �	�

�� � � � � � �	�

��

���
 � �

! "���� �����
�
	� ��	�

� �
� �(��� 	� 	�� ������	��
� �� 	�� ����
����� ���� �	 ����

���� �����
	 	�

� ��

)

��� �

�
��	�

� � � ��

� � � � � ����

	�

� ��

"��
� "� ��� 	�� ��
��
	��
 �� � �� *�	� 	��	 �	 �� 	�� ����
����� ���� 	��	 ��
��� �
��

����"�
� 	� ����"�
�+ 	�� ,��� �� ����	�
�- �� �� 	 �

�
� � � � � 	�

�
�� �
� �.��� ��� ����

��
�
�	�
� ��� 	 � �� � 	�/�
 �� 	�� ����
������ ��

��� � �� � � � � � � � �! �
 �� 	�� ��	�����

��

� ��� �� �� � � � � ��

��

� ��� ��
 � � � � �

�� �

�� ���

� ��� ��

� � � � � �

� � �

������ �����

� ��� ��

��� � � � � �

������� ��	
��
����� ��� �� �������� 	�
�����
 �� ��� �����
	 ���� �� � ��	�

�� 	 �

� � �

�

�� ��� ����
����� ���� ��
	�� ���� ��� �� ����
������ ���� � �

��
�	��� ���� ���
 � ���� � ��
���

�� � � � � �
 � � � � # �� ��� ��
� ���� � �

�

������ ��� ���� �� ��
��
 ������ 	�� ��� �� 	�� ����"�
�� ��

����
��
� 	� 	"� ����
������

��

��� �
� ����� �� 	�� ����"�
� ��

����
��
� 	� 	�� ����
����� ��

���# ��

���! �
� 	�� ���	���� ��

	�� ����"�
� ��

����
��
� 	� ���� � 	 � � �

�� 	�� ����"�
� ��

����
��
� 	� 	�� ����
�����

	� ����

0 ����"�
� ��� � 1�
� ��� �� �
 	�� ���
��
�	� ��

����
��
� 	� 	�

�� �
� �
�� �� ��	�

� � �+

����� �� �
� �
�� �� 	�

�� �
��	 �� 	�� �(��	��
 ���� � � � 2� 	�� ��
����
	�� 	���
�� �� ����
�

�����
�� 3�4�! �� ���� �� � ! 	��
 ��
�� ��� ���� � � � �! 	��� �(��	��
 ��
 ���� �	 ���	 � � �

��	� �
 ��

� ���
���
� �
�
1�
� ����"�
� ��
 ���� �	 ���	 � � � � � � ��� �(��� 	� 1�
�! �� �	�

"����	 �� �	 ����	 � � � # � � ��
�� 	�� ���� �� ��
��
! 	��� ������� 	��	 �	� ��
���� ���	�
�� ��

�	 ����	
 	 �� � # � � 2�	 � 	�� ��
���	�
 ��
�!
 � �� � # �+ 	���
 � �� � # ��

���� �������	�
�� ���
 ����� ���

������� �� ������	
 ��	
���	
��
� �	�� ��

�� �����
���	� �� �����	
 �� ����� ��	 �

	�

������	 ���������� ���� � �� � � � � ��	
 ��

 !	� ��

� � � � �

� � � � �

� �� ��

� �� � � � � �"���

�� ��	 ���	 �
�	
��� �# ��	 ������� �� �� ��	 ����	� �# �����	
 � � "�	 $% ���	 &��� � � � � '

��� � � (�� ��	� ���	� �� ��	 �������

� ��� � ��

� ��� �� �� ����� � ���

�� � ���

�� � ���

��	

)�
	 	*��������� ��	 ������� ��

���

� � �� �� ����

� ����

�� ���

� ����

�� ���

� ����

�� ���

� ����

��	

%���	 ��

��� ��

��� 	��� ��+	 �� �
���
�
� ����	� #
�� ��

� ��	 ���	 ��� �, ���	&�
�� "�	

�&� �	�	
���
� �# ��	 ���	 ��

	����� �� ��	 �&� ����������� ����� � � ��� ����� � �� �

	
�����	���� ��	 '�����	� ��� �� �� �� ��� ��� �� � � �

� ��
	��	����	�� "�	 #��� ������ ��� ��

�� � �� �� �� �� �

�� � �� �� �� �� ��

�� � �� �� �� ��� �

�� �� �� �� ��� �� �

�� � �� �� �� �� �

�� � �� �� �� ��� �

�� � �� �� ��� �� �

�� �� �� �� �� �� �� �

�

�

�

�� � �� �� �� �� �

�� � �� �� �� � �� �

�� � �� �� �� �� ��

�� �� �� �� �� �� � �

� � � �� ��� �� � �� � ��

� � � �� ��� �� �� �

� � � �� ��� �� �� �

� � �� �� ��� �� �� �

-	 �		 �� ����	����� ���� ��	 ������� ���.	
� &	���� �# ���� �'� (� ���	�
 ���	 ��
 � /

)�
	��	
� ��	
	 �
	 ��

� �(���	&�
�� �# &	���� / ��� ��

� / ���	&�
�� �# &	���� '� ��

����
� &��� ��	 &	���� # �
 � ���� �# ��	 �
	����� �	�����

"�	 $% ���	� �
	 ����
���� �	��	�0 ����� ��	 �� � �� � �
 � ���	 �� � ������	 �# ��	 �� �

�� � �� �
 � �� ���	0 ����	 ��	 ����������� �# �	�
		 �	�� ���� � �
	 � ����	� �# ��	 �����������

�# �	�
		 �	�� ���� � � � "�	 �� � �� � � �� $% ���	 �� ��	 ����	
�	 ���	 ���������� �# ��� ��

������	� ��	
 ��

� ��� ��	 �� � �� �� � � ���	 �� ��	
	�	������ ���	 ��	
 ��

� ���������� �# ��� �

���	&�
�� �# ��	 #�
� �� � � � 	 	 	 � � � #�
 � � ��

1� �� � �� � �
 � � � � � � � $% ���	 ��� � 	 ������
	� �� ��� � � � � � �
 � � ����	� ��

��	�� �� �� � � � �� ��
 � � � � � � � ��)2% ���	 "�	 ������� �������	 ��� �	
	���	� ��

�� ���� � �� � � � � ������
���� ��
 � � � � � � � �� ��� ��	 ���	 ����� ��� �� �������� ���	&�
��3

��� ��	� �� ��	 %����	��� ������
 � � � � � � � � "��� �� ������
��� �� $% ���	� &	 ���

�
	��	 �� ��� ��
 � � � � � ��)2% ���	 #�
 ��� � � � ��� �� � � � � �

4�
 �����
����
	����� ��		 #����&��� ����	�������� �� $% ���	 �# �	���� � � � �� ����	� ��

5	*�	��	� $% ���	 6 7	
	 �� ��& �� �����
��� � 5������ 	*�	��	� $% ���	 6

���� ���	
���
 ������� 	*�	��	� $% ���	�� ������	
 ��	 #����&��� ��� #
�� �� �� �� ��

!	� ���� � �

� 	 	 	 � � ���� �	 ��� ������	 ��	
 ��

� ��� �	��	 ��	 ���������� � ��� � ��

� ��� �

� � � � ��

���� �# �	�
		 �	�� ���� �)�� ���� � �� 	 	 	 � � ���� �� ��	 �� � �������	 �� � ���

�� � �

�

� �

�

� �

� � � ����0 ����� �� ��	 $% ���	&�
� ��

	�������� �� � ���� ���� �� ���������� ������	�� 	
���

�� ���� %��& ���� ��	 �� �� ��������	� �	�	
��	� �� ���� ������� �� ��	 ���������� � ���
���	�

��	
 ��� �� ����������� ��	
 ��

�# �	�
		 �	�� ���� � #�
� � ���	�
 �� � � � � � � �
 � � � � � ��

)2% ���	 ��	
 ��

 87���9 � ��� ��� �	�
		 �	�� ���� � � � �# ��� ���� �# ����

� � :

2	��	 � �'� (� /� ���	�
 ���	 ��	
 � �

 ;	
�#� ���� ��� ���.	
� &�
�� ���	 & 	���� /

��� ������� �� ���	
��
���� ��	��

����� ������	
� �
 ���
� �� �	�����	� ���
�

��� �� � �� � � � � � � � � � 	
� �
�� ������ ��
�� ��� �������
�� ��

�
�����
����� �
 ���

�
���
����� ��

��	 � �� � � � � � � � �� ��������� �� ����
� ��� ��������
� � �

!� ���� �����
� "� "��� �
������ ��� ��������� �� � � � �� � � � � � � � � �	
� �
��
�������

�� ���������� ��� ��
�� �
�� �� ��� ���� ����
 � �
����
�� "�
�� �
���
� �� ��

� � #� "���

��� ���� ���� � �
�� ��� � � �������� �� � � � � � ��������� �� � ������
�� ������� �
 � $
�����

������
�� #� "��� ���
 ��� ���� �� ��� �� ����������%�� �� ��� ���
� ��� �
���
���� ���������
�

� ������� �������
� �
���
���� 	��	� ��� ���� �� ��� � ������ ��
�����

& ����� ������� ����� �� ��� � � � � � �� �� �
��
"�'

����� ��� ��� � �� � ���� �	�
 ����	
�	���	�� 	����	�� �� ��� ���
 �� ��� ��
 ���� �� � 	� �

��
�� �
�� �� 	���� ���
 �
��
� � � �
 �� � � �
��

��� �

� � � �

� ��

������ �����
� � � �
� � " � ����

��� � ��� � � �

�

� � �
� (

� �� � �� � ��

�

	���� ��� ��� � �

���
� ��������
� � � !�
 �� �� ���� ���� ������� � � � � ��

�
��!�
 �� �� ��� �

�
� ������ ���� �
 ��
� �
� ��� �������
� ����� �
� 	� � �
� 	� � �

������
�� "� � � �� ��� ��������� �
�
�����'

�	
	���
� ��
 ��� � �� � ���� �	�
 ����	
�	���	�� 	����	�� �� ���
 �� �
�	�	�	�� ��
 ���� �� �

	� � �	����
� � � ���
� �� � ��� � �
 � � �� ��� ���
 �� ��� 	������� �
��

���� �

��

�� ��
 � � �
� �(

�

��
����"����

���

������ !�
 � � �
� �� ����
� � � ��� ��� ��� �� ������ � � � � � � � � � � � �����	� �� �������

� � "���� " � ���
�� �� � !�
 �� � �
� � ���
 �� � ��������� ��� �

�
� �� ����
� �� �� ���

�

�
� �
���� ���� �� �
)���� * � ������� ��� ��� ��� �� �

+
�� ���� �� � �� � ����� ���� � �

��� � � � � �� ���� � � �� �� � �

� ��� �� � ������� � ��� ����

� � � �� ��

,���� ���� �
�
������ " � ��� ���� ����� � -����� $
����� ������
��. �$$�	 ��� -������� �����

�$
����� ������
��. �!$$�	
��� � �� �
��
"�)�� � � � ��

� � �

� � � � � � ���

	 � � �� ��� �/�����
�

���������
� � ���� ��� $$�
� � �� ������ �� ��� �/����� � � � ��

� � �

� � � � � � ���

	 � � � " ����

��� �

��

����

� �

� ��

���� �������	�
�� ���
 ����� ���

��� ���� �	 �
� ��
��� �� � � � ��

� � �

� � � � � � ���

� � �

� � �����

��� �

��

�

�����

� �

�� �

���

���� ��� ������� ��� ����
��
���
��
 � ����� �	 �
� ��

� � �
�� � � ������ ��
���� ����� � �� � � � �

!�
�" #�������$ % �� �� ���� ���
	$ ���� ��� ���� �	 ��� ��� �	 �
� � &

��� ��� ��� ��� ��� � � � � �

�� ��� �� �� �� ��

� ���

�

� � � ��� ����

�

� ��

� Æ � ��

���

�

��� �� �� �

� ��

��� �

� ��

� ����
��� #�������$ % � ����� ���� ���

����

�

�� �
� �'��� �� � ���� � � �� ���� �� ��� � ������
��

(
�
����$ ��� ��� �	 ��� ���� �	 �
� � �� ����� ������ � � �
� � �����	��� ��
� ���� ��

�����"��� �� �
�
�� ����
�� �����	��� ��
� ���� ��� �������
��� �

)�� � ����� ��� � � � � ���� � ���� � � � � � ���� �� �	 � ��������� �� � � � �� 	 �
 � � � 	 * �� +(

���� ���� ��

� �,��
��� 	��� ��
�	�����
�� 	-����� ���

� � �

� � � � � � ���� �� 	������&

��� �

��

��� �� �

� ��

����� �
� � ��
�
�
�� ��� ���� �	 ��
�$
� ��

 ���� � ��$, � ��"����� �� ��� ��� �	 ���

�-����� � � ���

� � �

� � � � � � ���

� �� � � � � �� ����� ���� � � 	 �������� ��� .������ ����� ��� ���
�

��
��� ��
�" � ��
�
�
�� ��� ���� �	 ��
�$ � � ��

!�
�" ��� ���� ��� ��� 	��� ���� ��� � � ����� � ��� ���
�	�����
�� ������ �
� �����	���

���
�$ ��������� 	��� � �������� � �� 	������&

��� �

��

���� ���

� �

���

)��� ���� ��� ���� ���� �'��� � 	�� ��� ���� � � 	 �$�,��� ��

� 	 � � � � � �&

��� �

��

���� � � � 	 � � � � � ��

���

����� �� ����	
	 	��	 ��
�������
�	

/�� �� ��
�� � ���$���
�� � ��� � ��

* ��

� * � � � * �����
��� �	 ��"��� � � � �� ���� ����������
�"

�� � �������� � ��
� ���� �'���
�� ����
���
�� ���� ���� � ���� � � � 	�� 	 � � � � � � ��

����� ������ �� � ��

� � ���� �	 � ��� 	�� � � � � � � 	

�� 	������ ���� ��� ���$���
�� � ��� ��� � � 	 	������ �	 ��� 	��� � � �� � � � � � � � 	 ��

����� ������ � ���
� �
�
�
,�� ,$ � � � �������	�
	���	
���

��� � � �

���� � � � �� �

� ��

0�
�����$ ��" ���� � � � 	

��� ������� �� ���	
��
���� ��	��

�� ����	 �
� �
 ���� ��� ��� � � �
����������� �� �
� ��� �� ��� ����������� � ��� �� ������

���� �
�� � �
�� ��� ��������� �� �
� ��������� � �� ��������� ���������� ����� �
 � !� �������

�����!�� �
�� ���� ��!���� �!��� �������� ���������� � ���� "�� ����� � ��� # ��������
��

������ ���� �
�� � �� ��� ���� �� ����
�� ������ ���� �
�� �	 �
��� ��� ��������� �

� ��������

��������� �������� �� ���� ���
 �
�� ��� � ��� � � � $
�� �������� ��� ��� ���������� $
�� �
�

�
 ���� ��� � � �
����������� �� �������%

������� ��� �	
 ����
 �

��
 �� ����������
� ��� �� # ���� � � 	 # ���&�� ��������	

� ��	� �
�� ��

���������	� �� ��� ��� �� �

� �����������

�� ��� # ��������� ��� ���� � � ��

� � � ���
����� ���� # � ��

� �
� �

������� � ������� '�� �
� �(�)� *� �
 ���� �!�� � �

�� +,�����)	 �� �� �������� �
�

-��� ���� � �	 �
�� �� ��� � �*�)�)� �
 ���� ���
 ���������� ��

�� � �� �� ��� ��

���
 �

� �

��
���
 �� � �������!� -��� ��������� $
�� ���� ����������� �� �
� ��� �� �. �����������

�� ��� # ��������� ��� ���� �)� �� ������ ���� �
�� * �
�� ��� ��������� �� �
� �������� ���������

���������� ���� # � &
	 �� ��� �� !���-�� �� �����������

����� ������ 	
�	�

� �� 	���
�
�� �� �����

'������	 � � �
�� �
�� ��������� �
 ����� ��� ������/ ����� �
� ���������� ������ �������� �� #

�����

� � �

� � �

� � � � � � ���

� �� ��� �������� � # � ��

� � �

� � � � � � ���

� �� � ��������� �� ����������

�����	 �
�� �� �0��!����� �� �
� ��������� �
 � � �

� ��� # �� ��� � ����

��� � �� �� � ���������

� � � � �
 � !� ���� �
�� �
� ���������� �� � � ������� ���������� �� �������% �� � � # � ��

� �
� �

� � � ���1����0������ ���� # � ��

� �
� ��!���� �� � ��
���� ���� ���� ��!���� � ���	 �� ������� �
��

���� ��!���� �

� ��� # �� ��� � ����

��� � ��	 �� �

� ��� �� � ���������

������� � ������� $
� ��������� �*�)�)� �
 ���� ��������� ���!�
�� �
� ������ ��������	

�� ��� �� !���-�� �� �����������

2�����������	 �
 ����� ���� ���������� �� ���� ���
������ ��3.�� �� !�������� ������ ��

�
� �3.�� ��� �34��	 �
 ��� "12 ����� ���� ��������� ������� �� ������ ������ $
� ���������

�������
 � �� ����������� �� "��
�� �� �
� ����� �3���� �� �
� ���� ������	 �
 �����
�!� �����

���� �� �� �������� �� !�������� �����	 ��� �� ���� �� �
� ���5 ��
���� �� ��� �� �������� ��

�������������� $
�� ���� �� ��� ��,� ������

��� ������	
���� �� �
 ��
�����

6� ��������� �������� �� �
 ����� �� �
�� �� �������� �
�� ��� �� ������� ���
�� ������	 � � � � �

-�����-��� ����
������ '�� �,�����	 �������� �� �
� 76
6��������� �)88�)**� **� �.�������

���������� ���� �!�� ����

�� ����� ��������� ���������
�� �� ����� �� 9�:��

6 ������ �� �������� �������
�� ������� ����� ���
 �� ;�������	 "����5����<�����	 +�����	

��� ���
�"����5���
�!� ���� ��!������ �!�� �
� ����� ��� ���������������� ��� ������������

����� ����������� <��� ��������	
���� ��� ��
���
�!� ��!���� ���� ��� ������������� ������

���������� �������
�� �
�� ��� ������ �����-������ ������ �
� ���������� ���������������� ���

�������� � � �
 � � � � � � 6�� �� �
��� �������
�� ��� ���������������	 ���
 �
� ���� �Æ����� ��0������

� � ����� �� -�����-��� ���������� �� �
� ����� �� �

��

���� ������	
���� �� �� ��
����
 ���

�� ���� �	�
���
	���� �� �		�	���		������ ����	����
�
�� �� ������� ��� �������� �	�
���

�
 �� ����	�������� �	�
���� ������ �������� ����	����
� ��������� ��� ���������� ����	����
�

������� �����
���
 �� ��� ����
 �� ���
 ����	�����

��
��	�
� � � �	������� � ��� �������� ��	 �������
 ���	 � ��	 � � ��

���	�� �� ����� ���� �

�� ��� � � � ���	������

� � ���!�� "��� ������� ��

� � �

� � � � � �� � ������� #��

� � �

� � � � � � $�

��� ����
 � 	��	�
�����
� �
�� �� ���	
 �#��

� � �

$� � � � � ��� %��� ���	 #��

� � �

$ � #� $� �

	���	��� �
 � ����� �� ��� ���������
�����
���� #� $� � � ������� �
 ���

����"��
� �
�� ��

�

�

� � � �� �
 �� #� $� ��

 ������	� �� �� #� & �� � � � & � � � ' � $ �� ���� �
 ���� �� �������
����"��
� �
�� ��

� & � �����
 #��

� � �

$
���
����� ��� �!������ ��

& 	 #��

$ ��	 � "��� ���������� 	 #
$ � � �

(
) ��

���	�� ��

 ���� �� *� ����	 ��	�
� ��� � �����
 �� ��� ������	� �	� ��� � 	���
 #� �
 $ � #� $�

�

�� ��� ����
	��� �!������ � & 	 #
$� �	 � � 	 #
$ & ��

+�	��

����"��
�
��� ����
	��� �!������
 �	� ������ ����	
��� ��

��� ,�� � �����
 �� ���

��	�� �	�
��� �� ��� �� ���
���	���� ���������� �#� �
 $ & � � 	 #
$- �	� ���
���	���� ����������

�#� �
 $ & � � 	 #
$ �

��� �� ���� ��
���� ��� ����� # �� �$ � #� �

$� �� �#�� �$ & ��

,�� �������� �	�
��� ��� ����
 � ���	�

�� �
 �� ����	�������� �	�
���. ����� � 	�������

� � � � �
� "�� ���
���	���� ���������� �� ��� ��	� �#� �
 $ & � � 	 #
$ ���� ��� 	 #
$
 � ���� ��

�

��	���� �
 ���� �� ��� 	������� �����
 �
 ��

�
���

,� � � / � ��	���	 �	��	�

� �� ���	�

 ��� 	������� ������� � �
 ���
�� #���	 ��

$ �� � ������	�

� ��� �� ��/���� �		�	 ������� �� ,�� ���
�
� ������	� � �
 ��� ��� ��	 ����� ��� ��		�
�������

�		�	 ������� � & � � � ��
 ���
� 0������ ������� *� ��� ������� ��
����� �� ��� ���� �
 �

��� � �
 ������ ��
����� �
 �� 1 �� � ������	� �� ���� ��� ��
����� �� ��� ����	 ������	� �
 ��

���
� � � � � �� 1�
� ��� ���
�
� ������	� �
 ���!���

 � �

�
�������
 ���������� �

������� ���� �� �		�	 ������� � �
 ��� ���������� 2#
$
���

���� 2#��

$ & � �������	 ��

�& �� *� ��� �		�	 �����	 ��
 ������ �� ���� ����	�� ��� ���	����

���������� �

2�

#
$ & #
 � ��

$

� ���

���

���
� � 	���
 �	� ��� �		�	 ������	
 ���

. ��

�& �� �
 �� �		�	�������	 ����������� 3�	����	�

���	� �		�	�������	 ���������� 2#
$ � �
�
� � ���������� �������� �� 2�

#
$�

*� 2#
$ �
 �� �		�	�������	 ���������� ��	 � ��� 	 #
$ �
 ��� ���������� ���� ���
 �� ���

������	� �� ���� ���
���	���� ����������

�#� �
 $ & 2#
$#� � 	 #
$$

��������
 �� � ��	 ���	� 	������� ����� # ��

� � �

$- ����� �#� �
 $ ��

�
 ��	���� ��� � 	������� �����
�

,�� �������� ����	�������� �	�
��� ��� ���	���	�
 � ���	�

�� �
 ������
. ����� � 	�������

� � � � �
� "�� ���
���	���� ���������� �� ��� ��	� �#� �
 $ & 2#
$#� � 	 #
$$ ���� ��� 	 #
$
 � ���

��� 2#
$ & � �

���� �
 ��

�
�� ���� ��

�
 ��	���� ��� 	������� �����
�

4�"�� �#
$ & 2#
$	 #
$- ����

�#� �
 $ & �2#
$ � �#
$�

*� ��� 2#
$ & �� ���� ��� �#
$
 � ' �� ,��
� ����� �� ��� ���Æ�����
 �� 2#
$ ��� �#
$ �	� �
��

�� � ' � ' � ' � & � ' 1 � ' � ��/����
�

��� ������� �� ���	
��
���� ��	��

�

�������� 	
�	 	
� ���
 � � �� ������ �� ��	 ����	�� 	
�� �� � ��� ��
�	�	�	��� 	
� � ��������

� ���	� ���

� � �

� �� 	
� ����	��� ����� � ���� � �� �� �
	��� � ���	�� �� �
���������� ������

�

�
����	���� �� � � � � � �� �����! "� �������� 	
��� ����	���� ���
��� �� ����	���� �	
��

�

�
	
�� 	
� ���#$��� ����	���� �� ���
��� � ������ ���	�� ����� �� ����	����! "� � � � � � � ��

�	
�� 	
��� ���	
 � � ����� �� ����	���� �� ��������� �	 ����	 � � � � � � �! "� ���	������� ��

��� � � � 	 � � � � � �� 	
�� 	
��� �� �	 ����	 � ���#����������� ����� �� ����	����!

%
� ��	 �� ��� ���
 ����	���� ���
� �����
� �	������ 	��
������ ��� ������� ���	��� �� ������

����	����� �
��
 � � � � � � � � �
 � �� ������&�	� �� 	
� ����� �� �� ! '������ �� 	
� ������� �	���	���

�� 	
��� ����	����� (���) 	��
������ ��	
 ������&�	� �� 	
� ����� �� �� ���
� ����! %
��� ��

��	��� ������	 �������
 �� ���
 ���	 ����	��� 	��
������!

��� � � �
 ����	��� �����*�� 	�� �������	� ����������� ���� ��� ����! "� 	
��� ��� 	
� ������	

������������ 	
�� ����� ���� � �� ��
 ���� 	
� ����������
 ��� � � �
� ����� ������
� ��������

����
� ����! �+�	� 	
�	 	
� ���	� �� ���� ���� ��	
 � ����� �&�����	��!� "� 	
� �������	�

����������� ��� ��������	� 	
�� ���� � � � ��	
� ������
��
� � � ��� �� �
��
 ���� 	
�� �������	�

���� ���
� ���������! "� ���� �� ������
��
� � � �� ��� 	
� �����	
 ��� � ��������� �� � ����������

�� ������ ���� 	
�� � ���
 	
�	 	
� �������� ������������� 	�
 ��� �� ��	
�� ���	���� �� �� 	
�

�������� �#	����� 	
�� � �������	� ��� 	
� ������	 ��������
��
��� �����!

,�� �	������ ������#���� �����#������	���� 	
� ���	���� 	 �� �
���� 	�
� ��� ��� �� �
���� ��

���
 	
�	 ��� � � � 	! -� 	
�� �
	��� �
���������� ������ ����	���� �� � � � �� ������

�������� 	
�	 	
��� �&��	� �	 ����	 � ���#����������� ����� �� ����	����! "� 	
� ��	��� ���
 � � � �

������ �� � � �� � 	
�� 	
��� �� ������	��� 	�
� ��� ��� ���� ��� ����� �������	� ����	���� �� ��

���� �� ��� � ���� ����	��� �� ������ �	 ���
� �������� 	�
� 	
� ������	 ��������!

,�� �������#���#�����#������	���� �� ��� �������� �� � ����	���� ����� � ���	��� ���
 � � � ��

	
� �������� ���
��� ���
� ������ �� ����	����. ����� �� ����! %
� �
��� �������� ��	
��

�� ������ ����	�� 	� 	
�� ����! -� 	
��
��� � ���	�� �� � � �
���������� ������ ����	���� ��

��� � � � � �� �����! "� 	 � � �� ��� ��� �� �� �
���� �� 	
�	 ��� � � � � � 	� 	
�� �� �
	���

� � � ����	���� �� � � 	 � � � � � � � � � � � � ���� �������� �	 ����	 � ���#����������� ����� ��

����	����! /�������� �� 	
� ��	��� ���
�� �� ������ �� � � �� � 	
�� 	
��� �� ������	��� 	�
 � � � �

��� ���� ��� ����� �������	� ����	���!

0����	 ���
� 1���� �� ���
�� �&������ ��������
 � � ��� 	
� ������	��� �����#������	���

����
���	� �� 	
� ����! %
� ���� ���� �� 	� ������� ����
� �� � � � �! %
�� 	
� ����������
�� � � �

���
��� ���� 	
�� ��� ���	�� �� 	��� � �
 ���� ��� 	
� ���	 �� ��� ���
 ���	��� �� �������� �	 	
�

������� ��	��	! %
� ���
 � � � � � � �
 ���	��� �	
� ���	 ��$� �� 1����#	��� ��������� �� �
�������

������
� � � � �

�� � � � � ��� �

��� � � � � � ! "	 ���
� �
��� 	
�	 ����� ���	��� �����	����� 	
�

�������� � ����
� �� 	
� ���	� ���� �� 	
� ���	����
 � 	 ���� � ��� � �&����� 	��! "� ����	����

	
� ���
�
���	� 	
�	 	
� ���	 ���� ���	��� ���� 	
�� ��� �������� �� ������� ���� �����!

,������� � � � � � � ����� �	 ���
� �����
�� 	� ������ � �����
���	� 	 � � � �
 �������� ���
��� �
���

	
� �����
���	� � � �� ��	���	� �� 	
� ��� �� ���
��� �� 	
� ���
��
���� ������	! 2�� 	
� ���
 � �

�������� ��� �	���� ��	 ��	 � ���	 �� ���� 	
�� ��� �������	� ���
��� ���
 ��	
 � ��3����	

�����
���	�! "� ���
 ����� 	
� ������� ��� ������� � ���	 �� �������	� ���������� ���� �
��

	
� ��� ��	
 ����	��	 �����
���	� ���� �� ���
���� ��� 	
��
 � �
����! 1��
 �����
���	�#
����

�������� ��
���� ��� �� � �� ���
 �� 	
� ����������� ��3������
 � 	 ����
���#�������� ���

��&����#�� ���
��� ��������!

