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Midterm solutions 

Problem M.1 (70 points) 

In this problem, we will study a class of codes called product codes.


Suppose that C1 and C2 are two binary linear block codes with parameters (n1, k1, d1) and

(n2, k2, d2), respectively. We will assume that the first k1 and k2 coordinate positions are

information sets of C1 and C2, respectively.


The product code C is the code obtained by the following three-step encoding method. In


n

k

the first step, k1 independent information bits are placed in each of k2 rows, thus creating

a k2 × k1 rectangular array (see Figure 1a). In the second step, the k1 information bits

in each of these k2 rows are encoded into a codeword of length n1 in C1, thus creating a


2 × n1 rectangular array (see Figure 1b). In the third step, the k2 information bits in

each of the n1 columns are encoded into a codeword of length n2 in C2, thus creating an


2 × n1 rectangular array (see Figure 1c).
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Figure 1. (a) k2 × k1 information bit array. (b) k2 × n1 array after row encoding.

(c) n2 × n1 array after column encoding. 

(a) Given an (n, k) binary linear block code C, show that the first k coordinate positions 
are an information set of C if and only if there exists a generator matrix G for C whose 
first k columns form a k × k identity matrix. 

Given an (n, k) binary linear block code C, a set of  k coordinates is called an information 
set of C if the codewords run through all 2k possible binary k-tuples in that set of coor-
dinates; i.e., if there is a unique codeword associated with every possible binary k-tuple 
in that set of coordinates. Thus if the first k coordinate positions are an information 
set, then for 1 ≤ j ≤ k there exists a unique codeword gj that has a 1 in the jth coor-
dinate position, and a 0 in all of the other first k coordinate positions. The codewords 
{gj , 1 ≤ j ≤ k} are then obviously a set of k linearly independent n-tuples, so they may 
be taken as a basis for the (n, k) linear code C; i.e., {gj , 1 ≤ j ≤ k} may be taken  as  a  
set of generators for C. If  the  gj are taken as the rows of a k × n generator matrix G for 
C, then  C = {uG | u ∈ (F2)

k }, and the first k columns of G form a k × k identity matrix; 
i.e., G is the desired generator matrix, which is called a systematic generator matrix. 
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Conversely, suppose that C has a systematic generator matrix G, so  C = {uG | u ∈ (F2)
k }, 

where the first k columns of G form a k×k identity matrix Ik . In other words, G = [Ik | P ], 
where P is some k × (n − k) matrix. Then 

C = {uG | u ∈ (F2)
k } = {u[Ik | P ] | u ∈ (F2)

k } = {(u, uP ) | u ∈ (F2)
k}. 

Thus as u runs through the set (F2)
k of all binary k-tuples, the codewords of C run through 

all 2k possible binary k-tuples in the first k coordinate positions, so the first k coordinate 
positions form an information set for C. 

k
Note that the encoding method given above is well-defined if and only if the first k1 and 

2 coordinate positions are information sets of C1 and C2, respectively. 

(b) Show that the encoding method given above produces the same codeword whether the 
encoder encodes first rows and then columns, or first columns and then rows. 

It is obvious that for the same initial k1k2 information bits in the array of Figure 1a, the 
same encoded bits are produced in the top and left quadrants of Figure 1c. Therefore the 
assertion needs to be proved only for encoded bits in the lower right quadrant. 

Let us therefore look at a particular encoded bit in the lower right quadrant, say the 
encoded bit b�m in row � and column m. Let  G1 = [Ik1 | P ] be a systematic  generator  
matrix for C1, and let G2 = [Ik2 | Q] be a systematic generator matrix for C2. Let the 
information bits in the top left quadrant be denoted by uij , 1 ≤ i ≤ k2, 1 ≤ j ≤ k1. Then  
an encoded bit bim in the top right quadrant is given by 

k1 

bim = uij Pjm, 1 ≤ i ≤ k2, 1 ≤ m ≤ n1 − k1. 
j=1 

Similarly, an encoded bit in the bottom left quadrant is given by 

k2 

b�j = Q�iuij , 1 ≤ � ≤ n2 − k2, 1 ≤ j ≤ k1. 
i=1 

Thus if we encode first row-wise and then column-wise, then the encoded bit b�m is formed 
as the linear combination 

k2 k2 k1 

b�m = Q�ibim = Q�iuij Pjm, 1 ≤ � ≤ n2 − k2, 1 ≤ m ≤ n1 − k1. 
i=1 i=1 j=1 

On the other hand, if we encode first column-wise and then row-wise, then the encoded 
bit b�m is formed as the linear combination 

k1 k1 k2 

b�m = b�j Pjm = Q�iuij Pjm, 1 ≤ � ≤ n2 − k2, 1 ≤ m ≤ n1 − k1. 
j=1 j=1 i=1 

Thus b�m is the same under either encoding method. 

