Midterm Solutions

Problem M.1 (70 points)

Recall that an M-simplex signal set is a set of M signals A = {a; € RM-11<j < M}
in an (M — 1)-dimensional real space RM=, such that, for some E4 > 0,
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Initially we will assume that M is a power of 2, M = 2™, for some integer m.

(a) Compute the nominal spectral efficiency p(A) and the nominal coding gain ~.(A) of
an M-simplex signal set A on an AWGN channel as a function of M = 2™.

The M-simplex signal set has M = 2™ points, so the number of bits per symbol is
logy M = m. The number of dimensions is N = M — 1. The nominal spectral efficiency

is therefore
_ 2logo M 2

This equals 2 for M = 2 and decreases monotonically with M, so we are in the power-
limited regime. Indeed, as M — oo, p — 0.
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The nominal coding gain in the power-limited regime is defined as v.(A) = d2,(A)/4FE}.
The squared distance between any two distinct signals is
E4 M

o — a1 = [l = 2, 25) + [|ay|* = 2B + 2574 = =3B,

so d?. (A) = 2ME /(M — 1). The energy per signal is E4, so the energy per bit is

min

Ey, = E4/(log, M) = E4/m. The nominal coding gain is therefore

diin(A) M log,M M m
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This equals 1 when M = 2, and increases monotonically (albeit slowly) with M. As
M — o0, 7.(A) — oo.

(b) What is the limit of the effective coding gain veg(A) of an M-simplex signal set A as
M — oo, at a target error rate of Pr(E) ~ 107°7

As shown in 6.450 and reiterated this term, orthogonal or simplex signal sets approach
the ultimate Shannon limit on E,/Ny as M — oc; i.e., they can achieve arbitrarily low
Pr(E) for any Ey/Ny > In2 (-1.59 dB). For the baseline 2-PAM signal set, Pr(E) ~ 105
when E,/Ny ~ 9.6 dB. Therefore the limit of yeg(A) as M — oo is ~ 11.2 dB.

[Note: only one student answered this question correctly.]



(c) Give a method of implementing an (M = 2™)-simplex signal set A in which each
signal a; is a sequence of points from a 2-PAM signal set {£a}.

We saw in the problem sets that the Euclidean image of a (2™ — 1,m, 2™~1) binary linear
code C could form a 2™-simplex signal set, in two different cases:

e C is obtained by shortening a (2™, m + 1,2™!) biorthogonal RM(1,m) code;

e C is a maximum-length-shift-register code generated by a length-m shift register.
In either case each signal a; is a sequence of 2™ — 1 points from a 2-PAM signal set. (In
6.450 you also saw a construction of an orthogonal signal set from a Hadamard matrix.)
Now consider a concatenated coding scheme in which

e the outer code is an (n,k,d) linear code C over a finite field F, with ¢ = 2™, which
has Ny codewords of minimum nonzero weight;

e outer q-ary code symbols are mapped into a q-simplex signal set A via a one-to-one
map s : F, — A.
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If x = (w1, 29,...,2,) is an n-tuple in (F,)", then s(x) :
C} denote the signal set

= (s
be called the Fuclidean image of x. Let A' = s(C) = {s(x),x
consisting of the Euclidean images of all codewords x € C.
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(d) Compute the nominal spectral efficiency p(A') of the concatenated signal set A" on
an AWGN channel. Is this signal set appropriate for the power-limited or the bandwidth-
limited regime?

The size of A’ is |A'| = |C| = ¢*, and the dimension of A’ is n(q — 1). Therefore

2klog,q kK
! = 72 = — < 2
) = B = L) <2
and we are in the power-limited regime.

(e) Compute d2;,(A"), Knin(A'), and v.(A"). Give a good estimate of an appropriately
normalized error probability for A’.

The squared distance between the Euclidean images of two distinct codewords x,y € C
that differ by Hamming distance dy(x,y) is

[15(x) = s()II* = dir (x,y)dpin (A),
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since the coordinatewise distance is d
and 0 otherwise. Therefore

(A) in each coordinate where the two words differ,
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and moreover every point in A’ has K,(A") = Ny nearest neighbors. Since Ey(A') =
(n/k)Ey(A), the nominal coding gain is
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Notice that this reduces to 7.(A’) = kd/n when ¢ = 2.