���� ���������	
� 	�
� �	��� ���

��� �������	�
��

 �� �
���

�� ����� �	�
���
� ��	 �
�	���� �� �������������

��� ��	 �������� ���� ���
	���� �	������ ������� �	 ����	� ���
����� �� ����� �
�	 � �� �	�

��� ��	 ������� ��	��
 �����
����
�����

��� �
�	 ����	����� �������� �
�� � � � � � � !" �������� ��#�	�
� ����� ��� �� �����	
����

��
��
��������� �� �� $����	 ����% ���������& �� � ' (

� ����#�	�� �	 ��&��� ������ ��&����	 #���

�� $�
��	 ����% �
�	 � �

� # ��	� ��

�� ������)�� #��� ��� ����	 ����#�	��� �
�� � ������������

���� ��� �� �Æ������� ������� �� � � * � �
������������ ��������� �� ��� ����	 ���� �����#�� ��

��&��	��� �������& �� ��� �� �
��	 ����� �	���	����
���& 	���������� ����	������ �	�� ��� ����	

������	 �� ��� �� �������&�

��� �� ����� �	� ����
���
� ��	 ����� �����
����
���� + ��	 ���� �
	���� ���� �	� ����� ��������

#��� ���
��� ������ ����	���
�	��

����� �����	
��	��� �
��� �� ���

� ����� ������������ ���� ��
��
�� �#� ������ ������ ��� ����	 ���� ��� �
��	 ����� �� ���#�

�� ��&
	� �� � ��� ����������� ���� � ������������� ������ �� ������	 �*����� �� � ����	��

�	�������
	��

����

�

�
��	

�

-���	

�

.������

�

�
��	

�

-���	

�

����

������	 ����� ��,
����

������	

	����
�� ��,
����

������	 ������	

��&
	� �� .������������ �� �� ����	 ���� ��� �� �
��	 �����

/�� ����	 ���� �� ��������� � ����	� ����� �����	 ����� �	 ���
��
�������
��� �
�	 � ����	�

�������� �
�� �� � ����	�������� � !" ������� #��� � (�0�1 ��&��� ���� /�� ����	 ������	 ��

��������� � ��*��
������������ ������	� �
�� �� � 2���	�� ������	� #����
��� ���� �	�����������

#��&����� �
��
�� �	�� ��� ��������

/�� �
��	 ���� �� ��������� � �� ���� �
�	 �)����)��� � �� �� ���	����	����� (� 3���)���

������� ��� ��
� � � 	��	������� �� � ����	� ���
���� /��)��� � ���

�� ��������
���� ��

#���� ����)��� �������� �	� 	��	������� �� 4 � � � � � ����� �� �� ����#�	� �� ���&�� � ���� � ��

��� ���	���	� �� ���
�	��� ���� �� �������� ��,
���� �� �� ����� #���� �� ��� ���
� ��,
����

�� ��� ����	 ������	�

/�� ���
� ��,
���� �� ��� ����	 ������	 �� ����� � � 	 �
��� �� �� ����	���
�	 �� ���
	� ����

���� � � � �� � &�
�� �� ����#�	� �	� �	��������� ��� ������� �������������� � ������ 	�#�

��� ������� �� ���	
��
���� ��	��

������ ����	
 � ��
�����
 ��
	� �� �������� �����
�� ���� ���
���
 ����
� � �
��
� �
���
 ����	

���� �� �
����
�� � � �� � ���� �� ������
�� ����
��
�� �� � � ��
� �������� ��
�� � ��

������

��
� �
���������
 � � � �

�� � � ���
� �������� �� ����� ������ ���� ������ �� ��� �

���

����
��
�� �� � ��������
� ��	�� �� ���
���� ������ �� ����� �� ������ � � �� �
�� ��
 ���

���
 ���� ����	�

������ �
� �� �� � ������ �
� �� �� � � � � ���� �� �
� �� �� �

������ �
� �� �� � ������ �
� �� �� � � � � ���� �� �
� �� �� �

� � � � � � � � �

������ �
� �� �� � ������ �
� �� �� � � � � ������ �
� �� �� �

!��
���� �� �����
�
��� ��� ������ �� ������� �
�� ��� ������ ������ � ������ ��
��

������ �� ���� �������
� ��� ����
�� �
� �"���
����
����������� ���� ��
���
�����
 ����

�
������ ���
��� �

�
 ��
��� �� ������ �� �
�� �
 �����

!�� ������ �� ���
���
 ������

� ��

������
���� �
���� �� � �� ����� �� ���
� ���� ����

!��
����� ���
���
 ������
 ���� ��� � �� ����� �� ��
� ���
�
��� �� �
��� ��
�� �
� �����
���

�� ��
� ���
�
��� �� �������� #� �� ���� ������ ���
���
 ������
 ������ ��� �
���
����

����
������
��
��
�
��
���
���
��
��
���
�� ��� ���$����
�
�
�
�� ��
� ���
�
���� %�����
�

��
 �
���
�
�� �� �
�� ��
� ��
�
�$������� !�� ��
��
����� �� ���
���
 ���� ��� ���� � �

���
����

��� �� ��� �
����
�
�� ��

&�' ���� �� ���
� ������ ���� ��
�
� �

�
�

!�� ����
 �� ������
 ��	�� ��
� �� ����� �� ���� � � ��
� ���
�
��� ��� ��
��
�� �

�
�

��

���
��� ��
�� �� �����
�
� �����
�� ����

���� (� ��� �� ���� ��� �
�
��� �
������ ��

���� ��� ������
 ��� ������ ��� �����
� �� � �

�
� ��

����� �
��
��� ���� �� � �) ����� �
��

�
��� ���� � � ����

� �&� � �'	��� *��� �� �

�
���

����
� �
�� ��
� ���
�
� �� ������
�

�
��
� %���
�� �
������ ����

�� ���
���
��� �� ������ +
�� ���� � ���������
������ ������
�

���
���
�� ��� �
����
�
�� ��
 ������
� �� ��� �����
�� ��

�����
�

,
&���' � ,
�����

- � �
 ��
� ������ �

�
��

(�
� �
Æ���� �� ����
� ���� ������
��� ���
����� �� ��� �
����
�
�� � � ��� �����
�� ��

�����

���� � � ��

&�'
�
����
���� ��
��� ��
��
� ��� ���
��
��
��
�� ��
 ������������ ����� &��� ���

�.�
�
�� / �����'� ���

������ ��� ����
��� ���� ,
&���' � � � ��� � � ����	�� #� � ���
������

���
�
� � ��
������
��
��� ���
����� � � �0�� 1�0��� ���
� ,
&���' �������� ���
����� �� ��
�

��� � ������ ����� ,
&���' � �0��� �

�

!�� ��2���
�� �� ���
���
 ����
� ���
���
� �� ���
��� � ��
� ����
��� ���� � � �
����
�
��

�� �

�
 ���� �� ��

&�' � �0�� 1�0�� �� �� ��� �� ��

	��

�� ����
��� &�� �� #+34 �������'�

5�
 ��
� ��
���� ��.
�����
	��
���� �����
��6 ����
$������ ��� 7#6
� � ���� ���
��� !��

���� ������ ���� � �
���
� �
�� �� ���� ������ �� ��� 7# ���
��������� ������� ��� ������

�� ��� ���� ���� �
�� ���� �����
 �� ������� ��
�� ������ ������
���
�� � ��������
���� �����

8/������ ��������
���� ���� ��� ������
�
���
� ��� �9:0;�� ��� �
���� �990 4#�# ��
�� �

�� ������ 7
��
�
 ������
�

!�� ��2���
�� �� ��� ����
 ����
� ���� �� �

�� ,
&���' � � �� �� ��� ��
��� �

�

��� �
�� ��

�
����
��������� �� ����
���� �� ����� ��� ������
� �
�
���� ��
 ��
� ��
����� # &�<<� ��=� =='

�� ���� ���
 ���	

��� ������
�
���
� ��� �9:0;�� ���
� ��
��
� ������ ���� �������� ��
����

�� �� 3�>�� ?����������� ����� �
	� ��
� ��� ����
� ��� �

�

���� �
��
� ����� �1= �@ �� ���

������� �
�
� �� � ����
��
�
��� #+34 ��������

���� ������ �	
 	��
� ���

�������� �� ���� ���� 	
 ��
��� ������ ����� 	������������ �	�� ������	�	�� � � ������ ����

��� ������	�	�� �
 ��� �� ������� ��� �����	�� ��������� 	�

� �� � �

������� � ���� � ������

�

������

��

��	�� ��� ������ ������ ���!� ��� �"������	�� ����� �����

������� � �

����� �����

����� � � � ����

# �� 	� ���
�� ���� 	� ��� �	!������� ������	!� � � ������

� � � �

�� ���� � � �� # �� � � � ��

� � � �

� � � ���� ��� $�������	 �	���	���	��� �	�� ����
����� � ��� �� �������	!����

��� ������ �	
 ��
��

%� � &�	�� &��� ��� �
 ���������	��	� '� ����� ������ �"	��� � ��	
� ���&��� � �

����	��	�� �
 ���

��� ���
���� � �

� �(� ��� ����������	����� 	 � � � � �� �� � � � � � # �� � � ���� �!�� � �� � �����

������ �"	��� � ������ �
 ��������� ����� ��
������� ��� ���	���� 	� ��� ���&��� ��

�)�	�

*���&��� �������+ 	� ������ � �	���� $���,��������	,-��.������
 �$�-� ����� �-	����	������

�	���� $�- ����� ���� ��!������ 	������������ �
 �� ������ ��� �� ����� ��� ��
� �	
��

��
��� �/0/,1(��

���	
�� � ��������)�� �	���� $�- ���� ���	!��
��
 ��� �2� '� �� �� ���� �!�� �	

�

3"�
��� ' 	� ��� �	���� ���� ����	��	�� �
 ��� ��� ��������� ((((��� ����4 ����� ��� �2� �� 2�

�����	�	�� ���� �!�� � �

�

5 �	���� $�- ���� 	� ��!	����� �	����� �	��� ��� ��
 �
 ��� ��� �	���� �� ��������� 	�

������� �	���� �� ��������� %�� ����
����� ��� � �

� � �

� � ��� ������� �� ��� ����
����� ��� �� ��

�
 ��� �� ����
��
 ��	�� 	� 	� ���	!�� ��
������� %�� ������ �� 	� �!	������ ��� ��
� �� ���

������ � �
 ��� �� ����� %��
	�	
�
 -�

	�� �	������ ��
��� � � �� ����� �� ����� �� ���

	�	
�
 �	������ � �
 ��� �� ����� ������� ��� ��� �����
��� �	 �� 	� �� ����� � �������

������� �� � �� 6	������ � � ��� �	������� ������ �� � �� � �� # � � � � � # � � �� ������� �� 	�

����	������� ���� ���� �� ��� ��� �	���� $�- ����
���� ����	������� ����� �
 ��	�� 78��

8����
	�	�� ��
�� � �	���� $�- ���� ���	!��
��
 � �	!�� ��� �� �� �� ���� �!��
�� 	�

�� �"���	�� 	� �������
	��� 9�� �� �����	��� � ������
	��
 ��� � ��� :�; �	�� ���� ��������

 � �

�
 �

� � � � �
 ���

� �
 ��� �� ���� �� 	� ����	�� <����� =� ������ 	� 9�

� >��/ ����
 ���

	� �������� � �	���� ������
	�� �	�� ��� ���Æ�	���� 	� ��� �	���� ���&��� �(� �� 	
 ��� ���� 	

	��� ����� �

 ��� ��� �������
	� ������4 ����� 	
 � � � �� 	� � ���� �

 ���� ���� �� ��� ��� � � � � � �

%� ���
������ ����� 	� ����	�� <���� ���� ��� ��������� �� � � � �� � � � � � � � # �� ��

���� �!�� ��

�� � � � ��������	?�� �� ��� ��� �
 �� ������
	���
 ��� �
 ������ ���� ���� � ���� � ������
���	���� �
 ��� ��������� ������
	�� ���� � ���

�� � �� �� ����� ����� ��� ��� &��� � � �

� � ���� ��� �� � � � � � �

��� � �
 � ��	
	�	!� ���
��� � � ��

� �	��� �� � � � � �� ��� ������ �
 �	����

������
	��� 	� ��	� ��� ��� ���� �� ���������	?�� ��
������@

��� ������� �� ���	
��
���� ��	��

�������� ��� 	
��
����� ����� � ���� � �

	
 ���
����
����� �� ��� �� � � � �� � � � � ���

�	�� 	��
 ��

�	

���	��� �	 ��� ��� 	
 ��
�

����
� �	���	�����

�� ��� � ��������� ��� ���� 	 �

� ��

���
� ���� �� ��� �
	���� 	
 ��� �������� �	���	����� �� ��� ��� 	
 ����	�	��� �	���	����� 	
 ���

�������� �
�
� � � � � �

��� � 	
 � �

� ��� �� � � � ��� �����

������� �	
�� �
 ��� ��� ���������
 ��� � � � �� ��� ��� ����
 �� ������ � � ��	 ���

���������� ����������
 �� ��� �������
 �� � ��

��� ��� ����� �������� �� ����������
 !��
�

������
 ��"��� �# ������ ���$���
 �� � � ���� �� �� % � % ��&

���������� ����

� '

� % � �

���� % � % �
� �

�� % � % �
�
� �

� �

�

��� % �� % �� % � % �
� �

� �

�� �

���� % �� % �
	 �

�� �

�� �

(�� ��� ��
� ��� ����# !� ��$� ���� � �� % � % � # !���� ��

 ���
� �
 ����
) ���������

���
 ���� �
 ���
� ����
� ���� �� ��� ���� �*� *� +, ���� �"�� ���

	 -� ��
 � � * ��� �� �

� � ��� ���� � �� � � � ��) ����� �� �
 � ���� ��� *� ����	

�

(�� ���
����� ��� ����# !� ��$� ���� � ��� % � % ��� �� % �� % �� % � % � � # !���� ��

�
�
� �

� �

� � �
 ����
) ��������� ���
 ���� �
 ���
� ����
� ���� �� ��� ���� ��� �� +, ���� �"��

��

	 -� ��
 � � � ��� �� � � � ��� ���� � .) ����� �� �
 � ���� .� �� ����	

(�� ��� ����� ��� ����# !� � � $ � ���� � � �� % � % ��� �� % �� % �� % � % ��� �� % � % ��# !����

��
 �
�
� �

� �

� �

� �

� � �
 ����
) ��������� ���
 ���� �
 ���
� ����
� ���� �� ��� ���� /� .�

+, ���� �"�� � ��

	 -� ��
 � � . ��� �� � � � ��� ���� � �) ����� ��� �� �� � ���� �� .�	

(������# ! � ��� � ���� �� ��� ��� ���� !��� � ������0�� ��������� ���������� ���� !���� ��

�
�
� � � � � �

�� � �
 ����
) ����� ��� ����� ���������� ���� �� ������ ��	

���� ������ �	
 	��
� ���

� ������ � ����	
���
 ��� ���������
 �� � �� � � � ��� ��� ��� ������ ��� ����
 �� ���
��
 � � �

�	��� ���� ����� � ��
�����
 � � � ! �� � ��� ���
 ���
�����" ��� ��� ������ � � � � � �� � � � �

������ ��� ����
 	��� ��� ����� � ��
�����
 �
 �����# ���
� ��� ��� ������ ��� ����
 ����

��� ����
 ���� ��� �����! ��� ������ ����
 ��� � � �������� ���� ��� ������ �� �����
 ��

������� ������ � ���$ �
 �� ������� %" &'����
� �!

�� �� ��� � � � � � � � �

� � � �% ��

�% ��

�% *

() � �% �

(� (�% �

)�)�

+ * �)� �%

+ (()� ��

+ � +)� �%

)� ��

)� %

)� �

� � � � � � � � �

� %(%) �

(%(�* (

% %(�� %

+ %((� +

�% %(), �-

%()% ��

� %()- �(

(%(�(�%

% %(�+ ��

+ %(�% �(

�� %(�- �+

�% %(*)�

)� %(� %(

����� �! ������ ��� ����
 �� ���
��
 � � �

� ��� � � %!

.�
�� ���� ������ ��� ����
 	��� � � � ���� �� ����
 �/ ������� �� 01� ����
" �'������

������
 ����
" �������
���� ����
" ��� ���������� ����
!

�� �������
�� �� ������ 23 ����
" ����� �'�
� ���� ������ ��� ����
�� ������ ���" ����

	��� ��
�����
 ����� ���� ���� ! 4�
�" ��� � � %(" 	� ��
�� ��
�� ����
 	���
��
���� ������ �

��� �
���� � ��� �# ����� ��� �%(� (�� +� ������ ��� ���� ��
 ����� ���� ����������� ���
 ����

��� �����
������
 23 ����" ��� ��� �%(� �(� �%� ���� ��
 �	� ���� ����������� ���
!

�� ���������" � ������ ��� ���� ��� �� ������� �� � � � �������
 ��
������ ��� ��� 20 ����

���� 	���� �� �
 �������! ��������� ������� 20 ����	���
 ���� ��� ��� ������ ��� �� ��
������!

�� ��������" �������
�����5������
 ��� ��

���� �� ��� ������ ��
�!

6�� ���
� ���
��
" ������ ����� ��� ������������ �� ��
������ �������
 ��
������
" ������ ���

����
 ���� ��
��������� �������� ���� ��������� ���� ������ 23 ����
!

��	����" ��� ������
7��
�� ��'�� �7��$� � � � � � � �8������� �������
" 	���� 	� 	��� ��
�

������" 23 ����

 ���� ���� � ������ �����������7������'��� ������9! 6�� �'�����" ���

�%(� (�� +� ������ ��� ���� ��
 ��
�� ����
 ��� ������
 ������'��� �� ��� �%(� (�� +� 23 ����"

��� ��� �%(� �(� �%� ������ ��� ���� ��
 �� � ����
 ��� ������
 ������'��� �� ��� �%(� ��� �%� 23

����! ��� �����
������
 ������
� �� ������'��� �� ������
7��
�� �������
 ��
������
 	���
 ����

��� :
���� ���
��
�� ������
� �� � ���� �� ����������� ���
!

Chapter 9

Introduction to convolutional codes

We now introduce binary linear convolutional codes, which like binary linear block codes are
useful in the power-limited (low-SNR, low-ρ) regime. In this chapter we will concentrate on
rate-1/n binary linear time-invariant convolutional codes, which are the simplest to understand
and also the most useful in the power-limited regime. Here is a canonical example:
Example 1. Figure 1 shows a simple rate-1/2 binary linear convolutional encoder. At each

time k, one input bit uk comes in, and two output bits (y1k , y2k) go out. The input bits enter a
2-bit shift register, which has 4 possible states (uk−1, uk−2). The output bits are binary linear
combinations of the input bit and the stored bits.

- n - n y1k = uk + uk−1 + uk−2 -

6 6
input bits

uk
-t D uk−1

-t D uk−2
t

- n
? y2k = uk + uk−2 -

Figure 1. Four-state rate-1/2 binary linear convolutional encoder.

The code C generated by this encoder is the set of all output sequences that can be produced
in response to an input sequence u = (. . . , uk , uk+1, . . .). The code is linear because if (y1,y2)
and (y′

2) are the code sequences produced by u and u′, respectively, then (y1 + y′
2)1,y

′
1,y2 + y′

is the code sequence produced by u + u′ .
As in the case of linear block codes, this implies that the minimum Hamming distance dfree

between code sequences is the minimum Hamming weight of any nonzero codeword. By inspec-
tion, we can see that the Hamming weight of the output sequence when the input sequence is
(. . . , 0, 0, 1, 0, 0, . . .) is 5, and that this is the only weight-5 sequence starting at a given time k.
Of course, by time-invariance, there is such a weight-5 sequence starting at each time k.

We will see that maximum-likelihood sequence decoding of a convolutional code on an AWGN
channel can be performed efficiently by the Viterbi algorithm (VA), with complexity proportional
to the number of states (in this case 4). As with block codes, the probability of error per bit
Pb(E) may be estimated by the union bound estimate (UBE) as

√
Pb(E) ≈ Kb(C)Q (γc(C)(2Eb/N0)) ,

117

118 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

where the nominal coding gain is γc(C) = Rdfree, R is the code rate in input bits per output
bit, and Kb(C) is the number of minimum-weight code sequences per input bit. For this code,
dfree = 5, R = 1/2, and Kb(C) = 1, which means that the nominal coding gain is γc(C) = 5/2
(4 dB), and the effective coding gain is also 4 dB. There is no block code that can achieve an
effective coding gain of 4 dB with so little decoding complexity.

As Example 1 shows, convolutional codes have two different kinds of structure: algebraic struc-
ture, which arises from convolutional encoders being linear systems, and dynamical structure,
which arises from convolutional encoders being finite-state systems. We will first study their
linear system structure. Then we will consider their finite-state structure, which is the key to
ML decoding via the VA. Finally, we will show how to estimate performance using the UBE,
and will give tables of the complexity and performance of the best known rate-1/n codes.

9.1 Linear time-invariant systems over finite fields

We start with a little linear system theory, namely the theory of linear time-invariant (LTI)
systems over finite fields. The reader is probably familiar with the theory of discrete-time LTI
systems over the real or the complex field, which are sometimes called discrete-time real or
complex filters. The theory of discrete-time LTI systems over an arbitrary field F is similar,
except that over a finite field there is no notion of convergence of an infinite sum.

9.1.1 The input/output map of an LTI system

In general, a discrete-time system is characterized by an input alphabet U , an output alphabet Y,
and an input/output map from bi-infinite discrete-time input sequences u = (. . . , uk , uk+1, . . .)
to output sequences y = (. . . , yk, yk+1, . . .). Here we will take the input and output alphabets
to be a common finite field, U = Y = Fq . The indices of the input and output sequences range
over all integers in Z and are regarded as time indices, so that for example we may speak of uk
as the value of the input at time k.

Such a system is linear if whenever u maps to y and u′ maps to y′, then u + u′ maps to
y + y′ and αu maps to αy for any α ∈ Fq . It is time-invariant if whenever u maps to y, then
Du maps to Dy, where D represents the delay operator, namely the operator whose effect is to
delay every element in a sequence by one time unit; i.e., u′ = Du means u′ = uk−1 for all k.k

It is well known that the input/output map of an LTI system is completely characterized by
its impulse response g = (. . . , 0, 0, . . . , 0, g0, g1, g2, . . .) to an input sequence e0 which is equal
to 1 at time zero and 0 otherwise. The expression for g assumes that the LTI system is causal,
which implies that the impulse response g must be equal to 0 before time zero.

The proof of this result is as follows. If the input is a sequence ek which is equal to 1 at time
k and zero otherwise, then since ek = Dke0, by time invariance the output must be Dk g. Then
since an arbitrary input sequence u can be written as u =

�
k ukek, by linearity the output

must be the linear combination
y =

�

k

uk D
k g.

The output yk at time k is thus given by the convolution

yk =
�

�≤k k

uk� gk−k� , (9.1)

′

9.1. LINEAR TIME-INVARIANT SYSTEMS OVER FINITE FIELDS 119

where we use the fact that by causality gk−k� = 0 if k < k . In other words, y is the convolution
of the input sequence u and the impulse response g:

y = u ∗ g.

It is important to note that the sum (??) that defines yk is well defined if and only if it is
a sum of only a finite number of nonzero terms, since over finite fields there is no notion of
convergence of an infinite sum. The sum (??) is finite if and only if one of the following two
conditions holds:

(a) There are only a finite number of nonzero elements gk in the impulse response g;

(b) For every k, there are only a finite number of nonzero elements uk� with k′ ≤ k in the input
sequence u. This occurs if and only if there are only a finite number of nonzero elements
uk with negative time indices k. Such a sequence is called a Laurent sequence.

Since we do not in general want to restrict g to have a finite number of nonzero terms, we
will henceforth impose the condition that the input sequence u must be Laurent, in order to
guarantee that the sum (??) is well defined. With this condition, we have our desired result:

Theorem 9.1 (An LTI system is characterized by its impulse response) If an LTI
system over Fq has impulse response g, then the output sequence in response to an arbitrary
Laurent input sequence u is the convolution y = u ∗ g.

9.1.2 The field of Laurent sequences

A nonzero Laurent sequence u has a definite starting time or delay, namely the time index of
the first nonzero element: del u = min{k : uk �= 0}. The zero sequence 0 is Laurent, but has
no definite starting time; by convention we define del 0 = ∞. A causal sequence is a Laurent
sequence with non-negative delay.

The (componentwise) sum of two Laurent sequences is Laurent, with delay not less than the
minimum delay of the two sequences. The Laurent sequences form an abelian group under
sequence addition, whose identity is the zero sequence 0. The additive inverse of a Laurent
sequence x is −x.

The convolution of two Laurent sequences is a well-defined Laurent sequence, whose delay
is equal to the sum of the delays of the two sequences. The nonzero Laurent sequences form
an abelian group under convolution, whose identity is the unit impulse e0. The inverse under
convolution of a nonzero Laurent sequence x is a Laurent sequence x−1 which may be determined
by long division, and which has delay equal to del x−1 = −del x.

Thus the set of all Laurent sequences forms a field under sequence addition and convolution.

9.1.3 D-transforms

The fact that the input/output map in any LTI system may be written as a convolution y = u∗g
suggests the use of polynomial-like notation, under which convolution becomes multiplication.

=
�

120	 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

Therefore let us define the formal power series u(D) =
�

k ukD
k , g(D) =

�
k gk D

k , and
y(D) =

�
k yk D

k . These are called “D-transforms,” although the term “transform” may be
misleading because these are still time-domain representations of the corresponding sequences.

In these expressions D is algebraically just an indeterminate (place-holder). However, D may
also be regarded as representing the delay operator, because if the D-transform of g is g(D),
then the D-transform of Dg is Dg(D).

These expressions appear to be completely analogous to the “z-transforms” used in the theory
of discrete-time real or complex LTI systems, with the substitution of D for z−1 . The subtle
difference is that in the real or complex case z is often regarded as a complex number in the
“frequency domain” and an expression such as g(z−1) as a set of values as z ranges over C; i.e.,
as a true frequency-domain “transform.”

It is easy to see that the convolution y = u ∗ g then translates to

y(D) = u(D)g(D),

if for multiplication of D-transforms we use the usual rule of polynomial multiplication,

yk uk� gk−k� ,
k�

since this expression is identical to (??). Briefly, convolution of sequences corresponds to mul-
tiplication of D-transforms.

In general, if x(D) and y(D) are D-transforms, then the product x(D)y(D) is well defined when
either x(D) or y(D) is finite, or when both x(D) and y(D) are Laurent. Since a causal impulse
response g(D) is Laurent, the product u(D)g(D) is well defined whenever u(D) is Laurent.

Addition of sequences is defined by componentwise addition of their components, as with vector
addition. Correspondingly, addition of D-transforms is defined by componentwise addition. In
other words, D-transform addition and multiplication are defined in the same way as polynomial
addition and multiplication, and are consistent with the addition and convolution operations for
the corresponding sequences.

It follows that the set of all Laurent D-transforms x(D), which are called the Laurent power
series in D over Fq and denoted by Fq ((D)), form a field under D-transform addition and
multiplication, with additive identity 0 and multiplicative identity 1.

9.1.4 Categories of D-transforms

We pause to give a brief systematic exposition of various other categories of D-transforms.
Let f (D) =

�
k∈Z fk D

k be the D-transform of a sequence f . We say that f or f(D) is “zero
on the past” (resp. “finite on the past”) if it has zero (resp. a finite number) of nonzero fk with
negative time indices k, and “finite on the future” if it has a finite number of nonzero fk with
non-negative time indices k. f(D) is finite if it is finite on both past and future.

(a) (Polynomials	 Fq [D].) If f(D) is zero on the past and finite on the future, then f(D) is
a polynomial in D over Fq . The set of all polynomials in D over Fq is denoted by Fq [D].
D-transform addition and multiplication of polynomials is the same as polynomial addition
and multiplication. Under these operations, Fq [D] is a ring, and in fact an integral domain
(see Chapter 7).

121 9.1. LINEAR TIME-INVARIANT SYSTEMS OVER FINITE FIELDS

(b) (Formal power series Fq [[D]].) If f (D) is zero on the past and unrestricted on the future,
then f(D) is a formal power series in D over Fq . The set of all formal power series in D
over Fq is denoted by Fq [[D]]. Under D-transform addition and multiplication, Fq [[D]] is
a ring, and in fact an integral domain. However, Fq [[D]] is not a field, because D has no
inverse in Fq [[D]]. A formal power series corresponds to a causal sequence.

(c) (Laurent polynomials	 Fq [D, D−1].) If f (D) is finite, then f(D) is a Laurent polynomial
in D over Fq . The set of all Laurent polynomials in D over Fq is denoted by Fq [D, D−1].
Under D-transform addition and multiplication, Fq [D, D−1] is a ring, and in fact an integral
domain. However, Fq [D, D−1] is not a field, because 1 + D has no inverse in Fq [D, D−1]. A
Laurent polynomial corresponds to a finite sequence.

(d) (Laurent power series Fq ((D)).) If f (D) is finite on the past and unrestricted on the future,
then f (D) is a Laurent power series in D over Fq . The set of all Laurent power series in
D over Fq is denoted by Fq ((D)). As we have already seen, under D-transform addition
and multiplication, Fq ((D)) is a field; i.e., every nonzero f(D) ∈ Fq ((D)) has an inverse
f−1(D) ∈ Fq ((D)) such that f (D)f −1(D) = 1, which can be found by long division of
D-transforms; e.g., over any field, the inverse of D is D−1, and the inverse of 1 + D is
1 − D + D2 − D3 + · · ·.

(e) (Bi-infinite power series Fq [[D, D−1]].) If f (D) is unrestricted on the past and future, then
f(D) is a bi-infinite power series in D over Fq . The set of all bi-infinite power series in
D over Fq is denoted by Fq [[D, D−1]]. As we have seen, D-transform multiplication is not
well defined for all f (D), g(D) ∈ Fq [[D, D−1]], so Fq [[D, D−1]] is merely a group under
D-transform addition.

(f) (Rational functions Fq (D).) A Laurent power series f(D) (or the corresponding sequence f)
is called rational if it can be written as f(D) = n(D)/d(D), where n(D) and d(D) �= 0 are
polynomials in Fq [D], and n(D)/d(D) denotes the product of n(D) with d−1(D). The set
of all rational power series in D over Fq is denoted by Fq (D). It is easy to verify that that
Fq (D) is closed under D-transform addition and multiplication. Moreover, the multiplicative
inverse of a nonzero rational D-transform f(D) = n(D)/d(D) is f −1(D) = d(D)/n(D),
which is evidently rational. It follows that Fq (D) is a field.

It is easy to see that Fq [D] ⊂ Fq [D, D−1] ⊂ Fq (D) ⊂ Fq ((D)), since every polynomial is
a Laurent polynomial, and every Laurent polynomial is rational (for example, D−1 + 1 =
(1 + D)/D). The rational functions and the Laurent power series have the nicest algebraic
properties, since both are fields. Indeed, the rational functions form a subfield of the Laurent
power series, as the rational numbers Q form a subfield of the real numbers R. The polynomials
form a subring of the rational functions, as the integers Z form a subring of Q.

The following exercise shows that an infinite Laurent D-transform f (D) is rational if and only
if the corresponding sequence f eventually becomes periodic. (This should remind the reader of
the fact that a real number is rational if and only if its decimal expansion is eventually periodic.)
Exercise 1 (rational = eventually periodic). Show that a Laurent D-transform f (D) is rational

if and only if the corresponding sequence f is finite or eventually becomes periodic. [Hints: (a)
show that a sequence f is eventually periodic with period P if and only if its D-transform f(D)
can be written as f(D) = g(D)/(1 − DP), where g(D) is a Laurent polynomial; (b) using the
results of Chapter 7, show that every nonzero polynomial d(D) ∈ Fq [D] divides 1 −DP for some
integer P .]

122 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

9.1.5 Realizations of LTI systems

So far we have characterized an LTI system over Fq by its input/output map, which we have
shown is entirely determined by its impulse response g or the corresponding D-transform g(D).
The only restriction that we have placed on the impulse response is that it be causal; i.e., that
g(D) be a formal power series in Fq [[D]]. In order that the input/output map be well-defined,
we have further required that the input u(D) be Laurent, u(D) ∈ Fq (D).

In this subsection we consider realizations of such an LTI system. A realization is a block
diagram whose blocks represent Fq -adders, Fq -multipliers, and Fq -delay (memory) elements,
which we take as our elementary LTI systems. An Fq -adder may have any number of inputs
in Fq , and its output is their (instantaneous) sum. An Fq -multiplier may have any number of
inputs in Fq , and its output is their (instantaneous) product. An Fq -delay element has a single
input in Fq , and a single output which is equal to the input one time unit earlier.

For example, if an LTI system has impulse response g(D) = 1 + αD + βD3, then it can be
realized by the realization shown in Figure 2. In this realization there are three delay (memory)
elements, arranged as a shift register of length 3. It is easy to check that the input/output map
is given by y(D) = u(D) + αDu(D) + βD3u(D) = u(D)g(D).

? n
? n

-

-

u −k 2-u −k 1-uk

? n
? n

uk−3
D D D

-

-

α × β ×

-

+ + - yk = uk + αuk−1 + βuk−3

Figure 2. Realization of an LTI system with impulse response g(D) = 1 + αD + βD3 .

More generally, it is easy to see that if g(D) is finite (polynomial) with degree deg g(D) = ν,
then an LTI system with impulse response g(D) can be realized similarly, using a shift register
of length ν.

The state of a realization at time k is the set of contents of its memory elements. For example,
in Figure 2 the state at time k is the 3-tuple (uk−1, uk−2, uk−3). The state space is the set of all
possible states. If a realization over Fq has only a finite number ν of memory elements, then the

3state space has size qν , which is finite. For example, the state space size in Figure 2 is q .
Now suppose that we consider only realizations with a finite number of blocks; in particular,

with a finite number of memory elements, and thus a finite state space size. What is the most
general impulse response that we can realize? If the input is the impulse e0(D) = 1, then
the input is zero after time zero, so the impulse response is determined by the autonomous
(zero-input) behavior after time zero. Since the state space size is finite, it is clear that the
autonomous behavior must be periodic after time zero, and therefore the impulse response must
be eventually periodic— i.e., rational. We conclude that finite realizations can realize only
rational impulse responses.

Conversely, given a rational impulse response g(D) = n(D)/d(D), where n(D) and d(D) �= 0
are polynomial, it is straightforward to show that g(D) can be realized with a finite number
of memory elements, and in fact with ν = max{deg n(D), deg d(D)} memory elements. For
example, Figure 3 shows a realization of an LTI system with the impulse response g(D) =

123 9.2. RATE-1/N BINARY LINEAR CONVOLUTIONAL CODES

(1 + αD + βD3)/(1 − D2 − D3) using ν = 3 memory elements. Because the impulse response is
infinite, the realization necessarily involves feedback, in contrast to a feedbackfree realization of
a finite impulse response as in Figure 2.

vk−2 + vk−3 + �

uk vk vk−1 vk−2 vk−3
D D D

α × β ×

-

? n
? n+ +

-

-

-

n
6

-

? n
? n

-

-

-
? n+ -

yk = vk + αvk−1 + βvk−3

Figure 3. Realization of an LTI system with impulse response
g(D) = (1 + αD + βD3)/(1 − D2 − D3).

Exercise 2 (rational realizations). Generalize Figure 2 to realize any rational impulse response
g(D) = n(D)/d(D) with ν = max{deg n(D),deg d(D)} memory elements.

In summary:

Theorem 9.2 (finitely realizable = rational) An LTI system with causal (thus Laurent)
impulse response g(D) has a finite realization if and only if g(D) is rational. If

νg(D) = n(D)/d(D), then there exists a realization with state space size q , where ν =
max{deg n(D),deg d(D)}. The realization can be feedbackfree if and only if g(D) is polynomial.

9.2 Rate-1/n binary linear convolutional codes

A rate-1/n binary linear convolutional encoder is a single-input, n-output LTI system over the
binary field F2. Such a system is characterized by the n impulse responses {gj (D), 1 ≤ j ≤ n},
which can be written as an n-tuple g(D) = (g1(D), . . . , gn(D)).

If the input sequence u(D) is Laurent, then the n output sequences {yj (D), 1 ≤ j ≤ n} are
well defined and are given by yj (D) = u(D)gj (D) More briefly, the output n-tuple y(D) =
(y1(D), . . . , yn(D)) is given by y(D) = u(D)g(D).

The encoder is polynomial (or “feedforward”) if all impulse responses gj (D) are polynomial.
In that case there is a shift-register realization of g(D) as in Figure 1 involving a single shift
register of length ν = deg g(D) = maxj deg gj (D). The encoder state space size is then 2ν .
Example 1 (Rate-1/2 convolutional encoder). A rate-1/2 polynomial binary convolutional

encoder is defined by a polynomial 2-tuple g(D) = (g1(D), g2(D)). A shift-register realization
of g(D) involves a single shift register of length ν = max {deg g1(D), deg g2(D)} and has a state
space of size 2ν . For example, the impulse response 2-tuple g(D) = (1 + D2 , 1 + D + D2) is
realized by the 4-state rate-1/2 encoder illustrated in Figure 1.

More generally, the encoder is realizable if all impulse responses gj (D) are causal and rational,
since each response must be (finitely) realizable by itself, and we can obtain a finite realization
of all of them by simply realizing each one separately.

′ ′ ′

124 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

A more efficient (and in fact minimal, although we will not show this yet) realization may
be obtained as follows. If each gj (D) is causal and rational, then gj (D) = nj (D)/dj (D) for
polynomials nj (D) and dj (D) �= 0, where by reducing to lowest terms, we may assume that
nj (D) and dj (D) have no common factors. Then we can write

1(D), n2(D), . . . , nn(D))
=

n′(D)
g(D) =

(n
d(D) d(D)

,

where the common denominator polynomial d(D) is the least common multiple of the denomi-
nator polynomials dj (D), and n′(D) and d(D) have no common factors. In order that g(D) be
causal, d(D) cannot be divisible by D; i.e., d0 = 1.

Now, as the reader may verify by extending Exercise 2, this set of n impulse responses may be
realized by a single shift register of length ν = max{deg n′(D),deg d(D)} memory elements, with
feedback coefficients determined by the common denominator polynomial d(D) as in Figure 3,
and with the n outputs formed as n different linear combinations of the shift register contents,
as in Figure 1. To summarize:

Theorem 9.3 (Rate-1/n convolutional encoders) If g(D) = (g1(D), g2(D), . . . , gn(D)) is
the set of n impulse responses of a rate-1/n binary linear convolutional encoder, then there
exists a unique denominator polynomial d(D) with d0 = 1 such that we can write each gj (D)
as gj (D) = nj (D)/d(D), where the numerator polynomials nj (D) and d(D) have no common
factor. There exists a (minimal) realization of g(D) with ν = max{deg n′(D),deg d(D)} memory
elements and thus 2ν states, which is feedbackfree if and only if d(D) = 1.

9.2.1 Finite-state representations of convolutional codes

Because a convolutional encoder is a finite-state machine, it may be characterized by a finite
state-transition diagram. For example, the encoder of Example 1 has the 4-state state-transition
diagram shown in Figure 4(a). Each state is labelled by two bits representing the contents of
the shift register, and each state transition is labelled by the two output bits associated with
that transition.

Alternatively, a finite-state encoder may be characterized by a trellis diagram, which is simply
a state-transition diagram with the states sk at each time k shown separately. Thus there are
transitions only from states sk at time k to states sk+1 at time k + 1. Figure 4(b) shows a
segment of a trellis diagram for the encoder of Example 1, with states labelled as in Figure 4(a).

n - n - n - n
� HHH

0000 HHH
00

� HHH
00�� � � ��

�- ������ q � � n �j n �j n �j n111 10 PPPP�� 10 ��
H 10 ��

�� 10 H 10 ��
H 10* � HHH

* �� HHH
*HHH01 · · · @� H @� H @� H · · · �� 1100 � n � 01 �@�

00 � 00 i1101 ?6
������ 01 �@ � 01 �@�

� j � j � j
)10�� � 01* n * n * n

�
PPPP 01 �@R R ��@R�� n - n - n - n11 � @ 11 �

�@@ 11 @ 11
Figure 4. (a) Four-state state transition diagram; (b) Corresponding trellis diagram.

9.2. RATE-1/N BINARY LINEAR CONVOLUTIONAL CODES 125

9.2.2 Rate-1/n binary linear convolutional codes

A rate-1/n binary linear convolutional code C is defined as the set of “all” output n-tuples
y(D) that can be generated by a rate-1/n binary linear convolutional encoder. If the encoder
is characterized by an impulse response n-tuple g(D), then C is the set of output n-tuples
y(D) = u(D)g(D) as the input sequence u(D) ranges over “all” possible input sequences.

How to define the set of “all” input sequences is actually a subtle question. We have seen
that if g(D) is not polynomial, then we must restrict the input sequences u(D) to be Laurent
in order that the output y(D) be well-defined. On the other hand, u(D) should be permitted
to be infinite, because it can happen that some finite code sequences are generated by infinite
input sequences (this phenomenon is called catastrophicity; see below).

The following definitions of the set of “all” input sequences meet both these criteria and are
therefore OK; all have been used in the literature.

• The set F2((D)) of all formal Laurent series;

• The set F2(D) of all rational functions;

• The set F2[[D]] of all formal power series.

Here we will use the set F2((D)) of formal Laurent series. As we have seen, F2((D)) is a
field under D-transform addition and multiplication, and includes the field F2(D) of rational
functions as a proper subfield. Since g(D) is rational, the set F2(D) would suffice to generate
all finite code sequences; however, we prefer F2((D)) because there seems no reason to constrain
input sequences to be rational. We prefer either of these to F2[[D]] because F2((D)) and F2(D)
are time-invariant, whereas F2[[D]] is not; moreover, F2[[D]] is not a field, but only a ring.

The convolutional code generated by g(D) ∈ (F2(D))n will therefore be defined as

C = {y(D) = u(D)g(D), u(D) ∈ F2((D))}.

The rational subcode of C is the set of all its rational sequences,

Cr = {y(D) ∈ C : y(D) ∈ (F2(D))n},

and the finite subcode of C is the set of all its Laurent polynomial sequences,

Cf = {y(D) ∈ C : y(D) ∈ (F2[D, D−1])n}.

Since F2[D, D−1] ⊂ F2(D) ⊂ F2((D)), we have Cf ⊂ Cr ⊂ C.
Exercise 3 (input/output properties)
(a) Show that y(D) is an n-tuple of formal Laurent series, y(D) ∈ (F2((D)))n .
(b) Show that y(D) is rational if and only if u(D) is rational; i.e.,

Cr = {y(D) = u(D)g(D), u(D) ∈ F2(D)}.

(c) Show that y(D) is finite if and only if u(D) = a(D)lcm{dj (D)}/ gcd{nj (D)}, where a(D)
is finite, lcm{dj (D)} is the least common multiple of the denominators dj (D) of the gj (D), and
gcd{nj (D)} is the greatest common divisor of their numerators.

′

′
′

126 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

A convolutional code C has the group property under D-transform addition, since if y(D) =
u(D)g(D) and y′(D) = u′(D)g(D) are any two convolutional code n-tuples generated by two
input sequences and u(D) and u′(D), respectively, then the n-tuple y(D) + y′(D) is generated
by the input sequence u(D) + u′(D). It follows that C is a vector space over the binary field
F2, an infinite-dimensional subspace of the infinite-dimensional vector space (F2((D)))n of all
Laurent n-tuples.

At a higher level, a rate-1/n convolutional code C is a one-dimensional subspace with generator
g(D) of the n-dimensional vector space (F2((D)))n of all Laurent n-tuples over the Laurent field
F2((D)). Similarly, the rational subcode Cr is a one-dimensional subspace with generator g(D)
of the n-dimensional vector space (F2(D))n of all rational n-tuples over the rational field F2(D).
In these respects rate-1/n convolutional codes are like (n, 1) linear block codes.

9.2.3 Encoder equivalence

Two generator n-tuples g(D) and g′(D) will now be defined to be equivalent if they generate
the same code, C = C . We will shortly seek the best encoder to generate any given code C.

Theorem 9.4 (Rate-1/n encoder equivalence) Two generator n-tuples g(D), g′(D) are
equivalent if and only if g(D) = u(D)g′(D) for some nonzero rational function u(D) ∈ F2(D).

Proof. If the two encoders generate the same code, then g(D) must be a sequence in the code
generated by g′(D), so we have g(D) = u(D)g′(D) for some nonzero u(D) ∈ F2((D)). Moreover
g(D) is rational, so from Exercise 3(b) u(D) must be rational. Conversely, if g(D) = u(D)g′(D)
and y(D) ∈ C, then y(D) = v(D)g(D) for some v(D) ∈ F ((D)); thus y(D) = v(D)u(D)g′(D)
and y(D) ∈ C , so C ⊆ C′. Since g′(D) = g′(D)/u(D), a similar argument can be used in the
other direction to show C′ ⊆ C, so we can conclude C = C .

Thus let g(D) = (g1(D), g2(D), . . . , gn(D)) be an arbitrary rational generator n-tuple. We
can obtain an equivalent polynomial generator n-tuple by multiplying g(D) by any polynomial
which is a multiple of all denominator polynomials dj (D), and in particular by their least
common multiple lcm{dj (D)}. Thus we have:

Corollary 9.5 Every generator n-tuple g(D) is equivalent to a polynomial n-tuple g′(D).

A generator n-tuple g(D) is called delay-free if at least one generator has a nonzero term at
time index 0; i.e., if g �= 0. If g(D) is not delay-free, then we can eliminate the delay by using
instead the equivalent generator n-tuple g′(D) = g(D)/Ddel g(D), where del g(D) is the smallest
time index k such that gk �= 0. Thus:

Corollary 9.6 Every generator n-tuple g(D) is equivalent to a delay-free n-tuple g′(D), namely
g′(D) = g(D)/Ddel g(D).

A generator n-tuple g(D) is called catastrophic if there exists an infinite input sequence u(D)
that generates a finite output n-tuple y(D) = u(D)g(D). Any realization of g(D) must thus
have a cycle in its state-transition diagram other than the zero-state self-loop such that the
outputs are all zero during the cycle.

127 9.2. RATE-1/N BINARY LINEAR CONVOLUTIONAL CODES

There is a one-to-one correspondence between the set of all paths through the trellis diagram of
a convolutional encoder and the set {u(D)} of all input sequences. However, the correspondence
to the set of all output sequences {u(D)g(D)}— i.e., to the convolutional code C generated by
the encoder— could be many-to-one. For example, if the encoder is catastrophic, then there are
at least two paths corresponding to the all-zero output sequence, and from the group property
of the encoder there will be at least two paths corresponding to all output sequences. In fact,
the correspondence between convolutional code sequences and trellis paths is one-to-one if and
only if g(D) is noncatastrophic.

By Exercise 3(c), y(D) is finite if and only if u(D) = a(D)lcm{dj (D)}/ gcd{nj (D)} for some
finite a(D). Since lcm{dj (D)} is also finite, u(D) can be infinite if and only if gcd{nj (D)} has
an infinite inverse. This is true if and only gcd{nj (D)} �= Dd for some integer d. In summary:

Theorem 9.7 (Catastrophicity) A generator n-tuple g(D) is catastrophic if and only if all
numerators nj (D) have a common factor other than D.

Example 2. The rate-1/2 encoder g(D) = (1 + D2 , 1 + D + D2) is noncatastrophic, since
the polynomials 1 + D2 and 1 + D + D2 are relatively prime. However, the rate-1/2 encoder
g(D) = (1 + D2 , 1+ D) is catastrophic, since 1 + D2 and 1 + D have the common divisor 1 + D;
thus the infinite input 1/(1 + D) = 1 + D + D2 + . . . leads to the finite output y(D) = (1 + D, 1)
(due to a self-loop from the 11 state to itself with output 00).

If g(D) is catastrophic with greatest common factor gcd{nj (D)}, then we can easily find
an equivalent noncatastrophic generator n-tuple by dividing out the common factor: g′(D) =
g(D)/ gcd{nj (D)}. For instance, in Example 2, we should replace (1 + D2 , 1+ D) by (1 + D, 1).

In summary, we can and should eliminate denominators and common numerator factors:

Corollary 9.8 Every generator n-tuple g(D) is equivalent to a unique (up to a scalar multiple)
noncatastrophic delay-free polynomial n-tuple g′(D), namely

g′(D) =
lcm{dj (D)}

g(D).
gcd{nj (D)}

Thus every rate-1/n binary convolutional cade C has a unique noncatastrophic delay-free poly-
nomial generator n-tuple g(D), which is called canonical. Canonical generators have many nice
properties, including:

• The finite subcode Cf is the subcode generated by the finite input sequences.

• The feedbackfree shift-register realization of g(D) is minimal over all equivalent encoders.

In general, it has been shown that a convolutional encoder is minimal — that is, has the
minimal number of states over all encoders for the same code— if and only if it is non-
catastrophic and moreover there are no state transitions to or from the zero state with all-
zero outputs, other than from the zero state to itself. For a rate-1/n encoder with generator
g(D) = (n1(D), . . . , nn(D))/d(D), this means that the numerator polynomials nj (D) must have
no common factor, and that the degree of the denominator polynomial d(D) must be no greater
than the maximum degree of the numerators.

′

128 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

A systematic encoder for a rate-1/n convolutional code is one in which the input sequence
appears unchanged in one of the n output sequences. A systematic encoder for a code generated
by polynomial encoder g(D) = (g1(D), . . . , gn(D)) may be obtained by multiplying all generators
by 1/g1(D) (provided that g10 = 1). For example, g(D) = (1, (1 + D + D2)/(1 + D2)) is a
systematic encoder for the code generated by (1 + D2 , 1 + D + D2).

A systematic encoder is always delay-free, noncatastrophic and minimal. Sometimes systematic
encoders are taken as an alternative class of nonpolynomial canonical encoders.

9.2.4 Algebraic theory of rate-k/n convolutional codes

There is a more general theory of rate-k/n convolutional codes, the main result of which is as
follows. Let C be any time-invariant subspace of the vector space of all y(D) ∈ (Fq ((D)))n. A
canonical polynomial encoder for C may be constructed by the following greedy algorithm:

Initialization: set i = 0 and C0 = {0};
Do loop: if Ci = C, we are done, and k = i;

otherwise, increase i by 1 and take any polynomial y(D) of
least degree in C \ Ci as gi(D).

The shift-register realization of the resulting k×n generator matrix G(D) = {gi(D), 1 ≤ i ≤ k}
is then a minimal encoder for C, in the sense that no other encoder for C has fewer memory
elements. The degrees νi = deg gi(D) = max1≤j≤n deg gij (D), 1 ≤ i ≤ k, are uniquely deter-
mined by this construction, and are called the “constraint lengths” (or controllability indices)
of C; their maximum νmax is the (controller) memory of C, and their sum ν =

�
i νi (the “over-

all constraint length”) determines the size 2ν of the state space of any minimal encoder for C.
Indeed, this encoder turns out to have every property one could desire, except for systematicity.

9.3 Terminated convolutional codes

A rate-1/n terminated convolutional code Cµ is the code generated by a polynomial convolutional
encoder g(D) (possibly catastrophic) when the input sequence u(D) is constrained to be a
polynomial of degree less than some nonnegative integer µ:

Cµ = {u(D)g(D) | deg ui(D) < µ}.

In this case the total number of possibly nonzero input bits is k = µ, and the total number
of possibly nonzero output bits is n = n(µ + ν), where ν = max deg gj (D) is the shift-register
length in a shift-register realization of g(D). Thus a terminated convolutional code may be
regarded as an (n′, k) = (n(µ + ν), µ) binary linear block code.

The trellis diagram of a terminated convolutional code is finite. For example, Figure 5 shows
the trellis diagram of the 4-state (ν = 2) rate-1/2 encoder of Example 1 when µ = 5, which
yields a (14, 5, 5) binary linear block code.
Exercise 4. Show that if the (catastrophic) rate-1/1 binary linear convolutional code gener-

ated by g(D) = 1 + D is terminated with deg u(D) < µ, then the resulting code is a (µ+1, µ, 2)
SPC code. Conclude that any binary linear SPC code may be represented by a 2-state trellis
diagram.

129 9.4. THE VITERBI ALGORITHM

n - n - n - n - n - nn - 00
� HHH

0000 n - 00 HHH
00

� HHH
00 00 00HHH

HHH � � ��
j n j n �j n �j n �j n �� �
H 10 H 10 ��

H 10
@�

� HHH

H 10 ��
H 10 �

� ��
HHH

HHH
* ��* HHH

* �@ @�
� @�

� HHH� j � j � j � j �H n H n H n H n H n@ j 01 �@�
R n �@

� 01
��� 01 �@�� 01 �@� � 01

R n �@@
* * * *
R n �@@ R- n@@ 11 � - 11 � - 11 � @ 11 �

Figure 5. Trellis diagram of a terminated rate-1/2 convolutional encoder.

Exercise 5. Show that if the (catastrophic) rate-1/1 binary linear convolutional code gen-
erated by g(D) = 1 + D + D3 is terminated with µ = 4, then the resulting code is a (7, 4, 3)
Hamming code.

9.4 Maximum likelihood sequence detection: The VA

A convolutional code sequence y(D) = u(D)g(D) may be transmitted through an AWGN chan-
nel in the usual fashion, by mapping each bit yjk ∈ {0, 1} to s(yjk) ∈ {±α} via the usual 2-PAM
map. We denote the resulting sequence by s(y(D)). At the output of the channel, the received
sequence is

r(D) = s(y(D)) + n(D),

where n(D) is an iid Gaussian noise sequence with variance N0/2 per dimension.
As usual, maximum-likelihood sequence detection is equivalent to minimum-distance (MD)

detection; i.e., find the code sequence y(D) such that ‖r(D) − s(y(D))‖2 is minimum. In turn,
since s(y(D)) is binary, this is equivalent to maximum-inner-product (MIP) detection: find the
code sequence y(D) that maximizes

〈r(D), s(y(D))〉 =
�

k

〈rk, s(yk)〉 =
�

j

�

k

rkj s(ykj).

It may not be immediately clear that this is a well-posed problem, since all sequences are
bi-infinite. However, we will now develop a recursive algorithm that solves this problem for
terminated convolutional codes; it will then be clear that the algorithm continues to specify a
well-defined maximum-likelihood sequence detector as the length of the terminated convolutional
code goes to infinity.

The algorithm is the celebrated Viterbi algorithm (VA), which some readers may recognize
simply as “dynamic programming” applied to a trellis diagram.

The first observation is that if we assign to each branch in the trellis a “metric” equal to
‖rk − s(yk)‖2, or equivalently −〈rk, s(yk)〉, where yk is the output n-tuple associated with that
branch, then since each path through the trellis corresponds to a unique code sequence, MD
or MIP detection becomes equivalent to finding the least-metric (“shortest”) path through the
trellis diagram.

The second observation is that the initial segment of the shortest path, say from time 0 through
time k, must be the shortest path to whatever state sk it passes through at time k, since if there
were any shorter path to sk, it could be substituted for that initial segment to create a shorter
path overall, contradiction. Therefore it suffices at time k to determine and retain for each state

130 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

sk at time k only the shortest path from the unique state at time 0 to that state, called the
“survivor.”

The last observation is that the time-(k + 1) survivors may be determined from the time-k
survivors by the following recursive “add-compare-select” operation:

(a) For each branch from a state at time k to a state at time k + 1, add the metric of that
branch to the metric of the time-k survivor to get a candidate path metric at time k + 1;

(b) For each state at time	 k + 1, compare the candidate path metrics arriving at that state
and select the path corresponding to the smallest as the survivor. Store the survivor path
history from time 0 and its metric.

At the final time µ + ν, there is a unique state, whose survivor must be the (or at least a)
shortest path through the trellis diagram of the terminated code.

The Viterbi algorithm has a regular recursive structure that is attractive for software or hard-
ware implementation. Its complexity is clearly proportional to the number of trellis branches per
unit of time (“branch complexity”), which in the case of a binary rate-k/n 2ν -state convolutional
code is 2k+ν .

For infinite trellises, there are a few additional issues that must be addressed, but none lead
to problems in practice.

First, there is the issue of how to get started. In practice, if the algorithm is simply initiated
with arbitrary accumulated path metrics at each state, say all zero, then it will automatically
synchronize in a few constraint lengths.

Second, path histories need to be truncated and decisions put out after some finite delay. In
practice, it has been found empirically that with high probability all survivors will have the
same history prior to about five constraint lengths in the past, so that a delay of this magnitude
usually suffices to make the additional probability of error due to premature decisions negligible,
for any reasonable method of making final decisions.

In some applications, it is important that the decoded path be a true path in the trellis; in
this case, when decisions are made it is important to purge all paths that are inconsistent with
those decisions.

Finally, the path metrics must be renormalized from time to time so that their magnitude does
not become too great; this can be done by subtracting the minimum metric from all of them.

In summary, the VA works perfectly well on unterminated convolutional codes. Maximum-
likelihood sequence detection (MLSD) of unterminated codes may be operationally defined by
the VA.

More generally, the VA is a general method for maximum-likelihood detection of the state
sequence of any finite-state Markov process observed in memoryless noise. For example, it
can be used for maximum-likelihood sequence detection of digital sequences in the presence of
intersymbol interference.

′

9.5. PERFORMANCE ANALYSIS OF CONVOLUTIONAL CODES 131

9.5 Performance analysis of convolutional codes

The performance analysis of convolutional codes is based on the notion of an “error event.”
Suppose that the transmitted code sequence is y(D) and the detected code sequence is y′(D).

Each of these sequences specifies a unique path through a minimal code trellis. Typically these
paths will agree for long periods of time, but will disagree over certain finite intervals. An error
event corresponds to one of these finite intervals. It begins when the path y′(D) first diverges
from the path y(D), and ends when these two paths merge again. The error sequence is the
difference e(D) = y′(D) − y(D) over this interval.

By the group property of a convolutional code C, such an error sequence e(D) is a finite code
sequence in C. If the encoder g(D) is noncatastrophic (or if the code is a terminated code), then
e(D) = ue(D)g(D) for some finite input sequence ue(D).

The probability of any such finite error event in AWGN is given as usual by
√

Pr(y′(D) | y(D)) = Q (‖s(y′(D)) − s(y(D))‖2/2N0).

As in the block code case, we have

‖s(y′(D)) − s(y(D))‖2 = 4α2dH (y , y).

The minimum error event probability is therefore governed by the minimum Hamming distance
between code sequences y(D). For convolutional codes, this is called the free distance dfree.

By the group property of a convolutional code, dfree is equal to the minimum Hamming weight
of any finite code sequence y(D); i.e., a code sequence that starts and ends with semi-infinite
all-zero sequences. In a minimal trellis, such a code sequence must start and end with semi-
infinite all-zero state sequences. Thus dfree is simply the minimum weight of a trellis path that
starts and ends in the zero state in a minimal trellis, which can easily be found by a search
through the trellis using a version of the VA.

Example 1 (cont.) From the state-transition diagram of Figure 4(a) or the trellis diagram
of Figure 4(b), it is clear that the the free distance of the example 4-state rate-1/2 code is
dfree = 5, and that the only code sequences with this weight are the generator sequence g(D) =
(1 + D2 , 1 + D + D2) and its time shifts Dk g(D).

For a rate-k/n binary convolutional code, it makes sense to normalize the error probability
per unit time of the code— i.e., per k input or n output bits. The probability of an error event
starting at a given time, assuming that no error event is already in progress at that time, may
be estimated by the union bound estimate as

√
Pc(E) ≈ Kmin(C)Q (2α2dfree/N0) (9.2)

√
= Kmin(C)Q (γc(C)(2Eb/N0)), (9.3)

where Eb = nα2/k is the average energy per bit, and

γc(C) = dfree(k/n) (9.4)

is the nominal coding gain of the convolutional code C, while Kmin(C) is the number of error
events of weight dfree in C per unit time. Note that the nominal coding gain γc(C) = dfree(k/n)

132 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

is defined analogously to the block code case. Note also that for a time-invariant code C, the
error event probability Pc(E) is independent of time.

For direct comparison to block codes, the error probability per bit may be estimated as:
√

Pb(E) = Pc(E)/k ≈ Kb(C)Q (γc(C)(2Eb/N0)), (9.5)

where the error coefficient is Kb(C) = Kmin(C)/k.

Example 1 (cont.) The nominal coding gain of the Example 1 code is γc(C) = 5/2 (4 dB) and
its error coefficient is Kb(C) = Kc(C) = 1, so the UBE is

√
Pb(E) ≈ Q (5Eb/N0).

Compare the (8, 4, 4) RM block code, which has the same rate (and the same trellis complexity),
but has nominal coding gain γc(C) = 2 (3 dB) and error coefficient Kb(C) = 14/4 = 3.5.

In general, for the same rate and “complexity” (measured by minimal trellis complexity),
convolutional codes have better coding gains than block codes, and much lower error coefficients.
They therefore usually yield a better performance vs. complexity tradeoff than block codes, when
trellis-based ML decoding algorithms such as the VA are used for each. Convolutional codes
are also more naturally suited to continuous sequential data transmission than block codes.
Even when the application calls for block transmission, terminated convolutional codes usually
outperform binary block codes. On the other hand, if there is a decoding delay constraint, then
block codes will usually slightly outperform convolutional codes.

Tables 1-3 give the parameters of the best known convolutional codes of short to moderate
constraint lengths for rates 1/2, 1/3 and 1/4, which are well suited to the power-limited regime.

We see that it is possible to achieve nominal coding gains of 6 dB with as few as 16 states
with rate-1/3 or rate-1/4 codes, and effective coding gains of 6 dB with as few as 32 states, to
the accuracy of the union bound estimate (which becomes somewhat optimistic as these codes
become more complex). (There also exists a time-varying rate-1/2 16-state convolutional code
with dfree = 8 and thus γc = 4 (6 dB).) With 128 or 256 states, one can achieve effective coding
gains of the order of 7 dB. ML sequence detection using the Viterbi algorithm is not a big thing
for any of these codes.

133 9.5. PERFORMANCE ANALYSIS OF CONVOLUTIONAL CODES

Table 9.1: Rate-1/2 binary linear convolutional codes

ν dfree γc dB Kb γeff (dB)
1 3 1.5 1.8 1 1.8
2 5 2.5 4.0 1 4.0
3 6 3 4.8 2 4.6
4 7 3.5 5.2 4 4.8
5 8 4 6.0 5 5.6
6 10 5 7.0 46 5.9
6 9 4.5 6.5 4 6.1
7 10 5 7.0 6 6.7
8 12 6 7.8 10 7.1

Table 9.2: Rate-1/3 binary linear convolutional codes

ν dfree γc dB Kb γeff (dB)
1 5 1.67 2.2 1 2.2
2 8 2.67 4.3 3 4.0
3 10 3.33 5.2 6 4.7
4 12 4 6.0 12 5.3
5 13 4.33 6.4 1 6.4
6 15 5 7.0 11 6.3
7 16 5.33 7.3 1 7.3
8 18 6 7.8 5 7.4

Table 9.3: Rate-1/4 binary linear convolutional codes

ν dfree γc dB Kb γeff (dB)
1 7 1.75 2.4 1 2.4
2 10 2.5 4.0 2 3.8
3 13 3.25 5.1 4 4.7
4 16 4 6.0 8 5.6
5 18 4.5 6.5 6 6.0
6 20 5 7.0 37 6.0
7 22 5.5 7.4 2 7.2
8 24 6 7.8 2 7.6

134 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

9.6 More powerful codes and decoding algorithms

We conclude that by use of the optimal VA with moderate-complexity convolutional codes like
those in Tables 1-3, we can close about 7 dB of the 12 dB gap between the Shannon limit and
uncoded performance at error rates of the order of Pb(E) ≈ 10−6 .

To get closer to the Shannon limit, one uses much longer and more powerful codes with
suboptimal decoding algorithms. For instance:

1. Concatenation of an inner code with ML decoding with an outer Reed-Solomon (RS) code
with algebraic decoding is a powerful approach. For the inner code, it is generally better to use
a convolutional code with VA decoding than a block code.

2. A convolutional code with an arbitrarily long constraint length may be decoded by a
recursive tree-search technique called sequential decoding. There exist various sequential de-
coding algorithms, of which the fastest is probably the Fano algorithm. In general, sequential
algorithms follow the best code path through the code trellis (which becomes a tree for long
constraint lengths) as long as the path metric exceeds its expected value for the correct path.
When a wrong branch is taken, the path begins to look bad; the algorithm then backtracks and
tries alternative paths until it again finds a good one.

The amount of decoding computation is a random variable with a Pareto (power-law) dis-
tribution; i.e., Pr(number of computations ≥ N)
 N −α . A Pareto distribution has a finite
mean when the Pareto exponent α is greater than 1. The rate at which α = 1 is called the
computational cut-off rate R0. On the AWGN channel, at low code rates, the computational
cut-off rate occurs when Eb/N0 is about 3 dB away from the Shannon limit; thus an effective
coding gain of the order of 9 dB can be obtained at error rates of the order of Pb(E) ≈ 10−6 .

3. In the past decade, these techniques have been superseded by capacity-approaching codes
such as turbo codes and low-density parity-check codes with iterative decoding. Such powerful
coding schemes will be the principal topic of the latter part of this course.

Chapter 10

Trellis representations of binary
linear block codes

We now return to binary linear block codes and discuss trellis representations, particularly
minimal trellis representations. The three main reasons for doing so are:

(a) Trellis-based (Viterbi algorithm) decoding is one of the most efficient methods known for
maximum-likelihood (ML) decoding of general binary linear block codes;

(b) The complexity of a minimal trellis gives a good measure of the complexity of a code,
whereas the parameters (n, k, d) do not;

(c) Trellis representations are the simplest class of graphical representations of codes, which
will be a central concept in our later discussion of capacity-approaching codes.

The topic of trellis complexity of block codes was an active research area in the 1990s. We will
summarize its main results. For an excellent general review, see [A. Vardy, “Trellis structure of
codes,” in Handbook of Coding Theory, Elsevier, 1998.]

10.1 Definition

We saw in the previous chapter that certain binary linear block codes could be represented as
terminated convolutional codes, and therefore have trellis representations.
Example 1. (SPC codes) Any (n, n− 1, 2) single-parity-check (SPC) code has a two-state trellis
representation like that shown in Figure 1 (see Exercise 9.4).

0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n* * * * � �1� � 1� � 1�� 1� � 1� * *HH1H
HHH

HHH
HHH

HHH ��1 H 1n
�1�� �H 1n - � 1 H 1n

�
- � 1 H 1n -j � 1 H 1n

�
j � 1 H 1n

�
j

HHH
0 j 0 - 0 j 0 - 0 j

Figure 1. Two-state trellis for a binary (n, n − 1, 2) single-parity-check code (n = 7).

In this chapter, we will show that all binary linear block codes have trellis (finite-state) repre-
sentations. Indeed, we will show how to find minimal trellis representations.

135

��

136 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

In general, a trellis representation of a block code is a directed graph like that of Figure 1 in
which there is one starting state (root) at time 0, one ending state (goal, “toor”) at time N , and
state spaces Sk of size greater than one at all N − 1 intermediate times k, 1 ≤ k < N . All edges
(branches, state transitions) go from a state at some time k to a state at the next time k + 1.
Each edge is labelled by an n-tuple of output symbols. The set of all possible codewords is in
one-to-one correspondence with the set of all possible paths through the trellis. The codeword
associated with any particular path is the sequence of corresponding n-tuple labels.
Example 2. ((8, 4, 4) RM code.) Figure 2 shows a trellis representation of an (8, 4, 4) binary
Reed-Muller code with generators {11110000, 10101010, 11001100, 11111111}. Here two output
symbols (bits) are associated with each branch. It can be seen that each of the 16 codewords in
this code corresponds to a unique path through this trellis.

*����

HH HHH HHH H-

00
*��
H

HHH-

j

*��
Hj

00
1111 �

�

�n n 1111

�

01 01

--

**���
H

�
H

HHH
HHH--jj

jj

**���
H

�
H

10 10 01
10��

10n n n

��

10

��

��

Figure 2. Four-state trellis for (8, 4, 4) Reed-Muller code.

Given a trellis representation of a block code and a sequence of received symbol log likelihoods,
the Viterbi algorithm (VA) may be used to find the trellis path with greatest log likelihood—
i.e., to perform ML decoding of the code.

There are various measures of the complexity of a trellis, which are all related to VA decoding
complexity. The most common is perhaps the state complexity profile, which is just the sequence
of state space sizes. For example, the state complexity profile of the trellis of Figure 1 is
{1, 2, 2, 2, 2, 2, 2, 1}, and that of the trellis of Figure 2 is {1, 4, 4, 4, 1}. The state complexity of a
trellis is often defined as the maximum state space size; e.g., 2 or 4, respectively, for these two
trellises. The branch complexity profile is the sequence of numbers of branches in each section—
e.g., {2, 4, 4, 4, 4, 4, 2} and {4, 8, 8, 4} for the trellises of Figures 1 and 2, respectively— and the
branch complexity is the maximum number of branches in any section— e.g., 4 or 8, respectively.
The complexity of VA decoding is more precisely measured by the branch complexity profile,
but any of these measures gives a good idea of VA decoding complexity. 1

10.2 Minimal trellises and the state space theorem

A minimal trellis for a given linear block code will be defined as a trellis that has the minimum
possible state space size at each time. It is not immediately clear that there exists a single trellis
that minimizes every state space size, but for linear block codes, we will see that there exists a
canonical minimal trellis with this property. It turns out that the canonical minimal trellis also
minimizes every other trellis complexity measure, including VA decoding complexity, so that we
need not worry whether we are minimizing the right quantity.

1The most precise measure of VA decoding complexity is 2|E|− |V |+ 1, where |E| and |V | denote the numbers
of edges and vertices in the graph of the trellis, respectively.

-- -n n n
@

00 �

R-Hj
@@

@00nHHH1100 0011 n
01HHHHj

*���
� �� - -- -n n n n

10 01 01

10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM 137

10.2.1 The state space theorem for linear block codes

The state space theorem is an easy but fundamental theorem that sets a lower bound on the state
space size of a trellis for a linear block code at any time, and also indicates how to construct a
canonical minimal trellis. For simplicity, we will prove it here only for binary linear block codes,
but it should be clear how it generalizes to arbitrary linear codes. (In fact, it generalizes to
arbitrary codes over groups.)

The reader should think of a trellis as defining a state-space realization of a time-varying finite-
state discrete-time linear system, where these terms are used as in system theory. The time axis
I of the system is some subinterval of the integers Z; e.g., a finite subinterval I = [0, N] ⊆ Z.

In a state-space realization, a state space Sk is defined at each time k ∈ I. The defining
property of a state space is the Markov property :
Markov property. The state space Sk of a system at time k has the Markov property if, given
that the system is in a certain state sk ∈ Sk at time k, its possible future trajectories depend
only on sk and not otherwise on the previous history of the system. In other words, the state
sk ∈ Sk is a sufficient statistic for the past with respect to prediction of possible futures.

Let the past at time k be the set P = (−∞, k) ∩ I of time indices in I prior to time k, and
the future at time k be the set F = [k,∞) ∩I of time indices at time k or later. Given a linear
code C, the state space theorem may be expressed in terms of certain linear codes defined on
the past P and future F , as follows.

Given any subset J ⊆ I, the subcode CJ is defined as the set of codewords whose components
are equal to 0 on the complement of J in I. It is possible to think of CJ either as a code of
length |J | or as a code of length |I| in which all symbols not in J equal 0. It should be clear
from the context which of these two viewpoints is used.

The subcode CJ is evidently a subset of the codewords in C that has the group property, and
therefore is a linear code. In coding theory, CJ is called a shortened code of C. Because CJ ⊆ C,
the minimum Hamming distance of CJ is at least as great as that of C.

Similarly, given J ⊆ I, the projection C|J is defined as the set of all projections of codewords
of C onto J . By projection, we mean either zeroing of all coordinates whose indices are not in
J , or throwing away (puncturing) all such coordinates. Correspondingly, it is possible to think
of C|J either as a code of length |J | or as a code of length |I| in which all symbols not in J
equal 0. In coding theory, C|J is called a punctured code of C.

The projection C|J evidently inherits the group property from C, and therefore is also a linear
code defined on J . Moreover, CJ is evidently a subcode of C|J .
Example 2 (cont.) For the (8, 4, 4) code illustrated in Figure 2, regarding the “past” as the
first two time units or first four bits, the subcode CP consists of the two codewords CP =
{00000000, 11110000}. This code may be regarded as effectively a (4, 1, 4) binary repetition
code defined on the past subinterval P = [0, 1, 2, 3]. The projection on this subinterval is the set
C|P = {0000, 0011, 1100, 1111, 0101, 0110, 1001, 1010}, which is a (4, 3, 2) binary linear SPC code
that has the (4, 1, 4) code as a subcode.

Now for any time k ∈ I, let P and F denote the past and future subintervals with respect
to k, and let CP , C|P , CF and C|F be the past and future subcodes and projections, respectively.