2



The union bound estimate (UBE) gives a good estimate of the error probability Pr(E).
In the power-limited regime, we normalize to the error probability per bit, P,(E), and
express it as a function of Ej/N,. The UBE of P,(E) is

Py(E) = Ky(A)QV(27:.(A")Ey/No) = Na % <@

q
1 Ey /N
k10g2q 1( Og2 q) b/ 0) )

n q—

where we use the fact that log, |A’| = klog, ¢ bits.

Now consider the case in which C is an (n=q+ 1,k = 2,d = q) linear code over F,.

(f) Show that a code C with these parameters erists whenever q is a prime power, ¢ = p™.

Show that all nonzero codewords in C have the same Hamming weight.

A finite field F, exists whenever ¢ = p™. In an exercise which we did as a homework
problem, we showed that a doubly-extended (n = ¢+ 1,k,d =n — k + 1) RS code exists
over any field F, for 1 < k < n. Thus there exists a (¢ + 1,2,¢) code over F,. (Its
generators are:

go=(1,1,1,...,1,0),g, = (0, 1,c,... @72 1).)
Examples: the (3,2,2) SPC code over Fy; the (4,2,3) “tetracode” over F3; a (5,2,4)
code over Fy.
A (¢+1,2,q) code is MDS, and therefore

vi= () a-v= ("N a-v =+ e-n=¢-1

Thus all ¢ — 1 nonzero codewords have Hamming weight d = q.
(g9) Show that the Euclidean image A' = s(C) of C is a q¢*-simplex signal set.

The number of points in A’ is |A'| = |C| = ¢*. Each point in A’ is a sequence of q + 1
points in A, so the dimension of A’ is

dim(A") = (¢ + 1)dim(A) = (¢ +1)(¢ — 1) =¢* — 1.

The energy of each point in A" is E4 = (¢ + 1)E4. Since the inner product between
symbols is E4 where they agree and —FE /(¢ — 1) where they disagree, and any two
distinct points x,y € A’ agree in one component and disagree in ¢ components, we have
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Therefore A’ is a ¢*>-simplex signal set.

Thus we can see how we might recursively generate simplex signal sets with
2,4,16,256,2', ... points, starting from a 2-PAM signal set and using doubly-extended
(¢ +1,2,9) RS codes over F,.

Scores on Problem 1: 4 € [9,19]; 8 € [20,29]; 4 € [30,39]; 8 € [40,49]; 2 € [50, 60].



Problem M.2 (30 points)

(a) Let p(t) be a complex Lo signal with Fourier transform P(f). If the set of time shifts
{p(t — kT),k € Z} is orthonormal for some T > 0, then P(0) # 0.

FALSE. The orthonormality condition is
1
7 2 |P(f —m/T)[? =1,v.

This can be satisfied by, e.g., |P(f)[? =T for 1/T < f < 2/T and P(f) = 0 elsewhere,
including P(0) = 0.
(b) Let s(C) be the Euclidean-space image of a binary linear block code C under a 2-PAM

map s : {0,1} — {£a}. Then the mean m of the signal set s(C) is 0, unless there is
some coordinate in which all codewords of C have the value 0.

TRUE. This proposition holds if and only if half the codewords in any binary linear code
C have a 0 in any coordinate position, and half have a 1 (unless all are 0).

To show this, recall that C can be specified as the set of all binary linear combinations of
some set of generators, and that a given generator g is a component (with a 1 coefficient)
of precisely half the codewords. In fact, we can group the codewords into pairs (c,c+g) of
codewords that do and do not include g, respectively. Now given any coordinate position,
we can find a generator g that has a 1 in the given position, unless all codewords have a
0 in that position. Given such a g, exactly one of each pair (¢, c+g) has a 0 in the given
position, and one has a 1. Therefore precisely half the codewords have a 1 in the given
position, unless all have a 0. This argument holds for all coordinate positions.

(c) A polynomial f(z) € F,[z] satisfies f(5) = 0 for all B € F, if and only if f(z) is a
multiple of 29 — z.

TRUE. A polynomial f(z) satisfies f(8) = 0 if and only if z — § is a factor of f(z).
Thus f(B) = 0 for all 5 € F, if and only if [J4cs (2 — B) divides f(z). But according to
Theorem 3.1 of Lecture 7, this product is equal to z¢ — z.

Scores on Problem 2: 6 € [0,9];9 € [10,19]; 11 € |20, 31].

Scores on Midterm: 1 € [10,19];2 € [20,29];5 € [30,39];5 € [40,49];3 € [50,59];5 €
[60,69]; 3 € [70,79]; 2 € [80,90]. Median 52, 75% = 64, 25% = 36.