138 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Then C must have a generator matrix of the following form:
⎡ ⎤

G(CP) 0
⎣ 0 G(CF) ,⎦

G(C|P /CP) G(C|F /CF)

where [G(CP), 0] is a generator matrix for the past subcode CP , [0, G(CF)] is a generator matrix
for the future subcode CF , and [G(C|P /CP), G(C|F /CF)] is an additional set of linearly indepen-
dent generators that together with [G(CP), 0] and [0, G(CF)] generate C. Moreover, it is clear
from the form of this generator matrix that G(CP) and G(C|P /CP) together generate the past
projection C|P , and that G(CF) and G(C|F /CF) generate the future projection C|F .

The state code S will be defined as the linear code generated by this last set of generators,
[G(C|P /CP), G(C|F /CF)]. The dimension of the state code is evidently

dim S = dim C − dim CP − dim CF .

Moreover, by the definitions of CP and CF , the state code cannot contain any codewords that
are all-zero on the past or on the future. This implies that the projections S|P and S|F on the
past and future are linear codes with the same dimension as S, so we also have

dim S = dim S|P = dim C|P − dim CP ;
dim S = dim S|F = dim C|F − dim CF .

Example 2 (cont.) Taking P as the first four symbols and F as the last four, the (8, 4, 4) code
has a generator matrix ⎡ ⎤

1111 0000
⎥⎢ 0000 1111 ⎢ ⎥ ⎦⎣ 1010 1010 .

1100 1100
Here the state code S is generated by the last two generators and has dimension 2. The past
and future projections of the state code evidently also have dimension 2.

In view of the generator matrix above, any codeword c ∈ C may be expressed uniquely as the
sum of a past codeword cP ∈ CP , a future codeword cF ∈ CF , and a state codeword s ∈ S.
We then say that the codeword c is associated with the state codeword s. This allows us to
conclude that the state codewords have the Markov property, and thus may be taken as states:

Lemma 10.1 (Markov property) For all codewords c ∈ C that are associated with a given
state codeword s ∈ S, the past projection c|P has the same set of possible future trajectories. On
the other hand, if two codewords c and c′ are associated with different state codewords, then the
sets of possible future trajectories of c|P and c′ |P are disjoint.

Proof. If c is associated with s, then c = cP + cF + s for some cP ∈ CP and cF ∈ CF . Hence
c|P = (cP)|P + s|P and c|F = (cF)|F + s|F . Thus, for every such c|P , the set of possible future
trajectories is the same, namely the coset CF + s|F = {(cF)|F + s|F | cF ∈ CF }.

If c and c′ are associated with different state codewords s and s′, then the sets of possible
future trajectories are CF + s|F and CF + s′ |F , respectively; these cosets are disjoint because the
difference s|F − s′ |F is not a codeword in CF .

In other words, a codeword c ∈ C is in the coset CP + CF + s if and only if c|P ∈ C|P is in the
coset CP + s|P and c|F ∈ C|F is in the coset CF + s|F .

⋃ () ()

139 10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM

This yields the following picture. The set of past projections associated with a given state
codeword s is CP + s|P = {(cP)|P + s|P | cP ∈ CP }. For any past projection in this set, we have
the same set of possible future trajectories, namely CF + s|F . Moreover, these past and future
subsets are disjoint. Therefore the entire code may be written as a disjoint union of Cartesian
products of past and future subsets:

C = CP + s|P × CF + s|F .
s∈S

n
CP n

������ 0 CF (4, 1, 4) ���
(4, 1, 4)�PP PPPP

������� n�
HHHHHHHH

�nCP + s|P CF + s|F n � (4, 1, 4) + 1100(4, 1, 4) + 1100
XXXXXXX�· · · n n· · ·

�� ���� XXXXXXX ������� nPPPPPP

sn
(4, 1, 4) + 1010 (4, 1, 4) + 1010 n
(4, 1, 4) + 0110 n(4, 1, 4) + 0110

Figure 3. (a) Two-section trellis for generic code; (b) two-section trellis for (8, 4, 4) code.

Figure 3(a) is a two-section trellis that illustrates this Cartesian-product decomposition for a
general code. The states are labelled by the state codewords s ∈ S to which they correspond.
Each edge represents an entire set of parallel projections, namely CP +s|P for past edges and CF +
s|F for future edges, and is therefore drawn as a thick line. The particular path corresponding
to s = 0 is shown, representing the subcode CP + CF , as well as a generic path corresponding to
a general state s, representing CP + CF + s.
Example 2 (cont.) Figure 3(b) is a similar illustration for our running example (8, 4, 4) code.
Here CP = CF = (4, 1, 4) = {0000, 1111}, so each edge represents two paths that are binary
complements of one another. The reader should compare Figure 3(b) to Figure 2 and verify
that these two trellises represent the same code.

It should now be clear that the code C has a trellis representation with a state space Sk at time
k that is in one-to-one correspondence with the state code S, and it has no trellis representation
with fewer states at time k. Indeed, Figure 3(a) exhibits a two-section trellis with a state space
Sk such that |Sk| = |S|. The converse is proved by noting that no two past projections c|P , c′

that do not go to the same state in Figure 3(a) can go to the same state in any trellis for
|P
C,

because by Lemma 10.1 they must have different sets of future continuations.
We summarize this development in the following theorem:

Theorem 10.2 (State space theorem for binary linear block codes) Let C be a binary
linear block code defined on a time axis I = [0, N], let k ∈ I, and let CP , C|P , CF and C|F be
the past and future subcodes and projections relative to time k, respectively. Then there exists
a trellis representation for C with |Sk | = 2(dim S) states at time k, and no trellis representation
with fewer states, where dim S is given by any of the following three expressions:

dim S = dim C − dim CP − dim CF ;
= dim C|P − dim CP ;
= dim C|F − dim CF .

We note that if we subtract the first expression for dim S from the sum of the other two, then
we obtain yet another expression:

dim S = dim C|P + dim C|F − dim C.

140 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Exercise 1. Recall the |u|u + v| construction of a Reed-Muller code RM(r,m) with length
n = 2m and minimum distance d = 2m−r :

RM(r,m) = {(u,u + v) | u ∈ RM(r,m − 1),v ∈ RM(r − 1, m − 1)}.
Show that if the past P is taken as the first half of the time axis and the future F as the second
half, then the subcodes CP and CF are both effectively equal to RM(r − 1, m − 1) (which has
the same minimum distance d = 2m−r as RM(r,m)), while the projections C|P and C|F are
both equal to RM(r,m− 1). Conclude that the dimension of the minimal central state space of
RM(r,m) is

dim S = dim RM(r,m − 1) − dim RM(r − 1, m − 1).
Evaluate dim S for all RM codes with length n ≤ 32.

Similarly, show that if the past P is taken as the first quarter of the time axis and the future F
as the remaining three quarters, then the subcode CP is effectively equal to RM(r−2, m−2), while
the projection C|P is equal to RM(r,m − 2). Conclude that the dimension of the corresponding
minimal state space of RM(r,m) is

dim S = dim RM(r,m − 2) − dim RM(r − 2, m − 2).

Using the relation dim RM(r,m) = dim RM(r,m − 1) + dim RM(r − 1, m − 1), show that
dim RM(r,m− 2) − dim RM(r − 2, m− 2) = dim RM(r,m− 1) − dim RM(r − 1, m− 1).
Exercise 2. Recall that the dual code to a binary linear (n, k, d) block code C is defined as the
orthogonal subspace C⊥, namely the set of of all n-tuples that are orthogonal to all codewords
in C, and that C⊥ is a binary linear block code whose dimension is dim C⊥ = n − k.

Show that for any partition of the time axis I of C into past P and future F , the subcode
(C⊥)P is equal to the dual (C|P)⊥ of the projection C|P , and vice versa. [Hint: notice that (a,0)
is orthogonal to (b, c) if and only if a is orthogonal to b.]

Conclude that the minimal state spaces of C and C⊥ at any time k have the same size.

10.2.2 Canonical minimal trellis representation

We now show that we can construct a single trellis for C such that the state space is minimal
according to the state space theorem at each time k.

The construction is straightforwardly based on the development of the previous subsection.
We define a state space Sk at each time k ∈ I = [0, N] corresponding to the state code S at
time k. Note that S0 is trivial, because C|F = CF = C, so dim S0 = 0; similarly dim SN = 0.

Every codeword c ∈ C passes through a definite state in Sk corresponding to the state codeword
s ∈ S in the unique decomposition c = cP + cF + s. It thus goes through a well-defined sequence
of states (s0, s1, . . . , sN), which defines a certain path through the trellis. Each edge in each
such path is added to the trellis. The result must be a trellis representation of C.
Example 1 (cont.) We can now see that the two-state trellis of Figure 1 is a canonical minimal
trellis. For each time k, 0 < k < N , CP is the set of all even-weight codewords that are all-zero
on F , which is effectively a (k, k−1, 2) SPC code, and C|P is the universe (k, k, 1) code consisting
of all binary k-tuples. There are thus two states at each time k, 0 < k < N , one reached by
all even-weight pasts, and the other by all odd-weight pasts. A given codeword passes through
a well-defined sequence of states, and makes a transition from the zero (even) to the nonzero
(odd) state or vice versa whenever it has a symbol equal to 1.

141 10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM

Example 2 (cont.) Similarly, the four-state trellis of Figure 2 is a canonical minimal trellis.
For k = 1, CP is the trivial (2, 0,∞) code, so each of the four past projections at time k = 1
leads to a different state. The same is true at time k = 3 for future projections. Each of the 16
codewords goes through a well-defined state sequence (s0, s1, s2, s3, s4), and the set of all these
sequences defines the trellis.

10.2.3 Trellis-oriented generator matrices

It is very convenient to have a generator matrix for C from which a minimal trellis for C and
its parameters can be read directly. In this subsection we define such a generator matrix, show
how to find it, and give some of its properties.

The span of a codeword will be defined as the interval from its first to last nonzero symbols.
Its effective length will be defined as the length of this span.

A trellis-oriented (or minimum-span) generator matrix will be defined as a set of k = dim C
linearly independent generators whose effective lengths are as short as possible.

Concretely, a trellis-oriented generator matrix may be found by first finding all codewords
with effective length 1, then all codewords of effective length 2 that are not linearly dependent
on codewords of effective length 1, . . . , all codewords of effective length i that are not linearly
dependent on codewords of lower effective length, . . . , until we have k independent generators.

The following theorem shows how to check whether a given generator matrix is trellis-oriented,
and also suggests how to reduce any given generator matrix to one that is trellis-oriented.

Theorem 10.3 (Trellis-oriented generator matrices) A set of k linearly independent gen-
erators is a trellis-oriented generator matrix if and only if the starting times of all spans are
distinct and the ending times of all spans are distinct.

Proof. If all starting times and ending times are distinct, then given a linear combination (with
nonzero coefficients) of a certain subset of generators, the starting time and ending time of the
combination are the least and greatest starting and ending times of the given subset of generators.
It follows that the generators that combine to form any non-generator codeword have effective
lengths no greater than the effective length of that codeword, so the given generators are indeed
a set of generators whose effective lengths are as short as possible.

Conversely, if two starting or ending times are not distinct, then the sum of the two corre-
sponding generators is a codeword whose effective length is shorter than that of at least one
of the two generators. If this generator is replaced by this codeword, then we obtain a set of
linearly independent generators of which one has a shorter effective length, so the original set
was not trellis-oriented.

The second part of the proof suggests a simple greedy algorithm for finding a trellis-oriented
generator matrix from a given generator matrix. If the starting or ending times of two generators
in the given matrix are not distinct, then replace the generator with greater effective length by
the sum of the two generators, which must necessarily have a shorter effective length. This
algorithm reduces the aggregate effective length in each step, and therefore must terminate after
a finite number of steps in a trellis-oriented generator matrix.

142 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Example 2 (cont.) The standard generator matrix for the (8, 4, 4) RM code is as follows:
⎡ ⎤

1111 0000
⎥⎢ 1010 1010 ⎢ ⎥ ⎦⎣ 1100 1100 .

1111 1111

The ending times are all distinct, but the starting times are all the same. Adding the first
generator to all others results in ⎡

1111 0000	
⎤

⎥⎢ 0101 1010 ⎢ ⎥ ⎦⎣ 0011 1100 .

0000 1111

All starting and ending times are now distinct, so this generator matrix is trellis-oriented.

Exercise 3. Consider the following generator matrix for the (16, 5, 8) RM code, which follows
directly from the |u|u + v| construction:

⎡
1111111100000000

⎤

⎢ 1111000011110000 ⎥ ⎢	 ⎥ ⎥⎢ 1100110011001100 . ⎢	 ⎥ ⎦⎣	 1010101010101010
1111111111111111

Convert this generator matrix to a trellis-oriented generator matrix.
Exercise 4 (minimum-span generators for convolutional codes).

(a) Let C be a rate-1/n binary linear convolutional code generated by a rational n-tuple g(D),
and let g′(D) be the canonical polynomial n-tuple that generates C. Show that the generators
{Dkg′(D), k ∈ Z} are a set of minimum-span generators for C.

(b) Show that the greedy algorithm of Section 9.2.4 chooses a set of minimum-span generators
for a rate-k/n binary linear convolutional code.

The key property of a trellis-oriented generator matrix, used in the first part of the proof
of Theorem 10.3, is that the starting and ending times of a linear combination (with nonzero
coefficients) of a subset of generators are the earliest and latest starting times of the component
generators, respectively. We state this important observation as a lemma:

Lemma 10.4 (Generators for subcodes) Given a trellis-oriented generator matrix for a
linear code C, if [k, k′] ⊆ I is any subinterval of the time axis I, then the subcode C[k,k�] is
the set of all linear combinations of generators whose spans are contained in [k, k′].

Thus the dimensions of each past and future subcode may be read directly from a trellis-
oriented generator matrix. Moreover, for any partition into past and future, the state subcode
S is generated by those generators which lie neither wholly in the past nor wholly in the future.
The dimension of the minimal state space is the number of such active generators.

143 10.2. MINIMAL TRELLISES AND THE STATE SPACE THEOREM

Example 1 (cont.) A trellis-oriented generator matrix for the (7, 6, 2) SPC code of Figure 1 is
⎡ ⎤

1100000
⎢ 0110000 ⎥ ⎢ ⎥ ⎥⎢ 0011000 ⎢ ⎥ ⎥⎢ 0001100 .
⎢ ⎥ ⎦⎣	 0000110

0000011

At each cut time k, only one generator is active, so each state space Sk has dimension 1.
Example 2 (cont.) For the (8, 4, 4) code, we constructed the following trellis-oriented generator
matrix: ⎡

1111 0000
⎤

⎢ 0101 1010 ⎥ ⎢ ⎣ 0011 1100
⎥ ⎦ .

0000 1111

There are two active generators at each of the three cut times corresponding to a nontrivial
state space in the trellis of Figure 2, so the four-state trellis of Figure 2 is minimal.

Notice from this matrix that the complete state complexity profile of a minimal 8-section
trellis for this code is as follows: {1, 2, 4, 8, 4, 8, 4, 2, 1}. The maximum state complexity is 8, so
a 4-section trellis somewhat masks the state complexity of a full minimal trellis.
Exercise 3 (cont.). For the (16, 5, 8) code given earlier, determine the state complexity profile
of a minimal trellis.
Exercise 5. (Trellis complexity of MDS codes, and the Wolf bound)

Let C be a linear (n, k, d = n − k + 1) MDS code over a finite field Fq. Using the property that
in an MDS code there exist q − 1 weight-d codewords with support J for every subset J ⊆ I of
size |J | = d, show that a trellis-oriented generator matrix for C must have the following form:

⎡
xxxx0000

⎤

⎢ 0xxxx000 ⎥ ⎢ ⎥ ⎥⎢ 00xxxx00 , ⎢ ⎥ ⎦⎣	 000xxxx0
0000xxxx

where xxxx denotes a span of length d = n − k + 1, which shifts right by one position for each
of the k generators (i.e., from the interval [1, n − k + 1] to [k, n]).

For example, show that binary linear (n, n − 1, 2) and (n, 1, n) block codes have trellis-oriented
generator matrices of this form.

Conclude that the state complexity profile of any (n, k, d = n − k + 1) MDS code is

2{1, q, q , . . . , |S|max, |S|max, . . . , q 2 , q, 1},

where |S|max = qmin(k, n−k).
Using the state space theorem and Exercise 2, show that this is the worst possible state

complexity profile for a (n, k) linear code over Fq. This is called the Wolf bound.

144 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

10.2.4 Branch complexity

Most of the work on trellis complexity has focussed on state complexity. However, branch
complexity is in some respects more fundamental. It is a better measure of Viterbi algorithm
decoding complexity. Also, as we shall see, it cannot be reduced by sectionalization.

The time axis for branches is not the same as the time axis I = [0, N] for states. Branches
occur at symbol times, whereas states occur between symbol times. Thus there are only N
branch times, say [0, N), whereas there are N + 1 state times.

A branch at time k may be identified by a triple (sk , ck , sk+1), where (sk , sk+1) is a valid state
transition, and ck is a valid code symbol that may be generated during that transition. Thus
there may be more than one branch (parallel transition) associated with a given state transition,
if there is more than one output possible during that transition. The branch space at time k is
the set of all possible branches, Bk = {(sk , ck , sk+1)}.

Theorem 10.5 (Branch space theorem) Let C be a binary linear block code defined on a
time axis I = [0, N]. Then in any minimal trellis for C, for any k ∈ I, the branch space
Bk = {(sk , ck , sk+1)} is a linear vector space with dimension

dim Bk = dim C − dim C[0,k) − dim C[k+1,N).

where C|[0,k) and C|[k+1,N) are the subcodes defined on [0, k) and [k + 1, N), respectively.

Proof In a minimal trellis, the state spaces Sk and Sk+1 are linear vector spaces of minimum
dimension. The set of all codewords that pass through a given branch (sk , ck , sk+1) is the set
that have a past projection c|P = (cP)|P + s|P consistent with the state sk associated with s|P ,
a projection c|{k} at time k equal to ck , and a future projection (with respect to time k + 1)
c|F = (cF)|F + s|F consistent with the state sk+1 associated with s|P . Thus two codewords
go through the same branch at time k if and only if they differ only by an element of the past
subcode C[0,k) and/or an element of the future subcode C[k+1,N). It follows that the branch space
is a linear vector space with dimension dim Bk = dim C − dim C[0,k) − dim C[k+1,N).

Since dim C[0,k) is equal to the number of generators in a trellis-oriented generator matrix whose
span lies in [0, k), and dim C[k+1,N) is the number that lie in [k + 1, N), we can read the branch
complexity profile by inspection from a trellis-oriented generator matrix. In other words, dim Bk
is equal to the number of trellis-oriented generators that are active at symbol time k.
Example 2 (cont.) For the (8, 4, 4) code, the trellis-oriented generator matrix given above shows
that the branch complexity profile of a minimal 8-section trellis is as follows: {2, 4, 8, 8, 8, 8, 4, 2}.
The maximum branch complexity is 8, which here equals the maximum state complexity.
Exercise 3 (cont.) Find the branch complexity profile of a minimal trellis for the (16, 5, 8) code.

10.2.5 Average dimension bounds, and asymptotics

Each generator in a trellis-oriented generator matrix contributes one dimension to the state and
branch spaces during the time that it is active; i.e., between its start and its end. More precisely,
if its span has length L, then it contributes to L − 1 state spaces and L branch spaces.

The one-dimensional code generated by each generator may in fact be realized by a small
time-varying state machine that has a state space of size 1 when it is inactive and of size 2 when
it is active, illustrated for the generator 11110000 in Figure 4.

10.3.	 THE PERMUTATION AND SECTIONALIZATION PROBLEMS 145

0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n 0 - 0n��HH1H	 �
*

j	 � 1H 1n 1 - 1n 1 - 1n

Figure 4. Two-state trellis for the one-dimensional code generated by the generator 11110000.

A minimal trellis is in effect the “product” of component trellises of this type, with the minimal
state space at each time being the Cartesian product of the state spaces of each of the component
trellises, and the branch space the product of the component branch spaces.

It follows that the sum of the dimensions of all state spaces is equal to the sum of the effective
lengths of all generators, and the sum of the dimensions of all branch spaces is equal to the sum
of the span lengths. Since each of the k generators must have span length at least d and effective
length at least d − 1, the sum of the branch space dimensions must be at least kd, and the sum
of the state space dimensions must be at least k(d − 1).

Since there are n branch spaces and n − 1 nontrivial state spaces, the average branch space
dimension must be at least kd/n, and the average nontrivial state space dimension must be at
least k(d − 1)/(n − 1). Since the maximum dimension must be at least as large as the average
dimension, this implies the following average dimension bounds:

|B|max ≥ 2kd/n; |S|max ≥ 2k(d−1)/(n−1).

Note that we may write the branch complexity bound as |B|max ≥ 2γc , where γc = kd/n is the
nominal coding gain of a binary (n, k, d) code on an AWGN channel. Although rarely tight, this
bound is reasonably indicative for small codes; e.g., a branch complexity of at least 4 is required
to get a nominal coding gain of γc = 2 (3 dB), 16 to get γc = 4 (6 dB), and 256 to get γc = 8 (9
dB). This bound applies also to convolutional codes. The convolutional code tables show that
it gives a good idea of how many states are needed to get how much nominal coding gain.

Asymptotically, this implies that, given any “good” sequence of codes such that n → ∞ with
d/n and k/n both bounded above zero, both the branch and state complexity must increase
exponentially with n. Thus if codes are “good” in this sense, then their “complexity” (in the
sense of minimal VA decoding complexity) must increase exponentially with n.

However, note that to approach the Shannon limit, the nominal coding gain γc = kd/n needs
only to be “good enough,” not necessarily to become infinite with increasing n. In more classical
coding terms, we need the minimum distance d to be “large enough,” not arbitrarily large.
Therefore capacity-approaching codes need not be “good” in this sense. Indeed, turbo codes
have poor minimum distances and are not “good” in this sense.

10.3 The permutation and sectionalization problems

The astute reader will have observed that the minimal trellis for a linear code C that was found
in the previous section assumes a given coordinate ordering for C. On a memoryless channel,
the performance of a code C is independent of the coordinate ordering, so two codes that differ
only by a coordinate permutation are often taken to be equivalent. This raises a new question:
what is the minimal trellis for C over all permutations of its coordinates?

Another point that has not been explicitly addressed previously is whether to take code symbols
(bits) one at a time, two at a time, or in some other manner; i.e., how to divide the code trellis
into sections. This will affect the trellis appearance and (slightly) how the VA operates.

146 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

In this section we address these two problems. Permutations can make a big difference in
trellis complexity, but finding the optimum permutation is intractable (NP-hard). Nonetheless,
a few results are known. Sectionalization typically makes little difference in trellis complexity,
but optimum sectionalization is fairly easy.

10.3.1 The permutation problem

Finding the optimum coordinate permutation from the point of view of trellis complexity is the
only substantive outstanding issue in the field of trellis complexity of linear codes. Since little is
known theoretically about this problem, it has been called “the art of trellis decoding” [Massey].

To illustrate that coordinate permutations do make a difference, consider the (8, 4, 4) code
that we have used as a running example. As an RM code with a standard coordinate ordering,
we have seen that this code has state complexity profile {1, 2, 4, 8, 4, 8, 4, 2, 1}. On the other
hand, consider the equivalent (8, 4, 4) code generated by the following trellis-oriented generator
matrix: ⎡ ⎤

11101000
⎥⎢ 01110100 ⎢ ⎥ ⎦⎣ 00111010 .

00010111
We see that the state complexity profile of this code is {1, 2, 4, 8, 16, 8, 4, 2, 1}, so its maximum
state space size is 16.

In general, generator matrices that have a “cyclic” structure have poor state complexity pro-
files. For example, Exercise 5 shows that a trellis-oriented generator matrix for an MDS code
always has such a structure, so an MDS code has the worst possible state complexity profile.

Finding the coordinate permutation that minimizes trellis complexity has been shown to be
an NP-hard problem. On the other hand, various fragmentary results are known, such as:

•	 The Muder bound (see next subsection) applies to any coordinate permutation.

•	 The optimum coordinate ordering for RM codes is the standard coordinate ordering that
results from the |u|u + v| construction.

•	 A standard coordinate ordering for the (24, 12, 8) binary Golay code achieves the Muder
bound on the state complexity profile (see Exercise 6, below) everywhere.

10.3.2 The Muder bound

The Muder bound is a simple lower bound which shows that certain trellises have the smallest
possible state space sizes. We show how this bound works by example.
Example 2 (cont.) Consider the (8, 4, 4) code, with the first and last 4-tuples regarded as the
past and future. The past subcode CP is then effectively a binary linear block code with length
4 and minimum distance at least 4. An upper bound on the largest possible dimension for such
a code is dim CP ≤ 1, achieved by the (4, 1, 4) repetition code. A similar argument holds for the
future subcode CF . Thus the dimension of the state code S is lowerbounded by

dim S = dim C − dim CP − dim CF ≥ 4 − 1 − 1 = 2.

Thus no (8, 4, 4) code can have a central state space with fewer than 4 states.

147 10.3. THE PERMUTATION AND SECTIONALIZATION PROBLEMS

Example 3 Consider any (32, 16, 8) binary linear block code. If we partition the time axis into
two halves of length 16, then the past subcode CP is effectively a binary linear block code with
length 16 and minimum distance at least 8. An upper bound on the largest possible dimension
for such a code is dim CP ≤ 5, achieved by the (16, 5, 8) biorthogonal code. A similar argument
holds for the future subcode CF . Therefore dim S is lowerbounded by

dim S = dim C − dim CP − dim CF ≥ 16 − 5 − 5 = 6.

Thus no (32, 16, 8) code can have a central state space with fewer than 64 states. Exercise 1
showed that the (32, 16, 8) RM code has a trellis whose central state space has 64 states.

In general, define kmax(n, d) as the largest possible dimension of code of length n and minimum
distance d. There exist tables of kmax(n, d) for large ranges of (n, d). The Muder bound is
then (with k denoting the time index k and dim C denoting the dimension of C):

dim Sk ≥ dim C − kmax(k, d) − kmax(n − k, d).

Similarly, for branch complexity, we have the Muder bound

dim Bk ≥ dim C − kmax(k − 1, d) − kmax(n − k, d).

Exercise 6. The maximum possible dimension of a binary linear (n, k, d ≥ 8) block code is

kmax = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12}

for n = {1, 2, . . . , 24}, respectively. [These bounds are achieved by (8, 1, 8), (12, 2, 8), (16, 5, 8)
and (24, 12, 8) codes and shortened codes thereof.] Show that the best possible state complexity
profile of any (24, 12, 8) code (known as a binary Golay code) is

{1, 2, 4, 8, 16, 32, 64, 128, 64, 128, 256, 512, 256, 512, 256, 128, 64, 128, 64, 32, 16, 8, 4, 2, 1}.

Show that the best possible branch complexity profile is

{2, 4, 8, 16, 32, 64, 128, 128, 128, 256, 512, 512, 512, 512, 256, 128, 128, 128, 64, 32, 16, 8, 4, 2}.

A standard coordinate ordering that achieves both these bounds exists.

10.3.3 The sectionalization problem

The sectionalization problem is the problem of how many symbols to take at a time in the
construction of a trellis. For example, we have seen that if we take one symbol at a time with
our example (8, 4, 4) code, then we obtain a state complexity profile of {1, 2, 4, 8, 4, 8, 4, 2, 1} and
a branch complexity profile of {2, 4, 8, 8, 8, 8, 4, 2}, whereas if we take two symbols at a time we
obtain a state complexity profile of {1, 4, 4, 4, 1} and a branch complexity profile of {4, 8, 8, 4}.
The latter trellis has less apparent state complexity and a nicer-looking trellis, but its branch
complexity is not significantly less.

Sectionalization affects to some degree the order of operations in VA decoding. For example,
taking symbols two at a time means that the VA computes metrics of pairs of symbols before
making comparisons. For the two trellises that we have considered for the (8, 4, 4) code, it is
apparent that this makes no material difference in VA decoding complexity.

148 CHAPTER 10. TRELLIS REPRESENTATIONS OF BLOCK CODES

Sectionalization may reduce the apparent state complexity, as we have seen. In fact, if the
whole trellis is clustered into one section, then the state complexity profile becomes {1, 1}.

However, clustering cannot reduce and may increase branch complexity. For example, with a
one-section trellis, there are 2k parallel transitions from the starting to the ending state.

To prove this, we generalize the branch space theorem from intervals {k} = [k, k + 1) of length
1 to general clustered intervals [k, k′). A branch is then identified by a triple (sk , c|[k,k�), sk�),
where sk ∈ Sk, sk� ∈ Sk� , and c|[k,k�) is the projection of a codeword onto the interval [k, k′).
The branch space B[k,k�) is the set of all such branches such that there exists a codeword c that
passes through states (sk , sk�) and has the projection c|[k,k�).

By a similar argument to that in the proof of Theorem 10.5, we can conclude that in a minimal
trellis two codewords go through the same branch in B[k,k�) if and only if they differ only by an
element of the past subcode C[0,k) and/or an element of the future subcode C[k�,N). This implies
that the branch space B[k,k�) is a linear vector space with dimension

dim B[k,k�) = dim C − dim C[0,k) − dim C[k�,N).

Since dim C[0,k) is nonincreasing with decreasing k, and dim C[k�,N) is nonincreasing with increas-
ing k′, this shows that dim B[k,k�) ≥ dim B[κ,κ�) for [κ, κ′) ⊆ [k, k′); in other words,

Theorem 10.6 Clustering cannot decrease branch complexity.

A good elementary rule for sectionalization is therefore to cluster as much as possible with-
out increasing branch complexity. A heuristic rule for clustering as much as possible without
increasing branch complexity is therefore as follows:
Heuristic clustering rule: Extend sections toward the past as long as dim C[0,k) does not

decrease, and toward the future as long as dim C(k�)+ does not decrease; i.e., to the past up to
the next trellis-oriented generator stop time, and to the future up to the next trellis-oriented
generator start time.
Example 2 (cont.) For our example (8, 4, 4) code, the time-3 section may be extended back
to the beginning and the time-4 section to the end without violating our rule, so the optimum
sectionalization has just one boundary, at the center of the trellis— i.e., we take symbols four at
a time, as in Figure 3(b). The state complexity profile with this sectionalization is {1, 4, 1}, and
the branch complexity profile is {8, 8}, so this sectionalization simplifies the state complexity
profile as much as possible without increasing the maximum branch complexity.
Exercise 6 (cont.). Assuming that an optimum coordinate ordering for the (24, 12, 8) binary
Golay code exists such that the Muder bounds are met everywhere (it does), show that applica-
tion of our heuristic clustering rule results in section boundaries at k = {0, 8, 12, 16, 24}, state
complexity profile {0, 64, 256, 64, 0} and branch complexity profile {128, 512, 512, 128}.

Lafourcade and Vardy have shown that, for any reasonable definition of optimality, there
exists a polynomial-time algorithm for optimal sectionalization. They further observe that the
following simple rule appears always to yield the optimal sectionalization:
LV rule: Between any time when branches merge and the next subsequent time when branches

diverge in an unclustered trellis, insert one and only one section boundary.
The LV rule and our rule give the same sectionalizations for the (8, 4, 4) and (24, 12, 8) codes.

∑

Chapter 11

Codes on graphs

In this chapter we will introduce the subject of codes on graphs. This subject forms an intellec-
tual foundation for all known classes of capacity-approaching codes, including turbo codes and
low-density parity-check (LDPC) codes.

There are many styles of graphical realizations of codes; e.g., parity-check realizations (Tanner
graphs), generator realizations, and trellis (state) realizations. More generally, we consider
“behavioral” realizations, in which the time axis of a trellis realization is replaced by a general
unordered graph.

We will first consider elementary linear behavioral realizations, in which the constraints are
given by sets of linear equations. We then generalize to cases in which the constraints are given
by linear codes. We show how behavioral realizations may be naturally represented by graphical
models of various types: in particular, Tanner graphs and normal (Forney) graphs. More general
classes of graphical models (e.g., factor graphs, Maarkov graphs, block diagrams, and Bayesian
networks) are discussed briefly in an Appendix.

Finally, we develop some elementary but important properties of graphical realizations, par-
ticularly the cut-set bound, which builds on the state space theorem.

11.1 Elementary realizations of linear block codes

We continue to restrict attention to linear (n, k) block codes over a finite field Fq . So far we
have seen several general methods of characterizing such codes:

•	 By a set of k generators {gj , 1 ≤ j ≤ k}. The code C is then the set of all linear combinations
i uigi of the generators over Fq .

•	 By a set of n − k generators {hj , 1 ≤ j ≤ n − k} for the dual code C⊥ . The code C is then
the set of all n-tuples y ∈ (Fq)n such that 〈y, hj 〉 = 0 for all j.

•	 By a trellis (state-space) realization. The code is then the set of all n-tuples corresponding
to paths through the trellis.

149

150 CHAPTER 11. CODES ON GRAPHS

We will see that these realizations are all special cases of a general class of realizations called
behavioral realizations (from the behavioral approach to system theory pioneered by Willems).
In general, a behavioral realization defines a code by a set of constraints that the code symbols
and other auxiliary state variables must satisfy.

For linear codes, we need consider only linear behavioral realizations, where the variables are
over a field and the constraints are linear. In the simplest case, the variables are field elements
and the constraints are linear equations involving the variables. In the general case, the variables
can be vector spaces over the field, and the constraints are expressed in terms of linear codes.

11.1.1 Elementary linear behavioral realizations

The elements of an elementary linear behavioral realization of a linear (n, k, d) block code over
Fq are as follows:

•	 The n code symbols y = {yi ∈ Fq , i ∈ I}, where I denotes the symbol index set.

•	 An additional set of s auxiliary variables s = {sj ∈ Fq , j ∈ J }, often called state (hidden,
latent, unobserved) variables, where the state variable index set J may be unrelated to I.

•	 A set of e linear homogeneous equations over Fq involving the components of the symbol
and state variables, called the constraint equations.

The full behavior B generated by the realization is the set of all combinations (y, s) (called
trajectories) of symbol and state variables that satisfy all constraint equations. The code C
generated by the realization is the set of all symbol n-tuples y that appear in any trajectory
(y, s) ∈ B; i.e., such that there exists some set s of state variables such that (y, s) ∈ B.

In general, the e linear homogeneous constraint equations may be written in matrix form as

yA + sB = 0,

where y is a row n-tuple of symbols, s is a row s-tuple of state variable components, and A and
B are n × e and s × e Fq -matrices, respectively. The set B of all solutions (y, s) to such a set
of equations is a subspace of the vector space (Fq)n+s of dimension dim B ≥ n + s − e, with
equality if and only if all equations are linearly independent.

The code C is the projection of B onto its first n components. The dimension of C is equal to
the dimension of B if and only if codewords corresponding to distinct trajectories are distinct.

We now show that generator matrices and parity-check matrices yield elementary behavioral
realizations of this kind.

151 11.1. ELEMENTARY REALIZATIONS OF LINEAR BLOCK CODES

Example 1 (generator realizations). Let G be a k × n generator matrix for C, whose k rows
form a set of linearly independent generators for C. Then C is the set of all n-tuples of the form
y = uG for some information k-tuple u ∈ (Fq)k. Thus C has an elementary linear behavioral
realization with a state k-tuple u and n constraint equations, namely

y − uG = 0.

For example, in the previous chapter we found the following trellis-oriented generator matrix
for the (8, 4, 4) RM code: ⎡

11110000	
⎤

⎥⎢ 01011010 ⎢ ⎥ ⎦⎣ 00111100 . (11.1)

00001111

This yields a linear behavioral realization with 4 state variables and 8 constraint equations,
namely the following linear homogeneous equations over F2:

y0 = u1;
y1 = u1 + u2;
y2 = u1 + u3;
y3 = u1 + u2 + u3;	 (11.2)
y4 = u2 + u3 + u4;
y5 = u3 + u4;
y6 = u2 + u4;
y7 = u4.

Example 2 (parity-check realizations). Let H be an (n − k) × n generator matrix for C⊥ .
Then C is the set of all n-tuples that satisfy the n − k constraint equations

yH T = 0.

This corresponds to an elementary linear behavioral realization with no state variables.
For example, since the (8, 4, 4) code C is self-dual, the generator matrix (11.1) is also a generator

matrix for C⊥ . This yields an elementary linear behavioral realization with no state variables
and 4 constraint equations, namely the following linear homogeneous equations over F2:

y0 + y1 + y2 + y3 = 0;
y1 + y3 + y4 + y6 = 0;	 (11.3)
y2 + y3 + y4 + y5 = 0;
y4 + y5 + y6 + y7 = 0.

This is evidently a more compact realization than the generator realization of Example 1— in
fact, it can be found by eliminating the state variables from Eqs. (11.2)— and, because it has
no state variables, it is better suited for checking whether a given 8-tuple y is in C. On the
other hand, in the generator realization the state 4-tuple u may be freely chosen and determines
the codeword— i.e., the generator realization is an input-output realization— so it is better for
generating codewords, e.g., in encoding or in simulation.

152 CHAPTER 11. CODES ON GRAPHS

11.1.2 Graphs of elementary linear behavioral realizations

We may draw a graph of an elementary linear behavioral realization as follows. In coding theory,
such a graph is called a Tanner graph.

The graph has two types of vertices, namely n + s vertices corresponding to the n symbol and
s state variables, and e vertices corresponding to the e constraint equations. An edge is drawn
between a variable vertex and a constraint vertex if the corresponding variable is involved in the
corresponding constraint. Thus the graph is bipartite; i.e., the vertices are partitioned into two
sets such that every edge connects a vertex of one type to one of the other type.

A generic Tanner graph therefore has the form of Figure 1(a). Here symbol variables are
represented by filled circles, state variables by open circles, and constraints by squares containing
a “+” sign, since all constraint equations are zero-sum (parity-check) constraints. ~ =

\ \
\~\

=

HHHHHHHHHH

HHHHHHHHHH

\ \ XXXXXXXXXX

XXXXXXXXXX
\ \

\. . .

HHHHHHHHHH

+ . . .

HHHHHHHHHH

+\� �� �\ ��
�

\ ��
\ ��

�
\ ��~ � �= � \� � + � +� \� ��� �� � \��� � �
� \��� � � \� � �� � . . . � � \ . . .=

HHHHHHHHHH

HHHHHHHHHH

n �� �\
�� �\��

�
�� � \\ +

XXXXXXXXXX
�

�� \�n
��

�
�

\ +

XXXXXXXXXX�� �
� �� = �

� ��
� �� � ��

. . . � �� . . . � ��
��� ��� n��� ��

= �
(a) (b)

Figure 1. (a) Generic bipartite Tanner graph, with symbol variables (filled circles), state vari-
ables (open circles), and zero-sum constraints (squares with “+”). (b) Equivalent normal graph,
with equality constraints replacing variables, and observed variables indicated by “dongles.”

Figure 1(b) shows an equivalent normal graph (also called a Forney graph). Here the variables
are replaced by equality constraints, so that all graph vertices represent constraints. Variables
are represented by edges; an equality constraint ensures that all of its incident edges represent
a common variable (as the edges in Tanner graphs do implicitly). Finally, a symbol variable
is indicated by a special “half-edge” (“dongle”) symbol incident on the corresponding equality
constraint. The dongle may be regarded as an input/output terminal that can connect the cor-
responding symbol variable with the outside world, whereas state variables are hidden, internal
variables that do not interact with the outside world.

The degree of a variable or equation will be defined as the degree (number of incident edges) of
the corresponding graph vertex— i.e., the degree of a variable is the number of equations that
it is involved in, and the degree of an equation is the number of variables that it involves. In
a Tanner graph, the sum of the variable degrees is equal to the sum of the constraint degrees,
since both are equal to the number of edges in the graph. In a normal graph, if we choose not
to count half-edges in vertex degrees, then the vertex degrees are the same.

153 11.1. ELEMENTARY REALIZATIONS OF LINEAR BLOCK CODES

Example 1 (generator realizations) (cont.) The Tanner graph corresponding to the generator
realization of the (8, 4, 4) code defined by Eqs. (11.2) is shown in Figure 2(a). Since each symbol
variable has degree 1 in this realization, the corresponding symbol vertex is located adjacent to
the unique constraint vertex with which it is associated. The equivalent normal graph is shown
in Figure 2(b); here symbol variables may simply be represented by dongles. ~

u4

u3

u2

u1

n

n

n

n

HHHHHHHHHH

XXXXXXXXXX

��������������������

XXXXXXXXXX

����������Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

XXXXXXXXXX

����������

XXXXXXXXXX

����������

����������

(a)
+

+

+

+

+

+

+

+

~

~

~

~

~

~

~

y7

y6

y5

y4

y3

y2

y1

y0

u4

u3

u2

u1

=

=

=

=

HHHHHHHHHH

XXXXXXXXXX

��������������������

XXXXXXXXXX

����������Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

XXXXXXXXXX

����������

XXXXXXXXXX

����������

����������

(b)
+

+

+

+

+

+

+

+

y7

y6

y5

y4

y3

y2

y1

y0

Figure 2. Generator realizations for (8, 4, 4) code. (a) Tanner graph. (b) Normal graph.

Example 2 (parity-check realizations) (cont.) The Tanner graph and normal graph of the
parity-check realization of the (8, 4, 4) code defined by Eqs. (11.3) are shown in Figure 3.

y0 ~ y0 =

y1 ~ =

HHHHHHHHHH

HHHHHHHHHH

y1XXXXXXXXXX

XXXXXXXXXXy2 ~ y2

HHHHHHHHHH

+ =

HHHHHHHHHH

+

����������

����������

y3 ~ y3

HHHHHHHHHH

+ =

HHHHHHHHHH

+� �XXXXXXXXXX���������� XXXXXXXXXX����������
� �

� �y4 ~ � y4 =+ +�
� �

XXXXXXXXXX���������� XXXXXXXXXX����������

�y5 ~ �
�

� + y5 = � � +
� � � ��

����������

����������
�� �� �y6 ~

�
� y6 = � �� �� �� �� �� y7y7 ~ = �
(a) (b)

Figure 3. Parity-check realizations for (8, 4, 4) code. (a) Tanner graph. (b) Normal graph.

The normal graphs of Figures 2(b) and 3(b) are duals, in the sense that one is obtained from
the other by replacing equality constraints by zero-sum constraints and vice versa. In general,
the dual of a generator realization for C will be a parity-check realization for C⊥, and vice versa;
here we have C = C⊥, since the (8, 4, 4) code is self-dual. This illustrates an important general
duality property of normal graphs, which we will not prove here: the dual of a normal graph
realization of a code is a realization of the dual code.

∑

∑

154	 CHAPTER 11. CODES ON GRAPHS

11.2 General linear behavioral realizations

We now generalize the elementary realizations above by letting symbol and state variables be
vector spaces of dimension m over Fq , or more particularly m-tuples over Fq , where the dimension
m may be different for each variable. Furthermore, we generalize to constraints that certain
subsets of variables must lie in certain small linear block codes over Fq .

The elements of a general linear behavioral realization of a linear (n, k) block code over Fq are
therefore as follows:

•	 A set of symbol mi-tuples {yi ∈ (Fq)mi , i ∈ I}, where I denotes the symbol variable index
set. We define n = I mi.

•	 A state index set J , and a set of state spaces Σj , j ∈ J , where Σj is a vector space over
Fq of dimension µj . Such a state space Σj may always be represented by a vector space of
µj -tuples, {Σj = (Fq)µj , j ∈ J }. We define s = J µj .

•	 A set of linear constraint codes {Ck , k ∈ K} over Fq , where each code Ck involves a certain
subset of the symbol and state variables, and K denotes the constraint index set.

Again, the full behavior B generated by the realization is the set of all trajectories (y, s) such
that all constraints are satisfied— i.e., such that for each k the values taken by the subset of
variables involved in the constraint code Ck forms a codeword in Ck— and the code C generated
by the realization is the set of all symbol sequences y that appear in any trajectory (y, s) ∈ B.

Notice that the constraint imposed by a zero-sum constraint constrains the d variables incident
on a zero-sum vertex of degree d to lie in the (d, d − 1, 2) zero-sum (SPC) code over Fq . Simi-
larly, an equality constraint of degree d constrains the d incident variables to lie in the (d, 1, d)
repetition code over Fq . Thus allowing each constraint code Ck to be an arbitrary linear code
generalizes the elementary linear behavioral realizations discussed earlier.

The generalization to variables of dimension m allows us to consider state spaces of dimension
larger than 1, which we need for general trellis (state-space) realizations. It also allows us to
consider the clustered symbol variables that arise in sectionalized trellis realizations.

We now show how trellis (state-space) realizations may be expressed as general linear behav-
ioral realizations.
Example 3 (trellis realizations). Let us consider an unsectionalized minimal trellis realization

of an (n, k) binary linear block code C on the time axis I = [0, n).
As we saw in the previous chapter, a minimal trellis realization of C may be defined by a

trellis-oriented generator matrix G for C comprising k minimal-span generators {gj , 1 ≤ j ≤ k}.
We thus have a one-to-one correspondence C ↔ (F2)k defined by uG ↔ u.

We need to define an index set J for the state spaces Σj , j ∈ J . When the symbol time index
set is I = [0, n), we define the state index set as J = [0, n], with the understanding that the
kth symbol comes after the kth state and before the (k + 1)st state. The initial and final state
spaces Σ0 and Σn have dimension 0; i.e., they are trivial.

We further need to define an explicit realization for the state spaces Σk . Let J (k) denote the set
of indices of the trellis-oriented generators gj that are active at state time k. The state code Sk at
state time k is then generated by the submatrix Gk = {gj , j ∈ J (k)}. We thus have a one-to-one
correspondence Sk ↔ (F2)|J (k)| defined by u|J (k)Gk ↔ u|J (k), where u|J (k) = {uj , j ∈ J (k)}.

155 11.2. GENERAL LINEAR BEHAVIORAL REALIZATIONS

Thus if we define a state space Σk whose alphabet is the set (F2)|J (k)| of |J (k)|-tuples u|J (k),
then we obtain a state space Σk of minimal dimension |J (k)| such that any codeword associated
with a state codeword u|J (k)Gk ∈ Sk passes through the state u|J (k) ∈ Σk , as desired.

The branch space Bk at symbol time k ∈ [0, n) is then the set of all (|J (k)|+|J (k+1)|+1)-tuples
(σk , yk , σk+1) that can actually occur. If K(k) denotes the subset of trellis-oriented generators
that are active at symbol time k, then by a similar development it can be seen that Bk is a one-
to-one linear function of u|K(k), so dim Bk = |K(k)|. We may thus view Bk as a linear constraint
code of length |J (k)| + |J (k + 1)| + 1 and dimension |K(k)|.

In summary, the elements of an unsectionalized minimal trellis realization of an (n, k) binary
linear block code C are therefore as follows:

•	 A set of binary symbol variables {Yk , k ∈ [0, n)};
•	 A set of state spaces {Σk , k ∈ [0, n]} of dimension |J (k)|, represented by binary |J (k)|-

tuples, where {gj , j ∈ J (k)} is the subset of trellis-oriented generators that are active at
state time k ∈ [0, n];

•	 A set of binary linear constraint codes {Bk , k ∈ [0, n)}, where Bk ⊆ Σk × Yk × Σk+1 and
dim Bk = |K(k)|, where {gj , j ∈ J (k)} is the subset of trellis-oriented generators that are
active at symbol time k ∈ [0, n).

The full behavior B of the trellis realization is then the set of all state/symbol sequences (s,y)
such that (sk , yk , sk+1) ∈ Bk for k ∈ [0, n). For each state/symbol sequence (s,y) in B, the state
sequence s represents a valid path through the code trellis, and the symbol sequence y represents
the corresponding codeword. If the trellis is minimal, then each path (s,y) corresponds to a
distinct codeword y, so |B| = |C|.

Continuing with our (8, 4, 4) example, its trellis-oriented generators (11.1) are active during
[0, 3), [1, 6), [2, 5) and [4, 7), respectively. Therefore the state space dimension profile is |J (k)| =
{0, 1, 2, 3, 2, 3, 2, 1, 0}, and the branch space dimension profile is |K(k)| = {1, 2, 3, 3, 3, 3, 2, 1}.

Figure 4(a) shows a Tanner graph of this minimal trellis realization, and Figure 4(b) is an
equivalent normal graph. Each state space Σk is labelled by its dimension. The state spaces
Σ0 and Σ8 do not need to be shown, because they are trivial and not actually involved in any
constraints. Each constraint code (branch space) Bk is labelled by its length and dimension.
Since the symbol variables Yk have degree 1, we use the special “dongle” symbol for them. Since
the state spaces Σk have degree 2, they are naturally represented by edges in a normal graph.

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

n n n n n n nB0 Σ1 B1 Σ2 B2 Σ3 B3 Σ4 B4 Σ5 B5 Σ6 B6 Σ7 B7

(2, 1) 1 (4, 2) 2 (6, 3) 3 (6, 3) 2 (6, 3) 3 (6, 3) 2 (4, 2) 1 (2, 1)

Figure 4(a). Tanner graph for minimal trellis realization of (8, 4, 4) code.

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7B0 B1 B2 B3 B4 B5 B6 B7

(2, 1) 1 (4, 2) 2 (6, 3) 3 (6, 3) 2 (6, 3) 3 (6, 3) 2 (4, 2) 1 (2, 1)

Figure 4(b). Equivalent normal graph for minimal trellis realization of (8, 4, 4) code.

∏ ∏

156 CHAPTER 11. CODES ON GRAPHS

Every trellis (state-space) realization has a similar chain graph, with constraint codes Bk
constraining one symbol variable Yk and two state variables, Σk and Σk+1. More generally, the
symbol variables Yk may have arbitrary dimension; i.e., symbols may be clustered. Note that in
any trellis realization all symbol variables have degree 1, and all nontrivial state variables have
degree 2. Note also that a trellis graph has no cycles (loops).

11.3 Graph-theoretic properties of graphical realizations

A graph illustrates dependency relationships. We now develop some elementary but important
connections between graph properties and dependencies.

11.3.1 Connectedness and independence

Suppose that a code C is the Cartesian product of two codes, C = C1 × C2. In other words, C
consists of the pairs of codewords (c1, c2) such that c1 ∈ C1, c2 ∈ C2. Then a realization of C
may be constructed from independent realizations of C1 and C2. A graph of such a realization
is a disconnected graph, with two component subgraphs representing C1 and C2, respectively.

Conversely, if a graph of a realization of C is disconnected, then C is evidently the Cartesian
product of the codes realized by the component subgraphs. In short, a code C has a realization
whose graph is disconnected if and only if C is the Cartesian product of shorter codes. Thus
disconnectedness is a graph-theoretic expression of independence.

11.3.2 Cut sets and conditional independence

A cut set of a connected graph is a minimal set of edges such that removal of the set partitions
the graph into two disconnected subgraphs.

Notice that a connected graph is cycle-free if and only if every edge is by itself a cut set.
In a normal graph, a cut set consists of a set of ordinary (state) edges, and may be specified

by the corresponding subset χ ⊆ J of the state index set J . If the cut set consists of a single
edge, then the cut set may be identified with the corresponding state variable Σj . If the cut set
consists of several edges, then it may be identified with the set of all corresponding state spaces
Σj , j ∈ χ. We will regard the Cartesian product of all these state spaces as a superstate variable
Σχ = j∈χ Σj . Note that the size of the alphabet of Σχ is |Σχ| = |Σj |, the product of the j∈χ
sizes of its component state spaces.

Figure 5 gives a high-level view of a realization with a cut set χ. Since removal of a cut set
partitions a graph into two disconnected subgraphs, it follows that the symbol variables, the
constraint codes, and the states not in χ are partitioned by the cut set into two disjoint subsets
connected only by the states in χ. We label these two components arbitrarily as the “past” P
and the “future” F relative to the cut set χ. The two subsets of symbol variables associated with
the past and future components are denoted by Y|P and Y|F , respectively. The states in the cut
set are regarded as a single superstate variable Σχ = {Σj , j ∈ χ}, with values sχ = {sj , j ∈ χ}.
The constraints and internal variables in the past and future components are agglomerated into
aggregate constraints CP and CF that jointly constrain the aggregate superstate variable Σχ and
the aggregate symbol variables Y|P and Y|F , respectively.

∏

157 11.3. GRAPH-THEORETIC PROPERTIES OF GRAPHICAL REALIZATIONS
Y Y|P |F

ΣχCP CF

Figure 5. High-level view of a realization with a cut set χ.

Figure 5 makes it clear that a cut set in the graph corresponds to a certain conditional inde-
pendence (Markov) property: given that the state variables in the cut set have a certain set of
values sχ = {sj , j ∈ χ}, the possible values of Y|F depend only on sχ and not otherwise on the
“past” P, and vice versa. In other words, the superstate variable value sχ is a sufficient statistic
for the past with respect to the set of possible futures, and vice versa.

More concretely, let Y|P (sχ) and Y|F (sχ) denote the sets of possible past and future symbol
values that are consistent with a given superstate value sχ, in view of the constraints CP and CF .
Then the set of possible codewords consistent with sχ is the Cartesian product Y|P (sχ)×Y|F (sχ).
(In effect, fixing the value of the superstate removes the corresponding edge and disconnects the
graph.) The set C of all possible codewords is then the union of such Cartesian products over
all superstates: ⋃

C = Y|P (sχ) × Y|F (sχ). (11.4)
sχ∈Σχ

11.3.3 The cut-set bound

Observe that (11.4) is a generic expression for a code C generated by a two-section trellis with
central state space Σχ, and that Figure 5 is a generic normal graph for such a two-section trellis.
This observation leads directly to a lower bound on the size of Σχ:

Theorem 11.1 (Cut-set bound) Given a graphical realization of a code C and a cut set χ, the
size |Σχ| = |Σj | of the alphabet of the superstate variable Σχ = {Σj , j ∈ χ} is lowerbounded j∈χ
by the minimal state space size in a conventional trellis in which the symbol variables are divided
into “past” and “future” in the same way.

If C is linear, then minimal state space size is given by the state space theorem for linear codes.
For example, by the cut-set bound and the Muder bound, given any graphical realization of

the (8, 4, 4) binary code and any cut set that partitions the code symbols into two subsets of
size 4, the size of the alphabet of the superstate variable Σχ must be at least 4.

We can draw some important general conclusions from the cut-set bound.
First, consider cycle-free graphical realizations. In a cycle-free realization, every edge (state

variable) is a cut set, and therefore the size of every state space is lowerbounded by the minimal
size of a state space in some conventional trellis in which the symbol variables are partitioned
into “past” and “future” in the same way. Therefore we cannot expect any great reduction in
state space sizes from using general cycle-free graphs rather than conventional trellis realizations.

On the other hand, significant reductions in state space size are possible if we use graphs with
cycles. Then cut sets will generally correspond to multiple state variables, and the complexity
mandated by the cut-set lower bound may be spread out across these multiple state spaces.

We now illustrate these general conclusions by considering two particular styles of realizations:
tail-biting trellis realizations, and Hadamard-transform-based realizations of Reed-Muller codes.

158 CHAPTER 11. CODES ON GRAPHS

11.3.4 Tail-biting trellis realizations

A tail-biting trellis, illustrated in Figure 6, is a trellis in which the topology of the time axis
is that of a circle rather than an interval. In other words, the ending state variable is also the
starting state variable, and its alphabet may be of any size.

�	
�

Figure 6. Normal graph of a tail-biting trellis realization.

In a tail-biting trellis realizations, all cut sets involve two state variables. Therefore the
minimum complexity mandated by the cut-set bound may be spread out over two state spaces,
each of which may be as small as the square root of the cut-set lower bound.

For a simple but not very impressive example, consider the (8, 4, 4) code. Figure 7(a) shows a
two-section, four-state conventional trellis realization which clusters four symbol bits at a time,
which as we saw in Chapter 10 is an optimal sectionalization. Figure 7(b) shows a two-section
tail-biting trellis realization with two 2-state state spaces, which in this case may be obtained
merely by splitting the central state space of Figure 7(a). Thus the square root lower bound is
achieved. Note however that while Figure 7(b) has smaller state spaces, it is no longer cycle-free.

1' $

4 4
2 4 4

(6, 3) (6, 3) (6, 3) (6, 3)
1& %

(a) (b)
Figure 7. (a) Two-section, four-state trellis for (8, 4, 4) code;

(b) Two-section, two-state tail-biting trellis realization.

More impressively, it has been shown that the state complexity of a 12-section realization of the
(24, 12, 8) Golay code may similarly be reduced from 256 (the minimum permitted by the Muder
bound; see Exercise 10.6) to 16 by using a tail-biting realization. A “tail-biting trellis-oriented”
generator matrix that yields this 16-state tail-biting realization is as follows:

11 01 11 01 11 00 00 00 00 00 00 00
00 11 11 10 01 11 00 00 00 00 00 00
00 00 11 01 10 11 11 00 00 00 00 00
00 00 00 11 01 11 01 11 00 00 00 00
00 00 00 00 11 01 11 01 11 00 00 00
00 00 00 00 00 11 11 10 01 11 00 00
00 00 00 00 00 00 11 01 10 11 11 00
00 00 00 00 00 00 00 11 01 11 01 11
11 00 00 00 00 00 00 00 11 01 11 01
01 11 00 00 00 00 00 00 00 11 11 10
10 11 11 00 00 00 00 00 00 00 11 01
01 11 01 11 00 00 00 00 00 00 00 11

[]

159 11.3. GRAPH-THEORETIC PROPERTIES OF GRAPHICAL REALIZATIONS

Note that there are 4 “active” generators at each of the 12 state times, if we take the time axis
to be circular (“end-around”). On the other hand, if we were to assume a conventional time
axis, then at least 8 generators would have to be active at the central state time.

Note also that if we “unwrap” these generators onto an infinite conventional time axis, then we
get generators for a rate-1/2 16-state period-4 time-varying (or rate-4/8 16-state time-invariant)
binary linear convolutional code, as follows:

· · ·
. . . 00 11 01 11 01 11 00 00 00 00 . . .
. . . 00 00 11 11 10 01 11 00 00 00 . . .
. . . 00 00 00 11 01 10 11 11 00 00 . . .
. . . 00 00 00 00 11 01 11 01 11 00 . . .

· · ·

This “Golay convolutional code” has a minimum Hamming distance of 8 and an average of
Kb = 12.25 weight-8 codewords per information bit, so its nominal coding gain is γc = 4 (6 dB)
and its effective coding gain is γeff = 5.3 dB, which are remarkable for a 16-state rate-1/2 code.

In summary, by considering a state realization with a single cycle rather than a conventional
trellis realization, we may be able to obtain a state complexity as small as the square root of
the minimum state complexity of a conventional trellis.

11.3.5 Hadamard-transform-based realizations of RM codes

In Exercise 6 of Chapter 6, it was shown that all Reed-Muller codes RM(r,m) of length 2m could
be generated by a single “universal” 2m × 2m generator matrix Um = (U1)⊗m, the m-fold tensor
product of the 2 × 2 matrix U1 = 1 0 with itself. The matrix Um is called the Hadamard

1 1

transform matrix over F2. For any binary 2m-tuple u ∈ (F2)2
m

, the binary 2m-tuple y = uUm
is called the Hadamard transform of u. Since (Um)2 = I2m , the identity matrix, it follows that
the Hadamard transform of y is u; i.e., u = yUm

More particularly, RM(r,m) = {y = uUm}, where the coordinates of the binary 2m-tuple u are
free in the k(r,m) positions corresponding to the k(r,m) rows of Um of weight 2m−r or greater,
and fixed to 0 in the remaining coordinates. In other words, RM(r,m) is the set of Hadamard
transforms of all 2k(r,m) binary 2m-tuples that are all-zero in a certain 2m − k(r,m) coordinates.
(Compare the Fourier transform characterization of Reed-Solomon codes in Chapter 8.)

We can construct a graphical realization of a Hadamard transform as follows. The 2 × 2
Hadamard transform y = uU1 is explicitly given by the two equations

y0 = u0 + u1;
y1 = u1,

which are realized by the normal graph of Figure 8. (This is sometimes called a controlled-not
gate, where y1 = u1 is regarded as a control variable.)

+y0 u0

=y1 u1

Figure 8. Normal graph of a 2 × 2 Hadamard transform.

� @

@ �

� @

@ �

�

160 CHAPTER 11. CODES ON GRAPHS

Note that there are no arrows (directed edges) in this behavioral realization. Either u or y
may be taken as input, and correspondingly y or u as output; i.e., the graph is a realization of
either the Hadamard transform y = uU1 or the inverse Hadamard transform u = yU1.

A 2m × 2m Hadamard transform y = uUm may then be realized by connecting these 2 × 2
transforms in tensor product fashion. For example, the 8 × 8 Hadamard transform is given
explicitly by the eight equations

y0 = u0 + u1 + u2 + u3 + u4 + u5 + u6 + u7;
y1 = u1 + u3 + u5 + u7;
y2 = u2 + u3 + u6 + u7;
y3 = u3 + u7;
y4 = u4 + u5 + u6 + u7;
y5 = u5 + u7;
y6 = u6 + u7;
y7 = u7.

These equations are realized by the tensor product graph of Figure 9. (Compare the “butterflies”
in the graph of an 8 × 8 fast Fourier transform.)

+ + +y0 u0

= = =y1 u4
@ ��

@� @ �
�@+ + +y2 u2

A �
A �
�A= = =y3 u6

B � A �
� �B A
� B � A+ + +y4 u1

�B
� B

� B= = =y5 u5
B

@� � B
� BB+ + +y6 u3

= = =y7 u7

Figure 9. Normal graph of an 8 × 8 Hadamard transform.

A Reed-Muller code of length 8 may then be realized by fixing certain of the uk to zero while
letting the others range freely. For example, the (8, 4, 4) code is obtained by fixing u0 = u1 =
u2 = u4 = 0, which yields the equations

y0 = u3 + u5 + u6 + u7;
y1 = u3 + u5 + u7;
y2 = u3 + u6 + u7;
y3 = u3 + u7;

161 11.3. GRAPH-THEORETIC PROPERTIES OF GRAPHICAL REALIZATIONS

y4 = u5 + u6 + u7;
y5 = u5 + u7;
y6 = u6 + u7;
y7 = u7.

These equations are realized by the graph of Figure 10(a), which may be simplified to that
of Figure 10(b). Here we regard the “inputs” uj as internal variables, and the “outputs” yk as
external variables.

y0 + + + 0 y0 + u6

y1 =
@ �

=
@ � �

= 0 y1 =
�@

u3 + u5
+u7

=
@

u6

�@ @ � �@ @
y2 + � @ +

A �
� @ + 0 y2 + �u6 @ +

A
u5 @

A � A
y3 = =

B �
� A
A �

= u6 y3 = u3 + u7 A
A �

� B �A �A
y4 + + �

�
�B

B
A + 0 y4 + u6

�
� A

� B �
y5 =

@ �
= �

�
B
B

= u5 y5 =
�@

u5 + u7 = �
�

�@ � B �@ �
y6 + � @ + � B B + u3 y6 + � @u6 + �

y7 = = = u7 y7 = u7

Figure 10. (a) Normal graph of (8, 4, 4) RM code. (b) Equivalent realization.

In Figure 10(b), all state variables are binary and all constraint codes are simple (3, 2, 2) parity-
check constraints or (3, 1, 3) repetition constraints. It is believed (but not proved) that this
realization is the most efficient possible realization for the (8, 4, 4) code in this sense. However,
Figure 10(b) has cycles.

It is easy to see how the cycle-free graph of Figures 7(a) (as well as 7(b), or a minimal four-
section, four-state trellis) may be obtained by agglomerating subgraphs of Figure 10(b). Such
a graph is depicted in Figure 11. The code symbols are partitioned into four 2-tuples. A state
space of dimension 2 connects the two halves of a codeword (meeting the cut-set bound). Two
constraint codes of length 6 and dimension 3 determine the possible combinations of symbol
4-tuples and state 2-tuples in each half of the code.

y4y5y2y
�
3�
2@ �

@
2@2(6, 3) (6, 3)

@
�
2
�y0y

@
1@
2�

y6y7

Figure 11. Tree-structured realization of (8, 4, 4) RM code.

162 CHAPTER 11. CODES ON GRAPHS

Similarly, we may realize any Reed-Muller code RM(r,m) in any of these styles. By starting
with a Hadamard transform realization as in Figure 10(a) and reducing it as in Figure 10(b), we
can obtain a realization in which all state variables are binary and all constraint codes are simple
(3, 2, 2) parity-check constraints or (3, 1, 3) repetition constraints; however, such a realization will
generally have cycles. By agglomerating variables, we can obtain a tree-structured, cycle-free
realization as in Figure 11 which reflects the |u|u + v| iterative RM code construction.
Exercise 1. (Realizations of repetition and SPC codes)

Show that a reduced Hadamard transform realization of a repetition code RM(0, m) or a
single-parity-check code RM(m−1, m) is a cycle-free tree-structured realization with a minimum
number of (3, 1, 3) repetition constraints or (3, 2, 2) parity-check constraints, respectively, and
furthermore with minimum diameter (distance between any two code symbols in the tree).
Show that these two realizations are duals; i.e., one is obtained from the other via interchange
of (3, 2, 2) constraints and (3, 1, 3) constraints.
Exercise 2. (Dual realizations of RM codes)

Show that in general a Hadamard transform (HT) realization of any Reed-Muller code
RM(r,m) is the dual of the HT realization of the dual code RM(m − r − 1, m); i.e., one is
obtained from the other via interchange of (3, 2, 2) constraints and (3, 1, 3) constraints.
Exercise 3. (General tree-structured realizations of RM codes)

Show that there exists a tree-structured realization of RM(r,m) of the following form:

2m−2 2m−2 C2 C2 s(r,m) s(r,m)�HHH ��
s(r,m)C1 C1

�� HHH�s(r,m) s(r,m)
2m−2 2m−2 C2 C2

Figure 12. Tree-structured realization of RM(r,m).

Show that s(r,m) = dim RM(r,m − 1) − dim RM(r − 1, m − 1) (see Exercise 1 of Chapter 10).
Show that the cut-set bound is met everywhere. Finally, show that

dim C2 = dim RM(r,m − 2);
dim C1 = dim RM(r,m − 1) − 2 dim RM(r − 2, m − 2) = t(r,m),

where t(r,m) is the branch complexity of RM(r,m) (compare Table 1 of Chapter 6). For example,
there exists a tree-structured realization of the (32, 16, 8) RM code as follows:

6 6HHH

(14, 7)8
�

(14, 7) 8

��
6(18, 9) (18, 9)

�� 6
8 (14, 7)

6�
8(14, 7)

HHH

Figure 13. Tree-structured realization of (32, 16, 8) RM ocde.

11.4. APPENDIX. CLASSES OF GRAPHICAL REALIZATIONS 163

11.4 Appendix. Classes of graphical realizations

There are various classes of graphical realizations that can be used for general linear behavioral
realizations. Here we will briefly discuss factor graphs, Markov graphs,, and block diagrams.

11.4.1 Factor graphs

A factor graph represents a global function of a set of variables (both internal and external) that
factors into a product of local functions defined on subsets of the variables.

The indicator function ΦB(y, s) of a behavior B is a {0, 1}-valued function of external variables
y and internal variables s that equals 1 for valid trajectories (y, s) and equals 0 otherwise. If a
trajectory (y, s) is valid whenever its components lie in a set of local constraint codes {Ck , k ∈ K},
then the global indicator function ΦB is the product of local indicator functions {ΦCk , k ∈ K}.
Thus a behavioral realization may be represented by a factor graph.

A Tanner-type factor graph is an undirected bipartite graph in which variables are represented
by one type of vertex (with internal and external variables denoted differently), and functions
are represented by a different type of vertex. A Tanner graph of a behavioral realization may
be interpreted as a Tanner-type factor graph simply by regarding the constraint vertices as
representatives of constraint indicator functions. Similarly, a normal (Forney-type) factor graph
is an undirected graph in which internal variables are represented by edges, external variables
are represented by dongles, and functions are represented by vertices; in the same way a normal
graph of a behavioral realization may be interpreted as a normal factor graph.

In the following chapters, we will be interested in global probability functions that factor into
a product of local probability functions; then factor graphs become very useful.

11.4.2 Markov graphs

Markov graphs are often used in statistical physics and statistical inference to represent global
probability distributions that factor into a product of local distributions.

A Markov graph (Markov random field) is an undirected graph in which variables are repre-
sented by vertices, and a constraint or function is represented by an edge (if it has degree 2), or
by a hyperedge (if it has degree greater than 2). Moreover, a hyperedge is usually represented by
a clique, i.e., a set of ordinary edges between every pair of variables incident on the hyperedge.
(This style of graph representation sometimes generates inadvertent cliques.)

Markov graphs are particularly nice when the degrees of all constraints are 2 or less. Such a
representation is called a pairwise Markov graph. We may then represent constraints by ordinary
edges. Pairwise constraints often arise naturally in physical models.

Figure 14 shows how any Tanner graph (or Tanner-type factor graph) may be transformed
into a pairwise Markov realization by a simple conversion. Here each constraint code has been
replaced by a state “supervariable” whose alphabet is the set of all codewords in the constraint
code. Each edge then represents the constraint that the associated ordinary variable must be
equal to the corresponding component of the supervariable.

� �
�

�
�

�
�

�
�

164 CHAPTER 11. CODES ON GRAPHS

\ \
\ \HHHHHH

HHHHHH
XXXXXX

XXXXXX. . .
HH\HHHH

+ . . .
HH\HHHH

��
�� \ �� ��� � \� ��\

HHHHHH

HHHHHH
XXXXXX

XXXXXX���
��

�
�\\+ � \\ h��

x x

xhh

x x

xhh
hh��\ \�� ���\�+ � �� ����.

��
�� �� �.

� �

Figure 14. (a) Tanner graph. (b) Equivalent pairwise Markov graph.

For example, suppose the constraint code has degree 3 and constrains three incident variables
(y1, y2, y3) to satisfy the parity check y1 + y2 + y3 = 0; i.e., the constraint code is a (3, 2, 2) code

h

with four codewords, namely {000, 110, 101, 011}. We then define a supervariable y123 to have
these codewords as its alphabet, and constrain y1 to equal the first component of y123, etc.

11.4.3 Block diagrams and directed normal graphs

Conventional block diagrams may often be regarded as normal graphs, with the vertices
(“blocks”) representing constraints, and the edges labeled by internal or external variables.

However, one difference is that the blocks usually represent input-output (causal) relationships,

h

so a block diagram is usually a directed graph in which the edges are also labelled with arrows,
indicating the direction of causality. In this respect block diagrams resemble Bayesian networks,
which are directed acyclic graphs representing probabilistic cause-and-effect models.

This style of graphical model can sometimes be superimposed on a normal graph, as follows. If a
constraint code is a linear (n, k) code and has an information set of size k, then the corresponding
k symbols may be regarded as “inputs” to the constraint, and the remaining n − k symbols as
“outputs” determined by the inputs. Arrows may be drawn on the edges to represent such
input-output relationships. If arrows can be drawn consistently on all edges in this way, then a
normal graph may be converted to a directed normal graph (block diagram).

For example, Figure 15 shows how a parity-check realization for the (8, 4, 4) code (Figure 3(b))
may be converted to directed normal graph form. This could be useful if, for example, we wanted
to use such a graph to implement an encoder. However, this example is a bit misleading, as
parity-check realizations cannot always be converted to encoders in this way.

-=
-=

HHHHHH
XXXXXXjz--=
HHHHHH

+
������
9 j�=
HHHHHH

+-:�XXXXXXXXXXXX������������
- �j-= z+�XXXXXXXXXXXX������
�=9 � z-

� �
:+�

������
=�=� ���� �=�

Figure 15. Conversion of parity-check realization of (8, 4, 4) code to directed normal graph
representing an encoder.

� �� �

(a) (b)

∏

Chapter 12

The sum-product algorithm

The sum-product algorithm is the basic “decoding” algorithm for codes on graphs. For finite
cycle-free graphs, it is finite and exact. However, because all its operations are local, it may
also be applied to graphs with cycles; then it becomes iterative and approximate, but in cod-
ing applications it often works very well. It has become the standard decoding algorithm for
capacity-approaching codes (e.g., turbo codes, LDPC codes).

There are many variants and applications of the sum-product algorithm. The most straight-
forward application is to a posteriori probability (APP) decoding. When applied to a trellis,
it becomes the celebrated BCJR decoding algorithm. In the field of statistical inference, it
becomes the even more widely known “belief propagation” (BP) algorithm. For Gaussian state-
space models, it becomes the Kalman smoother.

There is also a “min-sum” or maximum-likelihood sequence detection (MLSD) version of the
sum-product algorithm. When applied to a trellis, the min-sum algorithm gives the same result
as the Viterbi algorithm.

12.1 The sum-product algorithm on cycle-free graphs

We will develop the sum-product algorithm as an APP decoding algorithm for a code C that
has a cycle-free normal graph realization. We then discuss generalizations.

The code C is therefore described by a realization involving a certain set of symbol variables
{Yi, i ∈ I} represented by half-edges (dongles), a certain set of state variables {Σj , j ∈ J }
represented by edges, and a certain set of constraint codes {Ck , k ∈ K} of arbitrary degree, such
that the graph of the realization is cycle-free; i.e., every edge (and obviously every half-edge) is
by itself a cut set.

APP decoding is defined in general as follows. We assume that a set of independent observa-
tions are made on all symbol variables {Yi, i ∈ I}, resulting in a set of observations r = {ri, i ∈ I}
and likelihood vectors {{p(ri | yi), yi ∈ Yi}, i ∈ I}, where Yi is the alphabet of Yi. The
likelihood of a codeword y = {yi, i ∈ I} ∈ C is then defined as the componentwise product
p(r | y) = i∈I p(ri | yi).

165

∑ ∑ ∑ ∏

() ∑ ∑ ∑

166 CHAPTER 12. THE SUM-PRODUCT ALGORITHM

Assuming equiprobable codewords, the a posteriori probabilities {p(y | r),y ∈ C} (APPs) are
proportional to the likelihoods {p(r | y),y ∈ C}, since by Bayes’ law,

| y)p(y)
p(y | r) =

p(r
p(r)

∝ p(r | y), y ∈ C.

Let Ci(yi) denote the subset of codewords in which the symbol variable Yi has the value yi ∈ Yi.
Then, up to a scale factor, the symbol APP vector {p(Yi = yi | r), yi ∈ Yi} is given by

p(Yi = yi | r) = p(y | r) ∝ p(r | y) = p(ri′ | yi′), yi ∈ Yi. (12.1)
y∈Ci(yi) y∈Ci(yi) y∈Ci(yi) i′∈I

Similarly, if Cj (sj) denotes the subset of codewords that are consistent with the state variable
Σj having the value sj in the state alphabet Sj , then, up to a scale factor, the state APP vector
{p(Σj = sj | r), sj ∈ Sj } is given by ∑ ∏

p(Σj = sj | r) ∝
y∈Cj (sj) i∈I

p(ri | yi), sj ∈ Sj . (12.2)

We see that the components of APP vectors are naturally expressed as sums of products. The
sum-product algorithm aims to compute these APP vectors for every state and symbol variable.

12.1.1 Past-future decomposition rule

The sum-product algorithm is based on two fundamental principles, which we shall call here the
past/future decomposition rule and the sum-product update rule. Both of these rules are based
on set-theoretic decompositions that are derived from the code graph.

The past/future decomposition rule is based on the Cartesian-product decomposition of the
cut-set bound (Chapter 11). In this case every edge Σj is a cut set, so the subset of codewords
that are consistent with the state variable Σj having the value sj is the Cartesian product

Cj (sj) = Y|P (sj) × Y|F (sj), (12.3)

where P and F denote the two components of the disconnected graph which results from deleting
the edge representing Σj , and Y|P (sj) and Y|F (sj) are the sets of symbol values in each component
that are consistent with Σj taking the value sj .

We now apply an elementary Cartesian-product lemma:

Lemma 12.1 (Cartesian-product distributive law) If X and Y are disjoint discrete sets
and f(x) and g(y) are any two functions defined on X and Y, then ⎛ ⎞

⎠f(x)g(y) = f(x) ⎝ g(y) . (12.4)
(x,y)∈X ×Y x∈X y∈Y

This lemma may be proved simply by writing the terms on the right in a rectangular array and
then identifying them with the terms on the left. It says that rather than computing the sum
of |X ||Y| products, we can just compute a single product of independent sums over X and Y.
This simple lemma lies at the heart of many “fast” algorithms.

∑ ∏ ∑ ∏

∑ ∏

⊕ ⊗

167 12.1. THE SUM-PRODUCT ALGORITHM ON CYCLE-FREE GRAPHS

Using (12.3) and applying this lemma in (12.2), we obtain the past/future decomposition rule ⎛ ⎞⎛ ⎞

⎠p(Σj = sj | r) ∝ ⎝ p(ri | yi)⎠ ⎝ p(ri | yi)
y|P ∈Y|P (sj) i∈IP y|F ∈Y|F (sj) i∈IF

∝ p(Σj = sj | r|P)p(Σj = sj | r|F), (12.5)

in which the two terms p(Σj = sj | r|P) and p(Σj = sj | r|F) depend only on the likelihoods of
the past symbols y|P = {Yi, i ∈ IP } and future symbols y|F = {Yi, i ∈ IF }, respectively.

The sum-product algorithm therefore computes the APP vectors {p(Σj = sj | r|P)} and
{p(Σj = sj | r|F)} separately, and multiplies them componentwise to obtain {p(Σj = sj | r)}.
This is the past/future decomposition rule for state variables.

APP vectors for symbol variables are computed similarly. In this case, since symbol variables
have degree 1, one of the two components of the graph induced by a cut is just the symbol variable
itself, while the other component is the rest of the graph. The past/future decomposition rule
thus reduces to the following simple factorization of (12.1): ⎛ ⎞

p(Yi = yi | r) ∝ p(ri | yi) ⎝ p(ri′ | yi′)⎠ ∝ p(yi | ri)p(yi | r|i′=� i). (12.6)
=iy∈Ci(yi) i′ �

In the turbo code literature, the first term, p(yi | ri), is called the intrinsic information, while
the second term, p(yi | r|i′ �=i), is called the extrinsic information.

12.1.2 Sum-product update rule

The second fundamental principle of the sum-product algorithm is the sum-product update rule.
This is a local rule for the calculation of an APP vector, e.g., {p(Σj = sj | r|P), sj ∈ Sj}, from
APP vectors that lie one step further upstream.

The local configuration with respect to the edge corresponding to the state variable Σj is
illustrated in Figure 1. The edge must be incident on a unique past vertex corresponding to a
constraint code Ck. If the degree of Ck is δk, then there are δk − 1 edges further upstream of Ck,
corresponding to further past state or symbol variables. For simplicity, we suppose that these
are all state variables {Σj′ , j

′ ∈ Kjk}, where we denote their index set by Kjk ⊆ K|P .
{Σj′ , j

′ ∈ Kjk}�
@@Y|Pj′ @HHH Σj
. . . Ck

�
�� �

Figure 1. Local configuration for sum-product update rule.

Since the graph is cycle-free, each of these past edges has its own independent past Pj′ . The
corresponding sets Y|Pj′ of input symbols must be disjoint, and their union must be Y|P . Thus
if Ck(sj) is the set of codewords in the local constraint code Ck that are consistent with Σj = sj ,
and Y|Pj′ (sj′) is the set of y|Pj′ ∈ Y|Pj′ that are consistent with Σj′ = sj′ , then we have

Y|P (sj) = Y|Pj′ (sj′), (12.7)
Ck(sj) j′∈Kjk

∑ ∏

∏

168 CHAPTER 12. THE SUM-PRODUCT ALGORITHM

where the plus sign indicates a disjoint union, and the product sign indicates a Cartesian product.
In other words, for each codeword in Ck for which Σj = sj , the set of possible pasts is the
Cartesian product of possible pasts of the other state values {sj′ , j

′ ∈ Kjk}, and the total set of
possible pasts is the disjoint union of these Cartesian products.

Now, again using the Cartesian-product distributive law, it follows from (12.7) that

p(Σj = sj | r|P) = p(Σj′ = sj′ | r|Pj′). (12.8)
Ck(sj) j′∈Kjk

Thus if we know all the upstream APP vectors {p(Σj′ = sj′ | r|Pj′), sj′ ∈ Sj′ }, then we can
compute the APP vector {p(Σj = sj | r|P), sj ∈ Sj}.

Equation (12.8) is the sum-product update rule. We can see that for each sj ∈ Sj it involves
a sum of |Ck| products of δk − 1 terms. Its complexity is thus proportional to the size |Ck| of the
constraint code Ck. In a trellis, this is what we call the branch complexity.

In the special case where Ck is a repetition code, there is only one codeword corresponding to
each sj ∈ Sj , so (12.8) becomes simply the following product update rule:

p(Σj = sj | r|P) = p(Σj′ = sj | r|Pj′); (12.9)
j′∈Kjk

i.e., the components of the upstream APP vectors are simply multiplied componentwise. When
the sum-product algorithm is described for Tanner graphs, the product update rule is often
stated as a separate rule for variable nodes, because variable nodes in Tanner graphs correspond
to repetition codes in normal graphs.

Note that for a repetition code of degree 2, the product update rule of (12.9) simply becomes
a pass-through of the APP vector; no computation is required. This seems like a good reason
to suppress state nodes of degree 2, as we do in normal graphs.

12.1.3 The sum-product algorithm

Now we describe the complete sum-product algorithm for a finite cycle-free normal graph, using
the past/future decomposition rule (12.5) and the sum-product update rule (12.8).

Because the graph is cycle-free, it is a tree. Symbol variables have degree 1 and correspond to
leaves of the tree. State variables have degree 2 and correspond to branches.

For each edge, we wish to compute two APP vectors, corresponding to past and future. These
two vectors can be thought of as two messages going in opposite directions.

Using the sum-product update rule, each message may be computed after all upstream mes-
sages have been received at the upstream vertex (see Figure 1). Therefore we can think of each
vertex as a processor that computes an outgoing message on each edge after it has received
incoming messages on all other edges.

Because each edge is the root of a finite past tree and a finite future tree, there is a maximum
number d of edges to get from any given edge to the furthest leaf node in either direction, which
is called its depth d. If a message has depth d, then the depth of any upstream message can be
no greater than d − 1. All symbol half-edges have depth d = 0, and all state edges have depth
d ≥ 1. The diameter dmax of the tree is the maximum depth of any message.

12.2. THE BCJR ALGORITHM 169

Initially, incoming messages (intrinsic information) are available at all leaves of the tree. All
depth-1 messages can then be computed from these depth-0 messages; all depth-2 messages can
then be computed from depth-1 and depth-0 messages; etc. In a synchronous (clocked) system,
all messages can therefore be computed in dmax clock cycles.

Finally, given the two messages on each edge in both directions, all a posteriori probabilities
(APPs) can be computed using the past/future decomposition rule (12.5).

In summary, given a finite cycle-free normal graph of diameter dmax and intrinsic information
for each symbol variable, the sum-product algorithm computes the APPs of all symbol and
state variables in dmax clock cycles. One message (APP vector) of size |Sj | is computed for each
state variable Σj in each direction. The computational complexity at a vertex corresponding to a
constraint code Ck is of the order of |Ck |. (More precisely, the number of pairwise multiplications
required is δk (δk − 2)|Ck |.)

The sum-product algorithm does not actually require a clock. In an asynchronous implemen-
tation, each vertex processor can continuously generate outgoing messages on all incident edges,
using whatever incoming messages are available. Eventually all messages must be correct. An
analog asynchronous implementation can be extremely fast.

We see that there is a clean separation of functions when the sum-product algorithm is im-
plemented on a normal graph. All computations take place at vertices, and the computational
complexity at a vertex is proportional to the vertex (constraint code) complexity. The function
of ordinary edges (state variables) is purely message-passing (communications), and the com-
munications complexity (bandwidth) is proportional to the edge complexity (state space size).
The function of half-edges (symbol variables) is purely input/output; the inputs are the intrinsic
APPs, and the ultimate outputs are the extrinsic APP vectors, which combine with the inputs to
form the symbol APPs. In integrated-circuit terminology, the constraint codes, state variables
and symbol variables correspond to logic, interconnect, and I/O, respectively.

12.2 The BCJR algorithm

The chain graph of a trellis (state-space) representation is the archetype of a cycle-free graph.
The sum-product algorithm therefore may be used for exact APP decoding on any trellis (state-
space) graph. In coding, the resulting algorithm is known as the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm. (In statistical inference, it is known as the forward-backward algorithm. If
all probability distributions are Gaussian, then it becomes the Kalman smoother.)

Figure 2 shows the flow of messages and computations when the sum-product algorithm is
applied to a trellis.

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7ι0 ?6 α1

ι1 ?6 α2
ι2 ?6 α3

ι3 ?6 α4
ι4 ?6 α5

ι5 ?6 α6
ι6 ?6 α7

ι7 ?6- - - - - - -C0 C1 C2 C3 C4 C5 C6 C7� � � � � � �
β1 β2 β3 β4 β5 β6 β7

Figure 2. Flow of messages and computations in the sum-product algorithm on a trellis.

∏

∏

170 CHAPTER 12. THE SUM-PRODUCT ALGORITHM

The input messages are the intrinsic APP vectors ιi = {p(ri | yi), yi ∈ Yi}, derived from the
observations ri; the output messages are the extrinsic APP vectors εi = {p(yi | r|i′ �=i), yi ∈ Yi}.
The intermediate messages are the forward state APP vectors αj = p(sj | r|Pj), sj ∈ Sj } and
the backward state APP vectors βj = p(sj | r|Fj), sj ∈ Sj }, where r|Pj and r|Fj denote the
observations before and after sj , respectively.

The algorithm proceeds independently in the forward and backward directions. In the forward
direction, the messages αj are computed from left to right; αj may be computed by the sum-
product rule from the previous message αj−1 and the most recent input message ιj−1. In the
backward direction, the messages βj are computed from right to left; βj may be computed by
the sum-product rule from βj+1 and ιj .

Finally, each output message εi may be computed by the sum-product update rule from the
messages αi and βi+1, giving the extrinsic information for each symbol. To find the APP vector of
an input symbol Yi, the intrinsic and extrinsic messages ιi and εi are multiplied componentwise,
according to the past/future decomposition rule. (In turbo decoding, the desired output is
actually the extrinsic likelihood vector, not the APP vector.) Similarly, to find the APP vector of
a state variable Σj , the forward and backward messages αj and βj are multiplied componentwise.
Exercise 1. Consider the two-state trellis diagram for the binary (7, 6, 2) SPC code shown

in Figure 3 of Chapter 10. Suppose that a codeword is chosen equiprobably at random, that
the transmitter maps {0, 1} to {±1} as usual, that the resulting real numbers are sent through
a discrete-time AWGN channel with noise variance σ2 = 1 per symbol, and that the received
sequence is r = (0.4,−1.0,−0.1, 0.6, 0.7,−0.5, 0.2). Use the sum-product algorithm to determine
the APP that each input bit Yi is a 0 or a 1.

12.3 The min-sum algorithm and ML decoding

We now show that with minor modifications the sum-product algorithm may be used to perform
a variant of maximum-likelihood (ML) sequence decoding rather than APP decoding. On a
trellis, the resulting “min-sum” algorithm becomes a variant of the Viterbi algorithm.

With the same notation as in the previous section, the min-sum algorithm is defined as follows.
Again, let Ci(yi) denote the subset of codewords in which the symbol variable Yi has the value
yi ∈ Yi. Then the metric mi(yi) of yi is defined as the maximum likelihood of any codeword
y ∈ Ci(Yi); i.e.,

mi(yi) = max p(r | y) = max p(ri′ | yi′), yi ∈ Yi. (12.10)
y∈Ci(Yi) y∈Ci(Yi)

i′∈I

It is clear that the symbol value yi with the maximum metric mi(yi) will be the value of yi in
the codeword y ∈ C that has the maximum global likelihood.

Similarly, if Cj (sj) denotes the subset of codewords that are consistent with the state variable
Σj having the value sj in the state alphabet Sj , then the metric mj (sj) of sj will be defined as
the maximum likelihood of any codeword y ∈ Cj (sj):

mj (sj) = max p(ri | yi), sj ∈ Sj . (12.11)
y∈Cj (sj)

i∈I

() ()

∏ ∏

∏

171 12.3. THE MIN-SUM ALGORITHM AND ML DECODING

We recognize that (12.10) and (12.11) are almost identical to (12.1) and (12.2), with the
exception that the sum operator is replaced by a max operator. This suggests that these metrics
could be computed by a version of the sum-product algorithm in which “sum” is replaced by
“max” everywhere, giving what is called the “max-product algorithm.”

In fact this works. The reason is that the operators “max” and “product” operate on proba-
bility vectors defined on sets according to the same rules as “sum” and “product.” In particular,
assuming that all quantities are non-negative, we have

(a) the distributive law: a max{b, c} = max{ab, ac};
(b) the Cartesian-product distributive law:

max f (x)g(y) = max f (x) max g(y) . (12.12)
(x,y)∈X ×Y x∈X y∈Y

Consequently, the derivation of the previous section goes through with just this one change.
From (12.3), we now obtain the past/future decomposition rule ⎛ ⎞⎛ ⎞

mj (sj) = ⎝ max p(ri | yi)⎠ ⎝ max p(ri | yi)⎠ = mj (sj | r|P)mj (sj | r|F),
y|P ∈Y|P (sj) y|F ∈Y|F (sj)

i∈IP i∈IF

in which the partial metrics mj (sj | r|P) and mj (sj | r|F) are the maximum likelihoods over the
past symbols y|P = {yi, i ∈ IP } and future symbols y|F = {yi, i ∈ IF }, respectively. Similarly,
we obtain the max-product update rule

mj (sj | r|P) = max mj′ (sj′ | r|Pj′), (12.13)
Ck(sj)

j′∈Kjk

where the notation is as in the sum-product update rule (12.8).
In practice, likelihoods are usually converted to log likelihoods, which converts products to

sums and yields the max-sum algorithm. Or, log likelihoods may be converted to negative log
likelihoods, which converts max to min and yields the min-sum algorithm. These variations are
all trivially equivalent.

On a trellis, the forward part of any of these algorithms is equivalent to the Viterbi algorithm
(VA). The update rule (12.13) becomes the add-compare-select operation, which is carried out at
each state to determine the new metric mj (sj | r|P) of each state. The VA avoids the backward
part of the algorithm by also remembering the survivor history at each state, and then doing a
traceback when it gets to the end of the trellis; this traceback corresponds in some sense to the
backward part of the sum-product algorithm.
Exercise 2. Repeat Exercise 1, using the min-sum algorithm instead of the sum-product

algorithm. Decode the same sequence using the Viterbi algorithm, and show how the two
computations correspond. Decode the same sequence using Wagner decoding, and show how
Wagner decoding relates to the other two methods.

172 CHAPTER 12. THE SUM-PRODUCT ALGORITHM

12.4 The sum-product algorithm on graphs with cycles

On a graph with cycles, there are several basic approaches to decoding.
One approach is to agglomerate the graph enough to eliminate the cycles, and then apply

the sum-product algorithm, which will now be exact. The problem is that the complexity of
decoding of a cycle-free graph of C cannot be significantly less than the complexity of decoding
some trellis for C, as we saw in Chapter 11. Moreover, as we saw in Chapter 10, the complexity
of a minimal trellis for a sequence of codes with positive rates and coding gains must increase
exponentially with code length.

A second approach is simply to apply the sum-product algorithm to the graph with cycles and
hope for the best.

Because the sum-product rule is local, it may be implemented at any vertex of the graph,
using whatever incoming messages are currently available. In a parallel or “flooding” schedule,
the sum-product rule is computed at each vertex at all possible times, converting the incoming
messages to a set of outgoing messages on all edges. Other schedules are possible, as we will
discuss in the next chapter.

There is now no guarantee that the sum-product algorithm will converge. In practice, the
sum-product algorithm converges with probability near 1 when the code rate is below some
threshold which is below but near the Shannon limit. Convergence is slow when the code rate is
near the threshold, but rapid when the code rate is somewhat lower. The identification of fixed
points of the sum-product algorithm is a topic of current research.

Even if the sum-product algorithm converges, there is no guarantee that it will converge
to the correct likelihoods or APPs. In general, the converged APPs will be too optimistic
(overconfident), because they assume that all messages are from independent inputs, whereas in
fact messages enter repeatedly into sum-product updates because of graph cycles. Consequently,
decoding performance is suboptimal. In general, the suboptimality is great when the graph has
many short cycles, and becomes negligible as cycles get long and sparse (the graph becomes
“locally tree-like”). This is why belief propagation has long been considered to be inapplicable to
most graphical models with cycles, which typically are based on physical models with inherently
short cycles; in coding, by contrast, cycles can be designed to be very long with high probability.

A third approach is to beef up the sum-product algorithm so that it still performs well on
certain classes of graphs with cycles. Because the sum-product algorithm already works so well
in coding applications, this approach is not really needed for coding. However, this is a current
topic of research for more general applications in artificial intelligence, optimization and physics.

Chapter 13

Capacity-approaching codes

We have previously discussed codes on graphs and the sum-product decoding algorithm in
general terms. In this chapter we will give a brief overview of some particular classes of codes
that can approach the Shannon limit quite closely: low-density parity-check (LDPC) codes,
turbo codes, and repeat-accumulate (RA) codes. We will analyze long LDPC codes on the
binary erasure channel (BEC), where exact results can be obtained. We will also sketch how to
analyze any of these codes on symmetric binary-input channels.

13.1 LDPC codes

The oldest of these classes of codes is LDPC codes, invented by Gallager in his doctoral thesis
(1961). These codes were introduced long before their time (“a bit of 21st-century coding that
happened to fall in the 20th century”), and were almost forgotten until the mid-1990s, after the
introduction of turbo codes, when they were independently rediscovered. Because of their simple
structure, they have been the focus of much analysis. They have also proved to be capable of
approaching the Shannon limit more closely than any other class of codes.

An LDPC code is based on the parity-check representation of a binary linear (n, k) block code
C; i.e., C is the set of all binary n-tuples that satisfy the n − k parity-check equations

xHT = 0,

where H is a given (n − k) × n parity-check matrix. The basic idea of an LDPC code is that n
should be large and H should be sparse; i.e., the density of ones in H should be of the order of a
small constant times n rather than n2 . As we will see, this sparseness makes it feasible to decode
C by iterative sum-product decoding in linear time. Moreover, H should be pseudo-random, so
that C will be a “random-like” code.

In Chapter 11, we saw that a parity-check representation of an (n, k) linear code leads to a
Tanner graph with n variable nodes, n − k constraint (zero-sum) nodes, and no state nodes.
The number of edges is equal to the number of ones in the parity-check matrix H . This was
illustrated by the Tanner graph of a parity-check representation for an (8, 4, 4) code, shown again
here as Figure 1.

173

174 CHAPTER 13. CAPACITY-APPROACHING CODES

x0 ~

x1	

HHHHHHHHHH

XXXXXXXXXXx2 ~

x3

~HHHHHHHHHH

+

����������

~

HHHHHHHHHH

+�XXXXXXXXXX����������

�
�

x4 ~ +�XXXXXXXXXX
�

����������

�x5 ~ � � +
� �

����������
�� �� �x6 ~ �����x7 ~

Figure 1. Tanner graph of parity-check representation for (8, 4, 4) code.

Gallager’s original LDPC codes were regular, meaning that every variable is involved in the
same number dλ of constraints, whereas every constraint checks the same number dρ of variables,
where dρ and dλ are small integers. The number of edges is thus ndλ = (n − k)dρ, so the nominal
rate R = k/n of the code satisfies1

n − k dλ1 − R = = .
n dρ

Subject to this constraint, the connections between the ndλ variable “sockets” and the (n − k)dρ
constraint sockets are made pseudo-randomly.

1For example, the normal graph of a Gallager code with dλ = 3, dρ = 6 and R = 2 is shown in
Figure 2. The large box labelled Π represents a pseudo-random permutation (“interleaver”).

= �P�
P HPh(� ��

HPh(�
= �P�

P

= �P�
P HPh(� ��

HPh(�
= �P�

P
Π

.

= �P�
P HPh(� ��

HPh(�
= �P�

P

Figure 2. Normal graph of a regular dλ = 3, dρ = 6 LDPC code.

The actual rate of the code will be greater than R if the checks are not linearly independent. However, this
fine point may be safely ignored.

+

+

+

1

13.2. TURBO CODES 175

Decoding an LDPC code is done by an iterative version of the sum-product algorithm, with a
schedule that alternates between left nodes (repetition constraints) and right nodes (zero-sum
constraints). The sparseness of the graph tends to insure that its girth (minimum cycle length)
is reasonably large, so that the graph is locally tree-like. In decoding, this implies that the
independence assumption holds for quite a few iterations. However, typically the number of
iterations is large, so the independence assumption eventually becomes invalid.

The minimum distance of an LDPC code is typically large, so that actual decoding errors
are hardly ever made. Rather, the typical decoding failure mode is a failure of the decoding
algorithm to converge, which is of course a detectable failure.

The main improvement in recent years to Gallager’s LDPC codes has been the use of irreg-
ular codes— i.e., LDPC codes in which the left (variable) vertices and right (check) vertices
have arbitrary degree distributions. The behavior of the decoding algorithm can be analyzed
rather precisely using a technique called “density evolution,” and the degree distributions can
consequently be optimized, as we will discuss later in this chapter.

13.2 Turbo codes

The invention of turbo codes by Berrou et al. (1993) ignited great excitement about capacity-
approaching codes. Initially, turbo codes were the class of capacity-approaching codes that were
most widely used in practice, although LDPC codes may now be superseding turbo codes. Turbo
codes achieve fairly low error rates within 1–2 dB of the Shannon limit at moderate block lengths
(n = 103 to 104).

The original turbo codes of Berrou et al. are still some of the best that are known. Figure 3
shows a typical Berrou-type turbo code. An information bit sequence is encoded twice: first by
an ordinary rate-1

2 systematic recursive (with feedback) convolutional encoder, and then, after a
large pseudo-random permutation Π, by a second such encoder. The information sequence and

1the two parity sequences are transmitted, so the overall rate is R = 3 .

information bits -

?

-
rate-1

2 , 4–16-state
systematic recursive
convolutional encoder

first parity bits -

Π

-
rate-1

2 , 4–16-state
systematic recursive
convolutional encoder

-second parity bits

Figure 3. Rate-1 Berrou-type turbo code. 3

The two convolutional encoders are not very complicated, typically 4–16 states, and are often
chosen to be identical. The convolutional codes are usually terminated to a finite block length.
In practice the rate is often increased by puncturing.

176 CHAPTER 13. CAPACITY-APPROACHING CODES

info bits

first = second
parity

=
parity

bits bits

=

= Π

.

=

=
trellis 1 trellis 2

Figure 4. Normal graph of a Berrou-type turbo code.

Figure 4 is a normal graph of such a code. On both sides of the permutation Π are normal
graphs representing the trellises of the two constituent convolutional codes, as in Figure 4(b)
of Chapter 11. The information and parity bits are shown separately. The information bit
sequences for the two trellises are identical, apart from the permutation Π.

Decoding a turbo code is done by an iterative version of the sum-product algorithm, with a
schedule that alternates between the left trellis and the right trellis. On each trellis the sum-
product algorithm reduces to the BCJR (APP) algorithm, so the decoder can efficiently decode
the entire trellis before exchanging the resulting “extrinsic information” with the other trellis.

Again, the large permutation Π, combined with the recursive property of the encoders, tends
to ensure that the girth of the graph is reasonably large, so the independence assumption holds
for quite a few iterations. In turbo decoding the number of iterations is typically only 10–20,
since much computation can be done along a trellis in each iteration.

The minimum distance of a Berrou-type turbo code is typically not very large. Although at
low SNRs the decoding error probability tends to drop off rapidly above a threshold SNR (the
“waterfall region”) down to 10−4 , 10−5 or lower, for higher SNRs the error probability falls off
more slowly due to low-weight error events (the “noise floor” region), and the decoder actually
makes undetectable errors.

For applications in which these effects are undesirable, a different arrangement of two con-
stituent codes is used, namely one after the other as in classical concatenated coding. Such
codes are called “serial concatenated codes,” whereas the Berrou-type codes are called “parallel
concatenated codes.” Serial concatenated codes usually still have an error floor, but typically
at a considerably lower error rate than parallel concatenated codes. On the other hand, their
threshold in the waterfall region tends to be worse than that of parallel concatenated codes.
The “repeat-accumulate” codes of the next section are simple serial concatenated codes.

Analysis of turbo codes tends to be more ad hoc than that of LDPC codes. However, good ad
hoc techniques for estimating decoder performance are now known (e.g., the “extrinsic informa-
tion transfer (EXIT) chart;” see below), which allow optimization of the component codes.

13.3. REPEAT-ACCUMULATE CODES 177

13.3 Repeat-accumulate codes

Repeat-accumulate (RA) codes were introduced by Divsalar, McEliece et al. (1998) as extremely
simple “turbo-like” codes for which there was some hope of proving theorems. Surprisingly, even
such simple codes proved to work quite well, within about 1.5 dB of the Shannon limit— i.e.,
better than the best schemes known prior to turbo codes.

RA codes are a very simple class of serial concatenated codes. The outer code is a simple
(n, 1, n) repetition code, which simply repeats the information bits n times. The resulting
sequence is then permuted by a large pseudo-random permutation Π. The inner code is a rate-1
2-state convolutional code with generator g(D) = 1/(1 + D); i.e., the input/output equation is
yk = xk + yk−1, so the output bit is simply the “accumulation” of all previous input bits (mod
2). The complete RA encoder is shown in Figure 5.

- 1- - -(n, 1, n) Π 1+D

Figure 5. Rate- 1 RA encoder. n

The normal graph of a rate-1 RA code is shown in Figure 6. Since the original information 3
bits are not transmitted, they are regarded as hidden state variables, repeated three times. On
the right side, the states of the 2-state trellis are the output bits yk , and the trellis constraints
are represented explicitly by zero-sum nodes that enforce the constraints yk + xk + yk−1 = 0.

.
=

+

=�
�

�

@
@

@
=

+

=

Π
=

+

+

=�
�

�

@
@

@
=

+

=

+
.

Figure 6. Normal graph of rate-1 RA code. 3

Decoding an RA code is again done by an iterative version of the sum-product algorithm,
with a schedule that alternates between the left constraints and the right constraints, which in
this case form a 2-state trellis. For the latter, the sum-product algorithm again reduces to the
BCJR (APP) algorithm, so the decoder can efficiently decode the entire trellis in one iteration.
A left-side iteration does not accomplish as much, but on the other hand it is extremely simple.
As with LDPC codes, performance may be improved by making the left degrees irregular.

178 CHAPTER 13. CAPACITY-APPROACHING CODES

13.4 Analysis of LDPC codes on the binary erasure channel

In this section we will analyze the performance of iterative decoding of long LDPC codes on
a binary erasure channel. This is one of the few scenarios in which exact analysis is possible.
However, the results are qualitatively (and to a considerable extent quantitatively) indicative of
what happens in more general scenarios.

13.4.1 The binary erasure channel

The binary erasure channel (BEC) models a memoryless channel with two inputs {0, 1} and
three outputs, {0, 1, ?}, where “?” is an “erasure symbol.” The probability that any transmitted
bit will be received correctly is 1 − p, that it will be erased is p, and that it will be received
incorrectly is zero. These transition probabilities are summarized in Figure 7 below.

0 1 − p 0 p XXXXXX
������ ? p

1 1 − p 1

Figure 7. Transition probabilities of the binary erasure channel.

The binary erasure channel is an exceptional channel, in that a received symbol either specifies
the transmitted symbol completely, or else gives no information about it. There are few physical
examples of such binary-input channels. However, a Q-ary erasure channel (QEC) is a good
model of packet transmission on the Internet, where (because of internal parity checks on packets)
a packet is either received perfectly or not at all.

If a code sequence c from a binary code C is transmitted over a BEC, then the received
sequence r will agree with c in all unerased symbols. If there is no other code sequence c′ ∈ C
that agrees with r in all unerased symbols, then c is the only possible transmitted sequence,
so a maximum-likelihood (ML) decoder can decide that c was sent with complete confidence.
On the other hand, if there is another code sequence c′ ∈ C that agrees with r in all unerased
symbols, then there is no way to decide between c and c′, so a detectable decoding failure must
occur. (We consider a random choice between c and c′ to be a decoding failure.)

The channel capacity of a BEC with erasure probability p is 1 − p, the fraction of unerased
symbols, as would be expected intuitively. If feedback is available, then the channel capacity
may be achieved simply by requesting retransmission of each erased symbol (the method used
on the Internet Q-ary erasure channel).

Even without feedback, if we choose the 2nR code sequences in a block code C of length n
and rate R independently at random with each bit having probability 1 of being 0 or 1, then as 2
n → ∞ the probability of a code sequence c′ ∈ C agreeing with the transmitted sequence c in all
≈ n(1 − p) unerased symbols is about 2−n(1−p), so by the union bound estimate the probability
of decoding failure is about

· 2−n(1−p),Pr(E) ≈ 2nR

which decreases exponentially with n as long as R < 1 − p. Thus capacity can be approached
arbitrarily closely without feedback. On the other hand, if R > 1 −p, then with high probability
there will be only ≈ n(1 − p) < nR unerased symbols, which can distinguish between at most
2n(1−p) < 2nR code sequences, so decoding must fail with high probability.

179 13.4. ANALYSIS OF LDPC CODES ON THE BINARY ERASURE CHANNEL

13.4.2 Iterative decoding of LDPC codes on the BEC

On the binary erasure channel, the sum-product algorithm is greatly simplified, because at any
time every variable corresponding to every edge in the code graph is either known perfectly
(unerased) or not known at all (erased). Iterative decoding using the sum-product algorithm
therefore reduces simply to the propagation of unerased variables through the code graph.

There are only two types of nodes in a normal graph of an LDPC code (e.g., Figure 2):
repetition nodes and zero-sum nodes. If all variables are either correct or erased, then the
sum-product update rule for a repetition node reduces simply to:

If any incident variable is unerased, then all other incident variables may be set equal to
that variable, with complete confidence; otherwise, all incident variables remain erased.

For a zero-sum node, the sum-product update rule reduces to:

If all but one incident variable is unerased, then the remaining incident variable may
be set equal to the mod-2 sum of those inputs, with complete confidence; otherwise,
variable assignments remain unchanged.

Since all unerased variables are correct, there is no chance that these rules could produce a
variable assignment that conflicts with another assignment.

Exercise 1. Using a graph of the (8, 4, 4) code like that of Figure 1 for iterative decoding,
decode the received sequence (1, 0, 0, ?, 0, ?, ?, ?). Then try to decode the received sequence
(1, 1, 1, 1, ?, ?, ?, ?). Why does decoding fail in the latter case? Give both a local answer (based on
the graph) and a global answer (based on the code). For the received sequence (1, 1, 1, 1, ?, ?, ?, 0),
show that iterative decoding fails but that global (i.e., ML) decoding succeeds.

13.4.3 Performance of large random LDPC codes

We now analyze the performance of iterative decoding for asymptotically large random LDPC
codes on the BEC. Our method is a special case of a general method called density evolution, and
is illustrated by a special case of the EXtrinsic Information Transfer (EXIT) chart technique.

We first analyze a random ensemble of regular (dρ, dλ) LDPC codes of length n and rate
R = 1 − dλ/dρ. In this case all left nodes are repetition nodes of degree dλ + 1, with one
external (input) incident variable and dλ internal (state) incident variables, and all right nodes
are zero-sum nodes of degree dρ, with all incident variables being internal (state) variables. The
random element is the permutation Π, which is chosen equiprobably from the set of all (ndλ)!
permutations of ndλ = (n − k)dρ variables. We let n → ∞ with (dρ, dλ) fixed.

We use the standard sum-product algorithm, which alternates between sum-product updates
of all left nodes and all right nodes. We track the progress of the algorithm by the expected
fraction q of internal (state) variables that are still erased at each iteration. We will assume
that at each node, the incident variables are independent of each other and of everything else;
as n → ∞, this “locally tree-like” assumption is justified by the large random interleaver.

At a repetition node, if the current probability of internal variable erasure is qin, then the
probability that a given internal incident variable will be erased as a result of its sum-product
update is the probability that both the external incident variable and all dλ − 1 other internal
incident variables are erased, namely qout = p(qin)dλ−1 .

180 CHAPTER 13. CAPACITY-APPROACHING CODES

On the other hand, at a zero-sum node, the probability that a given incident variable will
not be erased is the probability that all dρ − 1 other internal incident variables are not erased,
namely (1 − qin)dρ−1, so the probability that it is erased is qout = 1 − (1 − qin)dρ−1 .

These two functions are plotted in the “EXIT chart” of Figure 8 in the following manner. The
two variable axes are denoted by qr→� and q�→r , where the subscripts denote respectively left-
going and right-going erasure probabilities. The range of both axes is from 1 (the initial value)
to 0 (hopefully the final value). The two curves represent the sum-product update relationships
derived above:

q�→r = p(qr→�)dλ −1; qr→� = 1 − (1 − q�→r)dρ−1 .
1These curves are plotted for a regular (dλ = 3, dρ = 6) (R = 2) LDPC code on a BEC with

p = 0.4.

0

0.4

q�→r

p = 0.4

1
1 qr→� 0

Figure 8. EXIT chart for iterative decoding of a regular (dλ = 3, dρ = 6) LDPC code on a BEC
with p = 0.4.

A “simulation” of iterative decoding may then be performed as follows (also plotted in Figure
8). Initially, the left-going erasure probability is qr→� = 1. After a sum-product update in the
left (repetition) nodes, the right-going erasure probability becomes q�→r = p = 0.4. After a
sum-product update in the right (zero-sum) nodes, the left-going erasure probability becomes
qr→� = 1 − (0.6)5 = 0.922. Continuing, the erasure probability evolves as follows:

qr→� : 1 0.922 0.875 0.839 0.809 0.780 0.752 0.723 0.690 0.653 0.607 0.550 0.475 0.377 . . .

q�→r :

We see that iterative decoding must eventually drive the erasure probabilities to the top right
corner of Figure 8, q�→r = qr→� = 0, because the two curves do not cross. It takes quite a
few iterations, about 15 in this case, to get through the narrow “tunnel” where the two curves

�R
0.

�
057

@�R
0.

�
090

@�R
0.

�
121

@�R
0.

�
147

@�R
0.

�
170

@�R
0.

�
191

@�R
0.

�
209

@�R
0.

�
227

@�R
0.

�
244

@�R
0.

�
262

@�R
0.

�
282

@�R
0.

�
306

@�R
0.

�
340

@�R
0.

�
400

@

181 13.4. ANALYSIS OF LDPC CODES ON THE BINARY ERASURE CHANNEL

approach each other closely. However, once past the “tunnel,” convergence is rapid. Indeed,
when both erasure probabilities are small, the result of one complete (left and right) iteration is

new old qr→� ≈ 5q�→r = 5p(qr→�)
2 .

Thus both probabilities decrease rapidly (doubly exponentially) with the number of iterations.
The iterative decoder will fail if and only if the two curves touch; i.e., if and only if there exists

a pair (q�→r , qr→�) such that q�→r = p(qr→�)dλ−1 and qr→� = 1 − (1 − q�→r)dρ−1, or equivalently
the single-iteration update equation

new old q = 1 − (1 − p(qr→�)
dλ−1)dρ−1

r→�

new = qoldhas a fixed point with q r→�. For example, if p = 0.45 and dλ = 3, dρ = 6, then this r→�
equation has a (first) fixed point at about (q�→r ≈ 0.35, qr→� ≈ 0.89), as shown in Figure 9.

1

q�→r

0.45

0
p = 0.45

1 qr→� 0
Figure 9. EXIT chart for iterative decoding of a regular (dλ = 3, dρ = 6) LDPC code on a BEC

with p = 0.45.

Exercise 2. Perform a simulation of iterative decoding of a regular (dλ = 3, dρ = 6) LDPC
code on a BEC with p = 0.45 (i.e., on Figure 9), and show how decoding gets stuck at the first
fixed point (q�→r ≈ 0.35, qr→� ≈ 0.89). About how many iterations does it take to get stuck?
By simulation of iterative decoding, compute the coordinates of the fixed point to six significant
digits.

We conclude that iterative decoding of a large regular (dλ = 3, dρ = 6) LDPC code, which has
1nominal rate R = 2 , will succeed on a BEC when the channel erasure probability is less than

∗some threshold p ∗, where 0.4 < p < 0.45. The threshold p ∗ is the smallest p such that the
equation x = 1 − (1 − px2)5 has a solution in the interval 0 < x < 1.

Exercise 3. By analysis or simulation, show that p ∗ = 0.429....

� �

�

� �

�

�

�

�

� �

�

�

182 CHAPTER 13. CAPACITY-APPROACHING CODES

13.4.4 Analysis of irregular LDPC codes

Now let us apply a similar analysis to large irregular LDPC codes, where the left nodes and/or
right nodes do not necessarily all have the same degree. We characterize ensembles of such codes
by the following parameters.

The number of external variables and left (repetition) nodes is the code length n; again we let
n → ∞. The number of internal variables (edges) will be denoted by E, which we will allow to
grow linearly with n. The number of right (zero-sum) nodes will be n − k = n(1 − R), yielding
a nominal code rate of R.

A left node will be said to have degree d if it has d incident internal edges (i.e., the external
variable is not counted in its degree). The number of left nodes of degree d will be denoted by
Ld. Thus n = d Ld. Similarly, the number of right nodes of degree d will be denoted by Rd,
and n(1 − R) = Rd. Thus the nominal rate R is given by d

RddR = 1 − � .
Ldd

An edge will be said to have left degree d if it is incident on a left node of degree d. The
number of edges of left degree d will be denoted by �d; thus �d = dLd. Similarly, the number of
edges of right degree d is rd = dRd. The total number of edges is thus

E = �d = rd.
d d

It is helpful to define generating functions of these degree distributions as follows:

L(x) = Ldx d;
d

R(x) = Rdx d;
d

�dx d−1;�(x) =
d

r(x) = rdx d−1 .
d

Note that L(1) = n, R(1) = n(1 −R), and �(1) = r(1) = E. Also, note that �(x) is the derivative
of L(x),

�dx d−1L′(x) = Lddxd−1 = = �(x),
d d

and similarly R′(x) = r(x). Conversely, we have the integrals � x
dL(x) = (�d/d)x = �(y)dy;

0d � x
dR(x) = (rd/d)x = r(y)dy.

0d

Finally, we have
R(1)

� 1
r(x)dx0R = 1 − = 1 − � 1 .

L(1) �(x)dx0

� �

�

�

�

183 13.4. ANALYSIS OF LDPC CODES ON THE BINARY ERASURE CHANNEL

In the literature, it is common to normalize all of these generating functions by the total
number of edges E; i.e., we define λ(x) = �(x)/E = �(x)/�(1), ρ(x) = r(x)/E = r(x)/r(1),

x xΛ(x) = L(x)/E = 0 λ(y)dy, and P(x) = R(x)/E = ρ(y)dy. In these terms, we have 0

P(1)
� 1

ρ(x)dx0R = 1 −
Λ(1)

= 1 − � 1 .
λ(x)dx0

The average left degree is defined as dλ = E/n, and the average right degree as dρ = E/n(1−R);
therefore 1/dλ = Λ(1), 1/dρ = P(1), and

dλ
R = 1 − .

dρ

The analysis of iterative decoding of irregular LDPC codes may be carried out nicely in terms
of these generating functions. At a left node, if the current left-going probability of variable
erasure is qr→�, then the probability that a given internal variable of left degree d will be erased
as a result of a sum-product update is p(qr→�)d−1 . The expected fraction of erased right-going
variables is thus

q�→r = p λd(qr→�)d−1 ,
d

where λd = �d/E is the fraction of edges of left degree d. Thus

q�→r = pλ(qr→�),

λdx
d−1where λ(x) = . Similarly, the expected fraction of erased left-going variables after a d

sum-product update at a right node is � � �
=qr→� ρd 1 − (1 − q�→r)d−1 = 1 − ρ(1 − q�→r),

d

d ρdx
d−1 .where ρd = rd/E is the fraction of edges of right degree d, and ρ(x) =

These equations generalize the equations q�→r = p(qr→�)λ−1 and qr→� = 1 − (1 − q�→r)ρ−1 for
the regular case. Again, these two curves may be plotted in an EXIT chart, and may be used for
an exact calculation of the evolution of the erasure probabilities q�→r and qr→� under iterative
decoding. And again, iterative decoding will be successful if and only if the two curves do not
cross. The fixed-point equation now becomes

x = 1 − ρ(1 − pλ(x)).

Design of a capacity-approaching LDPC code therefore becomes a matter of choosing the left
and right degree distributions λ(x) and ρ(x) so that the two curves come as close to each other
as possible, without touching.

13.4.5 Area theorem

The following lemma and theorem show that in order to approach the capacity C = 1 − p of
the BEC arbitrarily closely, the two EXIT curves must approach each other arbitrarily closely;
moreover, if the rate R exceeds C, then the two curves must cross.

�

184 CHAPTER 13. CAPACITY-APPROACHING CODES

Lemma 13.1 (Area theorem) The area under the curve q�→r = pλ(qr→�) is p/dλ, while the
area under the curve qr→� = 1 − ρ(1 − q�→r) is 1 − 1/dρ.

Proof. � 1
pλ(x)dx = pΛ(1) =

p
;

0 dλ � 1 � 1 1
(1 − ρ(1 − x))dx = (1 − ρ(y))dy = 1 − P(1) = 1 − .

0 0 dρ

Theorem 13.2 (Converse capacity theorem) For successful iterative decoding of an irreg-
ular LDPC code on a BEC with erasure probability p, the code rate R must be less than the
capacity C = 1 − p. As R → C, the two EXIT curves must approach each other closely, but not
cross.

Proof. For successful decoding, the two EXIT curves must not intersect, which implies that
the regions below the two curves must be disjoint. This implies that the sum of the areas of
these regions must be less than the area of the EXIT chart, which is 1:

pΛ(1) + 1 − P(1) < 1.

This implies that p < P(1)/Λ(1) = 1 − R, or equivalently R < 1 − p = C. If R ≈ C, then
pΛ(1) + 1 − P(1) ≈ 1, which implies that the union of the two regions must nearly fill the whole
EXIT chart, whereas for successful decoding the two regions must remain disjoint.

13.4.6 Stability condition

Another necessary condition for the two EXIT curves not to cross is obtained by considering
the curves near the top right point (0, 0). For qr→� small, we have the linear approximation

q�→r = pλ(qr→�) ≈ pλ′(0)qr→�.

Similarly, for q�→r small, we have

qr→� = 1 − ρ(1 − q�→r) ≈ 1 − ρ(1) + ρ′(1)q�→r = ρ′(1)q�→r ,

where we use ρ(1) = ρd = 1. After one complete iteration, we therefore have d

new old qr→� ≈ pλ′(0)ρ′(1)qr→�,

The erasure probability qr→� is thus reduced on a complete iteration if and only if

pλ′(0)ρ′(1) < 1.

This is known as the stability condition on the degree distributions λ(x) and ρ(x). Graphically,
it ensures that the line q�→r ≈ pλ′(0)qr→� lies above the line qr→� ≈ ρ′(1)q�→r near the point
(0, 0), which is a necessary condition for the two curves not to cross.

13.5. LDPC CODE ANALYSIS ON SYMMETRIC BINARY-INPUT CHANNELS 185

Exercise 4. Show that if the minimum left degree is 3, then the stability condition necessarily
holds. Argue that such a degree distribution λ(x) cannot be capacity-approaching, however, in
view of Theorem 13.2.

Luby, Shokrollahi et al. have shown that for any R < C it is possible to design λ(x) and ρ(x)
so that the nominal code rate is R and the two curves do not cross, so that iterative decoding
will be successful. Thus iterative decoding of LDPC codes solves the longstanding problem of
approaching capacity arbitrarily closely on the BEC with a linear-time decoding algorithm, at
least for asymptotically long codes.

13.5 LDPC code analysis on symmetric binary-input channels

In this final section, we will sketch how to analyze a long LDPC code on a general symmetric
binary-input channel (SBIC). Density evolution is exact, but is difficult to compute. EXIT
charts give good approximate results.

13.5.1 Symmetric binary-input channels

The binary symmetric channel (BSC) models a memoryless channel with binary inputs {0, 1}
and binary outputs {0, 1}. The probability that any transmitted bit will be received correctly
is 1 − p, and that it will be received incorrectly is p. This model is depicted in Figure 10 below.

1 − p0 HHHHHH

0 p ����p��1 1 − p 1

Figure 10. Transition probabilities of the binary symmetric channel.

By symmetry, the capacity of a BSC is attained when the two input symbols are equiprobable.
In this case, given a received symbol y, the a posteriori probabilities {p(0 | y), p(1 | y)} of the
transmitted symbols are {1 − p, p} for y = 0 and {p, 1 − p} for y = 1. The conditional entropy
H(X | y) is thus equal to the binary entropy function H(p) = −p log2 p − (1 − p) log2(1 − p),
independent of y. The channel capacity is therefore equal to C = H(X) −H(X | Y) = 1 −H(p).

A general symmetric binary-input channel (SBIC) is a channel with binary inputs {0, 1} that
may be viewed as a mixture of binary symmetric channels, as well as possibly a binary erasure
channel. In other words, the channel output alphabet may be partitioned into pairs {a, b} such
that p(a | 0) = p(b | 1) and p(a | 1) = p(b | 0), as well as possibly a singleton {?} such that
p(? | 0) = p(? | 1).

Again, by symmetry, the capacity of a SBIC is attained when the two input symbols are
equiprobable. Then the a posteriori probabilities (APPs) are symmetric, in the sense that for
any such pair {a, b}, {p(0 | y), p(1 | y)} equals {1 −p, p} for y = a and {p, 1 −p} for y = b, where

p(a | 1) p(b | 0)
p = =

p(a | 0) + p(a | 1) p(b | 0) + p(b | 1)
.

1 1Similarly, {p(0 |?), p(1 |?)} = {2 , 2 }.

�

186 CHAPTER 13. CAPACITY-APPROACHING CODES

We may characterize a symmetric binary-input channel by the probability distribution of the
APP parameter p = p(1 | y) under the conditional distribution p(y | 0), which is the same as the
distribution of p = p(0 | y) under p(y | 1). This probability distribution is in general continuous
if the output distribution is continuous, or discrete if it is discrete.2

Example 1. Consider a binary-input channel with five outputs {y1, y2, y3, y4, y5} such that
{p(yj | 0)} = {p1, p2, p3, p4, p5} and {p(yj | 1)} = {p5, p4, p3, p2, p1}. This channel is a SBIC,
because the outputs may be grouped into symmetric pairs {y1, y5} and {y2, y4} and a singleton
{y3} satisfying the symmetry conditions given above. The values of the APP parameter p are

p5 p4 1 p2then { p1+p5
, p2+p4

, 2 , p2+p4
, p1 }; their probability distribution is {p1, p2, p3, p4, p5}. p1+p5

Example 2. Consider a binary-input Gaussian-noise channel with inputs {±1} and Gaussian
conditional probability density p(y | x) = (2πσ)−1/2 exp −(y − x)2/2σ2 . This channel is a SBIC,
because the outputs may be grouped into symmetric pairs {±y} and a singleton {0} satisfying
the symmetry conditions given above. The APP parameter is then

p(y | −1) e−y/σ2

+ e−y/σ2 ,p =
p(y | 1) + p(y | −1)

=
ey/σ2

whose probability density is induced by the conditional density p(y | +1).
Given an output y, the conditional entropy H(X | y) is given by the binary entropy function,

H(X | y) = H(p(0 | y)) = H(p(1 | y)). The average conditional entropy is thus

H(X | Y) = EY |0[H(X | y)] = dy p(y | 0) H(p(0 | y)),

where we use notation that is appropriate for the continuous case. The channel capacity is then
C = H(X) − H(X | Y) = 1 − H(X | Y) bits per symbol.

Example 1. For the five-output SBIC of Example 1, � � � �
H(X | Y) = (p1 + p5)H

p

p1

1 + p5
+ (p2 + p4)H

p

p2

2 + p4
+ p3.

Example 3. A binary erasure channel with erasure probability p is a SBIC with probabilities
1{1−p, p, 0} of the APP parameter being {0, 2 , 1}, and thus of H(X | y) being {0, 1, 0}. Therefore

H(X | Y) = p and C = 1 − p.

13.5.2 Sum-product decoding of an LDPC code on a SBIC

For an LDPC code on a SBIC, the sum-product iterative decoding algorithm is still quite simple,
because all variables are binary, and all constraint nodes are either repetition or zero-sum nodes.

For binary variables, APP vectors are always of the form {1 − p, p}, up to scale; i.e., they are
specified by a single parameter. We will not worry about scale in implementing the sum-product
algorithm, so in general we will simply have unnormalized APP weights {w0, w1}, from which
can recover p using the equation p = w1/(w0 + w1). Some implementations use likelihood ratios
λ = w0/w1, from which we can recover p using p = 1/(1 + λ). Some use log likelihood ratios
Λ = ln λ, from which we can recover p using p = 1/(1 + eΛ).

Note that any outputs with the same APP parameter may be combined without loss of optimality, since the
APPs form a set of sufficient statistics for estimation of the input from the output.

2

� �

� �

� � � �

� �

�

� � �

�

13.5. LDPC CODE ANALYSIS ON SYMMETRIC BINARY-INPUT CHANNELS 187

For a repetition node, the sum-product update rule reduces simply to the product update rule,
in which the components of the incoming APP vectors are multiplied componentwise: i.e.,

out = in,j out = in,jw0 w ; w1 ,0 w1
j j

in,jwhere {wxj | xj ∈ {0, 1}} is the jth incoming APP weight vector. Equivalently, the output
likelihood ratio is the product of the incoming likelihood ratios; or, the output log likelihood
ratio is the sum of the incoming log likelihood ratios.

For a zero-sum node, the sum-product update rule reduces to

out = in,j ; out = in,jw0 wxj w1 w .xj

xj =0 j xj =1 j

An efficient implementation of this rule is as follows:3

in,j(a) Transform each incoming APP weight vector {w in,j , w } by a 2 × 2 Hadamard transform 0 1
in,j in,jin,j in,j , W1

in,j = w0 − w1 }.to {W in,j = w0 + w10

(b) Form the componentwise product of the transformed vectors; i.e.,

W out = W0
in,j W out = W1

in,j; 1 .0
j j

(c) Transform the outgoing APP weight vector {W out, W out} by a 2 × 2 Hadamard transform 0 1
out = W out − W out}.to {wout = W out + W out, w10 0 1 0 1

Exercise 5. (Sum-product update rule for zero-sum nodes)
(a) Prove that the above algorithm implements the sum-product update rule for a zero-sum

j (w in,jnode, up to scale. [Hint: observe that in the product − w1
in,j), the terms with positive 0
out.]signs sum to wout, whereas the terms with negative signs sum to w0 1

in,j in an even number of incoming APP vectors, (b) Show that if we interchange w in,j and w10
out outthen the outgoing APP vector {w } is unchanged. On the other hand, show that if we 0 , w1

in,j in an odd number of incoming APP vectors, then the components interchange w in,j and w10
w0

out of the outgoing APP vector are interchanged. out and w1

(c) Show that if we replace APP weight vectors {w0, w1} by log likelihood ratios Λ = ln w0/w1,
then the zero-sum sum-product update rule reduces to the “tanh rule”

1 + tanh Λin,j /2
Λout = ln � j

1 − tanh Λin,j /2
,

j

where the hyperbolic tangent is defined by tanh x = (ex − e−x)/(ex + e−x).
(d) Show that the “tanh rule” may alternatively be written as

tanh Λout/2 = tanh Λin,j /2.
j

3This implementation is an instance of a more general principle: the sum-product update rule for a constraint
code C may be implemented by Fourier-transforming the incoming APP weight vectors, performing a sum-product
update for the dual code C⊥, and then Fourier-transforming the resulting outgoing APP weight vectors. For a
binary alphabet, the Fourier transform reduces to the 2 × 2 Hadamard transform.

188 CHAPTER 13. CAPACITY-APPROACHING CODES

13.5.3 Density evolution

The performance of iterative decoding for asymptotically large random LDPC codes on a general
SBIC may in principle be simulated exactly by tracking the probability distribution of the APP
parameter p (or an equivalent parameter). This is called density evolution. However, whereas

1on the BEC there are only two possible values of p, 2 (complete ignorance) and 0 (complete
certainty), so that we need to track only the probability q of the former, in density evolution
we need to track a general probability distribution for p. In practice, this cannot be done with
infinite precision, so density evolution becomes inexact to some extent.

On an SBIC, the channel symmetry leads to an important simplification of density evolution:
we may always assume that the all-zero codeword was sent, which means that for each variable
we need to track only the distribution of p given that the value of the variable is 0.

To justify this simplification, note that any other codeword imposes a configuration of variables
on the code graph such that all local constraints are satisfied; i.e., all variables incident on a
repetition node are equal to 0 or to 1, while the values of the set of variables incident on a zero-
sum node include an even number of 1s. Now note that at a repetition node, if we interchange
w in,j and w1

out of the outgoing in,j in all incoming APP vectors, then the components wout and w10 0
APP vector are interchanged. Exercise 5(b) proves a comparable result for zero-sum nodes. So
if the actual codeword is not all-zero, but the channel is symmetric, so for every symbol variable
which has a value 1 the initial APP vectors are simply interchanged, then the APP vectors will
evolve during sum-product decoding in precisely the same way as they would have evolved if the
all-zero codeword had been sent, except that wherever the underlying variable has value 1, the
APP components are interchanged.

In practice, to carry out density evolution for a given SBIC with given degree distributions
λ(x) and ρ(x), the probability density is quantized to a discrete probability distribution, using
as many as 12–14 bits of accuracy. The repetition and check node distribution updates are
performed in a computationally efficient manner, typically using fast Fourier transforms for the
former and a table-driven recursive implementation of the “tanh rule” for the latter. For a given
SBIC model, the simulation is run iteratively until either the distribution of p tends to a delta
function at p = 0 (success), or else the distribution converges to a nonzero fixed point (failure).
Repeated runs allow a success threshold to be determined. Finally, the degree distributions λ(x)
and ρ(x) may be optimized by using hill-climbing techniques (iterative linear programming).

For example, in his thesis (2000), Chung designed rate-1 codes with asymptotic thresholds 2
within 0.0045 dB of the Shannon limit, and with performance within 0.040 dB of the Shannon
limit at an error rate of 10−6 with a block length of n = 107; see Figure 11. The former code
has left degrees {2, 3, 6, 7, 15, 20, 50, 70, 100, 150, 400, 900, 2000, 3000, 6000, 8000}, with average
left degree dλ = 9.25, and right degrees {18, 19}, with average right degree dρ = 18.5. The latter
code has left degrees {2, 3, 6, 7, 18, 19, 55, 56, 200}, with dλ = 6, and all right degrees equal to 12.

In current research, more structured constructions of the parity-check matrix H (or equiva-
lently the permutation Π) are being sought for shorter block lengths, of the order of 1000.

189

10

13.5. LDPC CODE ANALYSIS ON SYMMETRIC BINARY-INPUT CHANNELS
B

E
R

10
−2

−3

−4
10

10
−5

−6
10

Shannon limit

d
l
=100d

l
=200

Threshold (d
l
=100)Threshold (d

l
=200)

Threshold (d
l
=8000)

0	 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
E

b
/N

0
 [dB]

Figure 11. Asymptotic analysis with maximum left degree dl = 100, 200, 8000 and simulations
with dl = 100, 200 and n = 107 of optimized rate-1 irregular LDPC codes [Chung et al., 2001]. 2

13.5.4 EXIT charts

For large LDPC codes, an efficient and quite accurate heuristic method of simulating sum-
product decoding performance is to replace the probability distribution of the APP parameter p
by a single summary statistic: most often, the conditional entropy H(X | Y) = EY |0[H(X | y)],
or equivalently the mutual information I(X; Y) = 1 − H(X | Y). We have seen that on the
BEC, where H(X | Y) = p, this approach yields an exact analysis.

Empirical evidence shows that the relations between H(X | Y)out and H(X | Y)in for repeti-
tion and zero-sum nodes are very similar for all SBICs. This implies that degree distributions
λ(z), ρ(z) designed for the BEC may be expected to continue to perform well for other SBICs.

Similar EXIT chart analyses may be performed for turbo codes, RA codes, or for any codes in
which there are left codes and right codes whose variables are shared through a large pseudo-
random interleaver. In these cases the two relations between H(X | Y)out and H(X | Y)in often
cannot be determined by analysis, but rather are measured empirically during simulations.
Again, design is done by finding distributions of left and right codes such that the two resulting
curves approach each other closely, without crossing. All of these classes of codes have now been
optimized to approach capacity closely.

Chapter 14

Introduction to lattice and trellis
codes

In this chapter we discuss coding techniques for bandwidth-limited (high-SNR) AWGN channels.
On bandwidth-limited channels, nonbinary signal alphabets such as M -PAM must be used to

approach capacity. Furthermore, the signals should be used with a nonuniform, Gaussian-like
probability distribution.

Using large-alphabet approximations, we show that the total coding gain of a coded modulation
scheme for the bandwidth-limited AWGN channel is the sum of a coding gain due to a denser
packing than the baseline M -PAM scheme, plus a shaping gain due to constellation shaping
(or equivalently to use of a nonuniform distribution). At high SNRs, the coding and shaping
problems are separable.

The maximum possible shaping gain is a factor of πe/6 (1.53 dB). Simple shaping methods
such as shell mapping and trellis shaping can easily obtain of the order of 1 dB of shaping gain.

For moderate coding gains at moderate complexity, the two principal classes of packings are
lattices and trellis codes, which are analogous to block and convolutional codes, respectively.
By now the principles of construction of the best such codes are well understood, and it seems
likely that the best codes have been found. We plot the effective coding gains of these known
moderate-complexity lattices and trellis codes versus the branch complexity of their minimal
trellises, assuming ML decoding. Trellis codes are somewhat superior, due mainly to their lower
error coefficients.

We briefly mention higher-performance schemes, including multilevel schemes with multistage
decoding and bit-interleaved coded modulation, which allow the use of high-performance binary
codes such as those described in the previous chapter to approach capacity.

191

∑

192 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

14.1 Lattices

It is clear from Shannon’s capacity theorem that an optimal block code for a bandwidth-limited
AWGN channel consists of a dense packing of code points within a sphere in a high-dimensional
Euclidean space. Most of the densest known packings are lattices.

In this section we briefly describe lattice constellations, and analyze their performance using
the union bound estimate and large-constellation approximations.

An n-dimensional (n-D) lattice Λ is a discrete subset of n-space Rn that has the group property.
Without essential loss of generality, Λ may be assumed to span Rn . The points of the lattice
then form a uniform infinite packing of Rn .
Example 1. The set of integers Z is a one-dimensional lattice, since Z is a discrete subgroup

of R. Any 1-dimensional lattice is of the form Λ = αZ for some scalar α > 0.
Example 2. The integer lattice Zn (the set of integer n-tuples) is an n-dimensional lattice for

any n ≥ 1.
√

3Example 3. The hexagonal lattice A2 = {a(1, 0) + b(1
2 ,) | (a, b) ∈ Z2} is illustrated in 2

Figure 1. This lattice is the densest packing of R2 .

Figure 1. The hexagonal lattice A2.

Exercise 1. Let C be an (n, k, d) binary linear block code. Show that

ΛC = {x ∈ Z
n | x ≡ c mod 2 for some c ∈ C} (14.1)

is an n-dimensional sublattice of Zn (called a “Construction A” or “mod-2” lattice).
A general n-dimensional lattice Λ that spans Rn may be characterized by a set of linearly

independent generators G = {gj , 1 ≤ j ≤ n} such that Λ is the set of all integer linear
combinations of the generators:

Λ = {aG = aj gj | a ∈ Z
n}. (14.2)

j

Thus Λ may be viewed as the image of the integer lattice Zn under a linear transformation of
n-space Rn by the linear operator G, as illustrated by Figure 1.

By the group property of Λ, any translate Λ + x by a lattice point x ∈ Λ is just Λ again.
This implies that a lattice is “geometrically uniform;” every point of the lattice has the same
number of neighbors at each distance, and all decision regions of a minimum-distance decoder
(“Voronoi regions”) are congruent and form a tessellation of Rn . Indeed, any lattice translate
Λ + t is geometrically uniform.

193 14.1. LATTICES

The key geometrical parameters of a lattice are:

•	 the minimum squared distance d2
min(Λ) between lattice points;

•	 the kissing number Kmin(Λ) (the number of nearest neighbors to any lattice point);

•	 the volume V (Λ) of n-space per lattice point. As indicated in Figure 1, this volume is the
volume of the fundamental parallelotope

[0, 1)nG = {aG | a ∈ [0, 1)n}.

Since the volume of the n-cube [0, 1)n is 1 and the Jacobian of the linear transformation G is
its determinant |G|, it follows that V (Λ) = |G| for any generator matrix G of Λ.

The Hermite parameter of Λ is the normalized density parameter

d2
min(Λ)

γc(Λ) =
V (Λ)2/n ,	 (14.3)

which we will shortly identify as its nominal coding gain. The quantity V (Λ)2/n may be thought
of as the normalized volume of Λ per two dimensions.
Example 3 (cont.) For the hexagonal lattice A2, the minimum squared distance is d2 √ min(A2) =

1, the kissing number is Kmin(A2) = 6, the volume is V (A2) = 3/2, and the Hermite parameter √
is γc(A2) = 2/ 3 = 1.155 (0.62 dB). Therefore A2 is denser than the integer lattice Z2, for which
d2

min(Z
2) = V (Z2) = γc(Z2) = 1.

Exercise 1 (cont.) Show that if C is an (n, k, d) binary linear block code with Nd weight-d
words, then the mod-2 lattice ΛC has the following geometrical parameters:

d2
min(ΛC) = min{d, 4};	 (14.4) ⎧ ⎨ 2dNd, if d < 4;

Kmin(ΛC) = 2n, if d > 4; (14.5) ⎩ 2dNd + 2n, if d = 4;

V (ΛC) = 2n−k ;	 (14.6)
d2

min(ΛC)
γc(ΛC) =

2η(C) ,	 (14.7)

where η(C) = 2(n − k)/n is the redundancy of C in bits per two dimensions.
Exercise 2. Show that γc(Λ) is invariant to scaling, orthogonal transformations, and Cartesian

products; i.e., γc(αU Λm) = γc(Λ), where α > 0 is any scale factor, U is any orthogonal matrix,
and m ≥ 1 is any positive integer. Show that γc(αU Zn) = 1 for any version αU Zn of any integer
lattice Zn .

∫

∫

194 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

14.2 Lattice constellations

A lattice constellation
C(Λ, R) = (Λ + t) ∩R (14.8)

is the finite set of points in a lattice translate Λ + t that lie within a compact bounding region
R of n-space.
Example 4. An M -PAM constellation α{±1, ±3, . . . , ±(M − 1)} is a one-dimensional lattice

constellation C(2αZ, R) with Λ + t = 2α(Z + 1) and R = [−αM, αM].
The key geometric properties of the region R are

• its volume V (R) = R dx;

• the average energy P (R) per dimension of a uniform probability density function over R:

‖x‖2 dx
P (R) = .	 (14.9)

R n V (R)

The normalized second moment of R is defined as the dimensionless parameter

P (R)
G(R) =

V (R)2/n .	 (14.10)

Example 4 (cont.). The key geometrical parameters of R = [−αM, αM] are V (R) = 2αM ,
P (R) = α2M2/3, and G(R) = 1/12.
Exercise 3. Show that G(R) is invariant to scaling, orthogonal transformations, and Cartesian

products; i.e., G(αURm) = G(R), where α > 0 is any scale factor, U is any orthogonal matrix,
and m ≥ 1 is any positive integer. Show that G(αU [−1, 1)n) = 1/12 for any version αU [−1, 1)n

of any n-cube [−1, 1)n centered at the origin.
For performance analysis of large lattice constellations, one may use the following approxima-

tions, the first two of which are together known as the continuous approximation:

•	 The size of the constellation is
|C(Λ, R)| ≈

V (R)
(14.11)

V (Λ)
;

• The average energy per dimension of a uniform discrete distribution over C(Λ, R) is

P (C(Λ, R)) ≈ P (R);	 (14.12)

• The average number of nearest neighbors to any point in C(Λ, R) is ≈ Kmin(Λ).

195 14.2. LATTICE CONSTELLATIONS

Again, the union bound estimate (UBE) on probability of block decoding error is
(

min(Λ)
) √ d2

Pr(E) ≈ Kmin(Λ)Q
4σ2 . (14.13)

Since

2
ρ = log2 |C(Λ, R)| ≈

2 V (R)
n n

log2 V (Λ)
;

P (C(Λ, R)) P (R)
SNR = ≈ ;

σ2 σ2

SNR V (Λ)2/n P (R)
SNRnorm ≈

2ρ =
V (R)2/n σ2 ,

we may write the UBE as
√

Pr(E) ≈ Kmin(Λ)Q (γc(Λ)γs(R)(3 SNRnorm)) , (14.14)

where the nominal coding gain of Λ and the shaping gain of R are defined respectively as

d2
γc(Λ) = min(Λ)

; (14.15)
V (Λ)2/n

V (R)2/n 1/12
= (14.16)γs(R) =

12P (R) G(R)
.

For a baseline M -PAM constellation with Λ = 2αZ and R = [−αM, αM], we have γc(Λ) =
γs(R) = 1 and Kmin(Λ) ≈ 2, so the UBE reduces to the baseline expression

√
Pr(E) ≈ 2Q (3 SNRnorm).

The nominal coding gain γc(Λ) measures the increase in density of Λ over the baseline integer
lattice Z (or Zn). The shaping gain γs(R) measures the decrease in average energy of R relative
to an interval [−α, α] (or an n-cube [−α, α]n). Both contribute a multiplicative factor of gain √
to the argument of the Q (·) function.

As before, the effective coding gain is reduced by the error coefficient Kmin(Λ). The probability
of block decoding error per two dimensions is

√
Ps(E) ≈ Ks(Λ)Q (γc(Λ)γs(R)(3 SNRnorm)), (14.17)

in which the normalized error coefficient per two dimensions is Ks(Λ) = 2Kmin(Λ)/n.
√

Graphically, a curve of the form Ps(E) ≈ Ks(Λ)Q (γc(Λ)γs(R)(3 SNRnorm)) may be obtained √
simply by moving the baseline curve Ps(E) = 4Q (3 SNRnorm) to the left by γc(Λ) and γs(R)
(in dB), and upward by a factor of Ks(Λ)/4. Such simple manipulations of the baseline curve
as a function of γc(Λ), γs(R) and Ks(Λ) again are an easy and useful design tool for lattice
constellations of moderate complexity.

196 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

14.3 Shaping gain and shaping techniques

Although shaping is a newer and less important topic than coding, we discuss it first because
its story is quite simple.

The n-dimensional shaping region R that minimizes G(R) is obviously an n-sphere. The key
geometrical parameters of an n-sphere of radius r (for n even) are:

(πr2)n/2
V⊗(n, r) =

(n/2)!
;

2r
P⊗(n, r) =

n + 2
;

P⊗(n, r)
=

((n/2)!)2/n
G⊗(n, r) =

V⊗(n, r)2/n π(n + 2)
.

By Stirling’s approximation, m! → (m/e)m as m → ∞, which implies

1
G⊗(n, r) → ;

2πe
1/12 πe

γs⊗(n, r) = → (1.53 dB).
G⊗(n, r) 6

Thus shaping gain is limited to a finite value as n → ∞, namely πe/6 (1.53 dB), which is called
the ultimate shaping gain.

The shaping gain of an n-sphere is plotted for dimensions n ≤ 24 in Figure 2. Note that the
shaping gain of a 16-sphere already exceeds 1 dB.

0.0

0.5

1.0

1.5

S
h

a
p

i
n

g

g
a

i
n

(
d

B
)

0 4 8 1 2 1 6 2 0 2 4

Dimension

Figure 2. Shaping gains of n-spheres for n ≤ 24.

The projection of a uniform probability distribution over an n-sphere onto one or two
dimensions is a nonuniform probability distribution that approaches a Gaussian distribution

14.4. CODING GAINS OF DENSE LATTICES 197

as n → ∞. The ultimate shaping gain of πe/6 (1.53 dB) may alternatively be derived as the
difference between the average power of a uniform distribution over an interval and that of a
Gaussian distribution with the same differential entropy.

Shaping thus induces a Gaussian-like probability distribution on a one-dimensional PAM or
two-dimensional QAM constellation, rather than an equiprobable distribution. In principle, with
spherical shaping, the lower-dimensional constellation will become arbitrarily large, even with
fixed average power. In practice, the lower-dimensional constellation is constrained by design to
a certain region R to limit “shaping constellation expansion.” The n-dimensional shape then only
approximates spherical shaping subject to this constraint, and the lower-dimensional probability
distribution approaches a truncated Gaussian distribution within the region R.

With large constellations, shaping can be implemented almost independently of coding by
operations on the “most significant bits” of M -PAM or (M × M)-QAM constellation labels,
which affect the gross shape of the n-dimensional constellation. In contrast, coding affects the
“least significant bits” and determines fine structure.

Two practical schemes that can easily obtain shaping gains of 1 dB or more while limiting 2D
shaping constellation expansion to a factor of 1.5 or less are “trellis shaping,” a kind of dual to
trellis coding, and “shell mapping,” which uses generating-function techniques to enumerate the
points in a Cartesian product constellation in approximate increasing order of energy.

14.4 Coding gains of dense lattices

Finding the densest lattice packings in a given number of dimensions is a mathematical problem
of long standing. A summary of the densest known packings is given in [Conway and Sloane,
Sphere Packings, Lattices and Groups]. The nominal coding gains of these lattices in up to 24
dimensions is plotted in Figure 3.

0

3

6

N
o

m
i
n

a
l

c
o

d
i
n

g

g
a

i
n

(
d

B
)

0 4 8 1 2 1 6 2 0 2 4

Dimension

Figure 3. Nominal coding gains of densest lattices in dimensions n ≤ 24.

∏

198 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

In contrast to shaping gain, the nominal coding gains of dense n-dimensional lattices become
infinite as n → ∞.
Example 5 (Barnes-Wall lattices). For all integer m ≥ 0, there exists a 2m+1-dimensional

Barnes-Wall lattice BW2m+1 whose nominal coding gain is 2m/2 (see next subsection). The two-
dimensional BW lattice is Z2 . In 4, 8, and 16 dimensions the BW lattices (denoted by D4, E8
and Λ16, respectively) are the densest lattices known. For large m, considerably denser lattices
are known.
Exercise 1 (cont.) Show that the mod-2 lattices corresponding to the (4, 3, 2) and (4, 1, 4)

binary linear block codes have coding gain 21/2 (1.51 dB); these lattices are in fact versions
of D4. Show that the mod-2 lattice corresponding to the (8, 4, 4) binary linear block code has
coding gain 2 (3.01 dB); this lattice is in fact a version of E8. Show that no mod-2 lattice has
a nominal coding gain more than 4 (6.02 dB).

However, effective coding gains cannot become infinite. Indeed, the Shannon limit shows that
no lattice can have a combined effective coding gain and shaping gain greater than 9 dB at
Ps(E) ≈ 10−6 . This limits the maximum possible effective coding gain to 7.5 dB, since shaping
gain can contribute up to 1.53 dB.

What limits effective coding gain is the number of near neighbors, which becomes very large
for high-dimensional dense lattices.
Example 5 (cont.) The kissing number of the 2m+1-dimensional Barnes-Wall lattice is

Kmin(BW2m+1) = (2i + 2).
1≤i≤m+1

For m = 0, 1, 2, 3, 4, . . . these numbers are 4, 24, 240, 4320, 146880, Thus while BW32 has a
nominal coding gain of 4 (6.02 dB), its kissing number is 146880, so its effective coding gain by
our rule of thumb is only about 3.8 dB. BW128 has a nominal coding gain of 8 (9.03 dB), but a
kissing number of 1 260 230 400, so its effective coding gain by our rule of thumb is only about
4.6 dB. These calculations indicate how the effective coding gain of higher-dimensional lattices
eventually saturates.
Example 6 (Leech Lattice). The Leech lattice L24, a remarkably dense lattice in 24 dimen-

sions, has a nominal coding gain of 4 (6.02 dB), but it has a kissing number of 196560, so its
effective coding gain by our rule of thumb is only about 3.6 dB.

14.4.1 Barnes-Wall lattices

The Barnes-Wall lattices (1959) are an infinite family of n-dimensional lattices that are analogous
to the Reed-Muller binary block codes. For n ≤ 16, they are the best lattices known. For greater
n, they are not in general the best lattices known, but in terms of performance vs. decoding
complexity they are still quite good, since they admit relatively simple decoding algorithms.

For any integer m ≥ 0, there exists an (n = 2m+1)-dimensional BW lattice, denoted
BW2m+1 , that has minimum squared Euclidean distance d2

min(BW2m+1) = 2m, normalized vol-
ume V (BW2m+1)2/n = 2m/2, and therefore nominal coding gain γc(BW2m+1) = 2m/2 .

In 2 dimensions, the Barnes-Wall lattice BW2 is the integer lattice Z2, which is the mod-2
lattice corresponding to the (2, 2, 1) code.

[]

199 14.4. CODING GAINS OF DENSE LATTICES

The mod-2 lattice RZ
2 corresponding to the (2, 1, 2) code is a sublattice of Z2; it is the set of

all integer 2-tuples in which both integers are even or both integers are odd. It can be obtained √
by rotating Z2 by 45◦ and scaling by 2; i.e., by transforming Z2 by the 2 × 2 Hadamard matrix

1 1
R =

1 −1 .

Consequently d2
min(RZ

2) = 2 and V (RZ
2) = 2.

The lattice 2Z
2 (the mod-2 lattice corresponding to the (2, 0, ∞) code) is a sublattice of RZ

2

with d2
min(2Z

2) = 4 and V (2Z
2) = 4. Note that 2Z

2 = R(RZ
2), since R2 = 2I.

In fact, we see that there is a lattice chain Z2/RZ
2/2Z

2/2RZ
2/4Z

2/ . . . with minimum squared
distances 1/2/4/8/16/

The remaining BW lattices may be constructed recursively from this chain by the |u|u + v|
construction. BW2m+1 is constructed from BW2m and RBW2m as

BW2m+1 = {(u, u + v) | u ∈ BW2m , v ∈ RBW2m }.

More generally, for any j ≥ 0, Rj BW2m+1 = {(u, u + v) | u ∈ Rj BW2m , v ∈ Rj+1BW2m }.
It is then easy to prove the following facts by recursion:

(a) The dimension of BW2m+1 is n = 2m+1 .

(b) The volume of BW2m+1 is

V (BW2m+1) = V (BW2m)V (R(BW2m)) = 22m−1
V (BW2m)2 .

This recursion yields V (BW2m+1) = 2m2m−1
, or V (BW2m+1)2/n = 2m/2 .

(c) The minimum squared distance of BW2m+1 is d2
min(BW2m+1) = 2m .

(d)	 {Rj BW2m+1 , j ≥ 1} is a chain of sublattices with minimum squared distances and normal-
ized volumes increasing by a factor of 2 for each increment of j.

We verify that these assertions hold for BW2 = Z2. For m ≥ 1, the dimension and volume follow
from the construction. We verify the distance as follows:

(a) if u = 0, then ||(0, v)||2 = ||v||2 ≥ 2m if v �= 0, since v ∈ RBW2m .

(b) if u + v = 0, then u = −v ∈ RBW2m and ||(−v, 0)||2 ≥ 2m if v �= 0.

= 0 and u + v �(c) if u � = 0, then both u and u + v are in BW2m (since RBW2m is a sublattice
of BW2m), so

||(u, u + v)||2 = ||u||2 + ||u + v||2 ≥ 2 · 2m−1 = 2m .

Equality clearly holds for (0, v), (v, 0) or (u, u) if we choose v or u as a minimum-weight vector
from their respective lattices.

Finally, the sublattice chain for m follows from the sublattice chain for m − 1 by construction.

200 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

The |u|u + v| construction suggests the following tableau of BW lattices. Here D4 = BW4,
E8 = BW8, and Λn = BWn for n = 2m+1 ≥ 16. Also, we use R2 = 2I2m .

Z
2

D4
RZ

2 E8
RD4 Λ16

2Z
2 RE8 Λ32

2D4 RΛ16 Λ64
2RZ

2 2E8 RΛ32 Λ128
2RD4 2Λ16 RΛ64 Λ256

4Z
2 2RE8 2Λ32 RΛ128 Λ512

Figure 4. Tableau of Barnes-Wall lattices.

In this tableau each BW lattice lies halfway between the two lattices of half the dimension that
are used to construct it in the |u|u + v| construction, from which we can immediately deduce its
normalized volume.

For example, E8 has the same normalized volume as RZ
2, namely V (E8)2/8 = 2. However,

d2
min(RZ

2) = 2. Therefore the nominal coding gain of E8 is twice that of min(E8) = 4, whereas d2

RZ
2, namely γc(E8) = 2 (3.01 dB).

14.5 Trellis codes

Trellis codes are dense packings of Euclidean-space sequences in a sequence space which is in prin-
ciple infinite-dimensional. Trellis codes are to lattices as convolutional codes are to block codes.
We will see that, just as binary convolutional codes provide a better performance/complexity
tradeoff than binary block codes in the power-limited regime, trellis codes provide a better
performance/complexity tradeoff than lattices in the bandwidth-limited regime, although the
difference is not as dramatic.

The key ideas in the invention of trellis codes were:

•	 use of minimum squared Euclidean distance as the design criterion;

•	 coding on subsets of signal sets using convolutional coding principles (e.g., trellises and the
Viterbi algorithm).

A typical large-constellation trellis code is designed as follows. One starts with a large low-
dimensional constellation, which in practice is almost always a lattice constellation C(Zn , R)
based on a version of an n-dimensional integer lattice Zn, such as M -PAM or (M × M)-QAM.
(M -PSK constellations are sometimes used in the intermediate (ρ ≈ 2 b/2D) regime because of
their constant-energy property, but we will not discuss M -PSK trellis codes here.)

One can then form an m-fold Cartesian product constellation

= C(ZmnC(Zn , R)m , Rm),

which is still based on an mn-dimensional integer lattice Zmn .

201 14.5. TRELLIS CODES

The constellation C(Zmn , Rm) is partitioned into subsets of equal size, where the number
of subsets is typically a power of two, say 2b . Initially this was done by a sequence of two-
way partitions in which the minimum squared distance within subsets was maximized at each
level. Subsequently it was recognized that the resulting constellations were almost always lattice
constellations C(Λ′ , Rm) based on a sublattice Λ′ of index |Zmn/Λ′| = 2b in Zmn. In other words,
Z

mn is the union of 2b cosets of Λ′, and the 2b subsets are the points of C(Zmn , Rm) that lie in
each such coset. The sublattice Λ′ is usually chosen to be as dense as possible.
Example 7 (1D partitions). In one dimension, there is a chain of sublattices of Z as follows:

Z ⊇ 2Z ⊇ 4Z ⊇ 8Z ⊇ · · · ,

which may alternatively be written as Z/2Z/4Z/8Z/ · · ·. Each partition is two-way; that is,
each lattice is the union of two cosets of the next sublattice. The corresponding minimum
squared distances are 1/4/16/64/ · · ·. Thus an M -PAM constellation C(Z, [−M/2, M/2]) with
minimum squared distance 1 may be partitioned into 2 subsets of the form C(2Z, [−M/2, M/2])
with minimum squared distance 4 within subsets, or 4 subsets of the form C(4Z, [−M/2, M/2])
with minimum squared distance 16 within subsets, and so forth.
Example 8 (2D partitions). In two dimensions, there is a chain of sublattices of Z2 as follows:

Z
2 ⊇ RZ

2 ⊇ 2Z
2 ⊇ 2RZ

2 ⊇ · · · ,

where R is the 2 × 2 Hadamard matrix as above. This chain may alternatively be written
as Z2/RZ

2/2Z
2/2RZ

2/ · · ·. Each partition is two-way. The corresponding minimum squared
distances are 1/2/4/8/· · ·. Thus a QAM constellation C(Z2 , R) with minimum squared distance
1 may be partitioned into 2 subsets of the form C(RZ

2 , R) with minimum squared distance 2
within subsets, or 4 subsets of the form C(2Z

2 , R) with minimum squared distance 4 within
subsets, and so forth. The bounding region R should contain an equal number of points in each
subset.
Example 9 (4D partitions). In four dimensions, there is a chain of sublattices of Z4 as follows:

Z
4 ⊇ D4 ⊇ RZ

4 ⊇ RD4 ⊇ · · · ,

where D4 is the 4-dimensional Barnes-Wall lattice and R is the 4 × 4 matrix
⎡ ⎤

1 1 0 0 ⎢ 1 ⎥−1 0 0 ⎢ ⎥R = ⎦⎣ 0 0 1 1 .

0 0 1 −1

(Alternatively, this is the chain of mod-2 lattices corresponding to the (4, 4, 1), (4, 3, 2),
(4, 2, 2) and (4, 1, 4) binary linear block codes.) This chain may alternatively be written as
Z

4/D4/RZ
4/RD4/ · · ·. Each partition is two-way. The corresponding minimum squared dis-

tances are 1/2/2/4/· · ·. Thus a 4D constellation C(Z4 , R) with minimum squared distance 1
may be partitioned into 2 subsets of the form C(D4, R) with minimum squared distance 2 within
subsets, 8 subsets of the form C(2D4, R) with minimum squared distance 4 within subsets, etc.
Again, the bounding region R should contain an equal number of points in each subset.

202 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

A trellis code encoder then operates as shown in Figure 5. Some of the input data bits are
encoded in a rate-k/b 2ν -state binary convolutional encoder. Almost always k is chosen to equal
b−1, so the code redundancy is 1 bit per mn dimensions. The encoder output sequence of b-tuples
selects a corresponding sequence of subsets of C(Zmn , Rm) (cosets of Λ′). The convolutional
code and the labeling of the subsets are chosen primarily to maximize the minimum squared
distance d2

min(C) between signal point sequences in any possible encoded subset sequence, and
secondarily to minimize the maximum possible number Kmin(C) of nearest-neighbor sequences.
Finally, other input data bits select the actual signal points to be transmitted from the selected
subsets. If there is any shaping, it is done at this level.

input Encoder for
convolutional
code C �

')

Map from
labels to subsets
(cosets of

coded data
data (label sequence)

subset sequence

Select signal
points from
subsets

other input data (uncoded) signal point

sequence in C

Figure 5. Trellis code encoder.

The nominal coding gain of such a trellis code is

γc(C) = d2 , (14.18)min(C)2−η(C)

where η(C) = 2/mn is the redundancy of the convolutional code in bits per two dimensions. The
factor 2η(C) may be thought of as the normalized volume of the trellis code per two dimensions,
if the signal constellation is a lattice constellation based on an integer lattice Zmn . The effective
coding gain is reduced by the amount that the error coefficient 2Kmin(C)/mn per two dimensions
exceeds the baseline M -PAM error coefficient of 4 per two dimensions, again according to the
rule of thumb that a factor of 2 increase costs 0.2 dB.
Exercise 1 (cont.) Let C be a rate-k/n binary linear convolutional code with free distance

d and Nd minimum-weight code sequences per n dimensions. Define the corresponding mod-
2 trellis code ΛC to be the set of all integer sequences x with D-transform x(D) such that
x(D) ≡ c(D) mod 2 for some code sequence c(D) in C.

(a) Show that an encoder as in Figure 5 based on the convolutional code C and the lattice
partition Zn/2Z

n is an encoder for this mod-2 trellis code.
(b) Show that ΛC has the group property.
(c) Show that ΛC has the following parameters:

d2
min(ΛC) = min{d, 4}; (14.19) ⎧ ⎨ 2dNd, if d < 4;

Kmin(ΛC) = 2n, if d > 4; (14.20) ⎩ 2dNd + 2n, if d = 4;

γc(ΛC) = d2 , (14.21)min(ΛC)2−η(C)

203 14.5. TRELLIS CODES

where η(C) = 2(n − k)/n is the redundancy of C in bits per two dimensions.
The encoder redundancy η(C) also leads to a “coding constellation expansion ratio” which √

is a factor of 2η(C) per two dimensions—i.e., a factor of 4, 2, 2, . . . for 1D, 2D, 4D,. . . codes,
respectively. Minimization of coding constellation expansion has motivated the increasing use
of higher-dimensional trellis codes.

A trellis code may be decoded by a Viterbi algorithm (VA) decoder, as follows. Given a received
point r in Rmn, the received first finds the closest signal point to r in each subset. A VA decoder
then finds the closest code sequence to the entire received sequence. The decoding complexity
is usually dominated by the complexity of the VA decoder, which to first order is dominated by
the branch complexity 2ν+k of the convolutional code, normalized by the dimension mn.

3

4

5

6

Wei 4D

Wei 8D

Wei 8D

8-state, 2D (V.32)

16-state,

Wei 4D

64-state, 4D

32-state, 2D

32-state, 4D

64-state, 8D

E
f
f
e

c
t
i
v

e

c
o

d
i
n

g

g
a

i
n

(
d

B
)

Ung 1D

Ung 2D

Ung 1D

Ung 2D

1 0 1 0 0 1000 10000

Normalized complexity

Figure 6. Effective coding gain vs. complexity for Ungerboeck and Wei codes.

Figure 6 shows the effective coding gains of certain important families of trellis codes versus
their decoding complexity, measured by a detailed operation count. The codes considered are:

(a) The original 1D (PAM) trellis codes of Ungerboeck (1982), which are based on rate-1/2
convolutional codes (η(C) = 2) with 2 ≤ ν ≤ 9 and the 4-way partition Z/4Z.

(b) The 2D (QAM) trellis codes of Ungerboeck, which (apart from the simplest 4-state code)
are based on rate-2/3 convolutional codes (η(C) = 1) with 3 ≤ ν ≤ 9 and the 8-way partition
Z

2/2RZ
2 .

(c) The 4D trellis codes of Wei (1987), all with η(C) = 1/2, based on

(a) rate-2/3 8- and 16-state convolutional codes and the 8-way partition Z4/RD4;
(b) a rate-3/4 32-state convolutional code and the 16-way partition Z4/2Z

4;
(c) a rate-4/5 64-state convolutional code and the 32-way partition Z4/2D4.

(d) Two families of 8D trellis codes of Wei (η(C) = 1/4).

204 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

The V.32 modem (1984) uses an 8-state 2D trellis code, also due to Wei (1984), whose per-
formance/complexity tradeoff is the same as that as that of the original 8-state 2D Ungerboeck
code, but which uses a nonlinear convolutional encoder to achieve 90◦ rotational invariance.
This code has an effective coding gain of about 3.6 dB, a branch complexity of 25 (per two
dimensions), and a coding constellation expansion ratio of 2.

The V.34 modem (1994) specifies three 4D trellis codes, with performance and complexity
equivalent to the 4D Wei codes circled on Figure 6. All have a coding constellation expansion √
ratio of 2. The 16-state code is the original 16-state 4D Wei code, which has an effective coding
gain of about 4.2 dB and a branch complexity of 26 (per four dimensions). The 32-state code is
due to Williams and is based on the 16-way partition Z4/HZ

4, where H is a 4 × 4 Hadamard
matrix, to ensure that there are no minimum-distance error events whose length is only two
dimensions; it has an effective coding gain of about 4.5 dB and a branch complexity of 28 (per
four dimensions) The 64-state code is a modification of the original 4D Wei code, modified to
prevent quasicatastrophic error propagation; it has an effective coding gain of about 4.7 dB and
a branch complexity of 210 (per four dimensions).

It is noteworthy that no one has improved on the performance vs. complexity tradeoff of the
original 1D and 2D trellis codes of Ungerboeck or the subsequent multidimensional codes of Wei,
and by this time it seems safe to predict that no one will ever do so. There have however been
new trellis codes that enjoy other properties with about the same performance and complexity,
such as those described in the previous two paragraphs, and there may still be room for further
improvements of this kind.

Finally, we see that trellis codes have a performance/complexity advantage over lattice codes,
when used with maximum-likelihood decoding. Effective coding gains of 4.2–4.7 dB, better than
that of the Leech lattice L24 or of BW32, are attainable with less complexity (and much less
constellation expansion). 512-state 1D or 2D trellis codes can achieve effective coding gains of
the order of 5.5 dB, which is superior to that of lattice codes of far greater complexity.

On the other hand, it seems very difficult to obtain effective coding gains of greater than 6 dB.
This is not surprising, because at Ps(E) ≈ 10−6 the effective coding gain at the Shannon limit
would be about 7.5 dB, and at the cutoff rate limit it would be about 5.8 dB. To approach the
Shannon limit, much more complicated codes and decoding methods are necessary.

14.6 Sequential decoding in the high-SNR regime

In the bandwidth-limited regime, the cutoff rate limit is a factor of 4/e (1.68 dB) less than
capacity. Therefore sequential decoders should be able to operate within about 1.7 dB of the
Shannon limit; i.e., sequential decoders should be able to achieve an effective coding gain of
about 6 dB at Ps(E) ≈ 10−6 . Several theses (Wang, Ljungberg, Maurer) have confirmed that
sequential decoders are indeed capable of such performance.

14.7 Multilevel codes and multistage decoding

To approach the Shannon limit even more closely, it is clear that much more powerful codes
must be used, with non-ML but near-ML decoding. Multilevel codes and multistage decoding
may be used for this purpose. Multilevel coding may be based on a chain of sublattices of Zn ,

205 14.8. MULTILEVEL TURBO CODES

Λ0 = Zn ⊇ Λ1 ⊇ · · · ⊇ Λr−1 ⊇ Λr ,

which induce a chain of lattice partitions Λj 1/Λj , 1 ≤ j ≤ r. A different encoder as in Figure 5 −
may be used independently on each such lattice partition. Moreover, with multistage decoding,
each level is decoded independently.

Remarkably, such a multilevel scheme incurs no loss in channel capacity, compared to a single-
level code based on the partition Zn/Λr r r
to the sum of the capacities C(Λj 1/Λj) at each level. If the partition Zn/Λr is “large enough” −
and appropriately scaled, then C(Zn/Λr) approaches the capacity of the Gaussian channel.

All of the partitions Λj 1/Λj may even be binary; e.g., one may use the standard one-−
dimensional or two-dimensional chains

Z ⊇ 2Z ⊇ 4Z ⊇ 8Z ⊇ · · · ;
2

Z
 ⊇ R 2

Z
 ⊇ 2 2

Z
 ⊇ 2R 2 2

Z
 ⊇ 4Z

 ⊇ · · · .

Then one can use a binary code of rate close to C(Λj−1/Λj) at each level to approach the
Shannon limit.

In particular, by using binary turbo codes of appropriate rate at each level, it has been shown
that one can get within 1 dB of the Shannon limit (Wachsmann and Huber).

Powerful probabilistic coding methods such as turbo codes are really needed only at the higher
levels. At the lower levels, the channels become quite clean and the capacity C(Λj−1/Λj)
approaches log2 |Λj 1/Λj |, so that the desired redundancy approaches zero. For these levels, −
algebraic codes and decoding methods may be more appropriate.

In summary, multilevel codes and multistage decoding allow the Shannon limit to be ap-
proached as closely in the bandwidth-limited regime as it can be approached in the power-limited
regime with binary codes.

14.8 Multilevel turbo codes

A number of varieties of multilevel turbo codes based on multiple component trellis codes
have been developed for the bandwidth-limited regime by several authors (e.g., Berrou et al.,
Benedetto et al., Robertson and Wörz, Divsalar et al.). The performance of these codes seems
to be comparable to that of binary turbo codes in the power-limited regime: i.e., within about
1 dB of the Shannon limit. However, such capacity-approaching codes do not seem to have been
implemented yet in practice, to the best of our knowledge.

14.9 Bit-interleaved coded modulation

In bit-interleaved coded modulation (BICM), the signals in a nonbinary constellation of size 2b

are selected by b randomly interleaved encoded bits from a binary encoder. The effective binary
channel is then an equiprobable mixture of b parallel channels. The receiver knows which channel
is used for each bit, and therefore can compute the correct APP vector for each symbol. Capacity-
approaching codes may be designed for this mixture channel. While capacity is typically slightly
reduced on an AWGN channel, the “pragmatic” BICM approach has become quite popular.

; the capacity C(Zn/Λ) of the partition Zn/Λ is equal

206References

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: Turbo codes,” Proc. 1993 Int. Conf. Commun. (Geneva), pp. 1064–1070, May
1993.
[2] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson and R. Urbanke, “On the design of low-
density parity-check codes within 0.0045 dB from the Shannon limit,” IEEE Commun. Letters,
vol. 5, pp. 58–60, Feb. 2001.
[3] D. J. Costello, Jr., J. Hagenauer, H. Imai and S. B. Wicker, “Applications of error-control
coding,” IEEE Trans. Inform. Theory, vol. 44, pp. 2531–2560, Oct. 1998.
[4] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1962.
[5] E. A. Lee and D. G. Messerschmitt, Digital Communication (first edition). Boston: Kluwer,
1988.
[6] E. A. Lee and D. G. Messerschmitt, Digital Communication (second edition). Boston:
Kluwer, 1994.
[7] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp.
379–423 and 623–656, 1948.

MIT OpenCourseWare
http://ocw.mit.edu

6.451 Principles of Digital Communication II
Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/

	chap1_3
	chap4
	chap5
	chap6
	chap7
	chap8
	chap9
	chap10
	chap11
	chap12
	chap13
	chap14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