A quicker way of showing this is to use matrix notation, including transposes. Then, 
writing the information array as U , we have  
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Figure 2. Proof that row/column and column/row encoding produce the same result. 

Note that this result implies that if an n2 × n1 array is a codeword of C, then every row 
is a codeword of C1 and every column is a codeword of C2. 

(c) Show that the product code C is an (n1n2, k1k2, d1d2) binary linear block code. 

The proof of (b) shows that every bit in a codeword is a fixed linear function of the k1k2 

information bits uij , 1 ≤ i ≤ k2, 1 ≤ j ≤ k1. Therefore the sum of the two codewords 
corresponding to two information bit arrays is the codeword corresponding to the sum of 
the two given information bit arrays. Thus C has the group property; i.e., C is linear. 

Obviously C is a binary block code of length n1n2 bits. Since each information k1k2-tuple 
maps to a distinct codeword in the top left quadrant, the dimension of C must be k1k2. 

Since C is linear, the minimum Hamming distance of C is the minimum nonzero Hamming 
weight of any codeword in C. Now if there is any nonzero bit in a codeword of C, then  
there must be at least d1 nonzero bits in the same row, since every row is a codeword of 
C1, and in each of the ≥ d1 corresponding columns, there similarly must be at least d2


nonzero bits. Therefore any nonzero codeword has weight at least d1d2.


To show that the minimum nonzero weight is precisely d1d2, consider a weight-d1 codeword

′ } ∈ Cj{

is a codeword of C and has weight d1d2. 
{

c ⊗ c
ci} ∈ C
with bits bij 

1 and a weight-d2 codeword c Then the (tensor product) array c =
 = c 2. 
′ 
j In other words, to = cic

construct a minimum-weight codeword, write down a minimum-weight codeword in C1 in 
the top row of the n2 ×n1 array. For each column, if the top entry is a 1 then write down 
a minimum-weight codeword in C2 which has its first bit equal to 1 in that column. If 
the top entry is a 0 then simply fill the column with all 0s. The resulting codeword has 
a weight of precisely d1d2. 

(d) Express the nominal coding gain γc(C) of the Euclidean-space image s(C) of C in 
terms of the nominal coding gains γc(C1) and γc(C2) of the Euclidean-space images s(C1) 
and s(C2) of C1 and C2, respectively. Express the nominal spectral efficiency ρ(C) of C in 
terms of the nominal spectral efficiencies ρ(C1) and ρ(C2) of C1 and C2, respectively. 
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The nominal coding gain of the Euclidean-space image s(C) of an (n, k, d) binary linear 
block code C is γc(C) =  kd/n, and its nominal spectral efficiency is ρ(C) = 2k/n. Thus  

k1k2d1d2 k1d1 k2d2
γc(C) = = = γc(C1)γc(C2), 

n1n2 n1 n2 

and 
k k1 k2 1 

ρ(C) = 2 = 2  = ρ(C1)ρ(C2). 
n n1 n2 2 

(e) Starting with Reed-Muller codes of lengths less than 64, is it possible to use the product 
code construction to construct a product code of length 64 that has better parameters 
(64, k, d) than the corresponding RM code of length 64? 

The answer is No, as a few examples quickly show. For example, the product of an (8, 4, 4) 
code with itself yields a product code with parameters (64, 16, 16), which is inferior to the 
(64, 22, 16) RM code. 

An exhaustive proof is given by the tables below, plus the observation that the product 
of a trivial code with any code is trivial, and the product of the (1, 1, 1) code with any 
code gives the latter code again. Note that we do need to check (2m , 2m , 1) codes. 

× (32, 1, 32) (32, 6, 16) (32, 16, 8) (32, 26, 4) (32, 31, 2) (32, 32, 1) 
(2,2,1) (64, 2, 32) (64, 12, 16) (64, 32, 8) (64, 52, 4) (64, 62, 2) (64, 64, 1) 
(2,1,2) (64, 1, 64) (64, 6, 32) (64, 16, 16) (64, 26, 8) (64, 31, 4) (64, 32, 2) 

× (16, 1, 16) (16, 5, 8) (16, 11, 4) (16, 15, 2) (16, 16, 1) 
(4,4,1) (64, 4, 16) (64, 20, 8) (64, 44, 4) (64, 60, 2) (64, 64, 1) 
(4,3,2) (64, 3, 32) (64, 15, 16) (64, 33, 8) (64, 45, 4) (64, 48, 2) 
(4,1,4) (64, 1, 64) (64, 5, 32) (64, 11, 16) (64, 15, 8) (64, 16, 4) 

× (8, 1, 8) (8, 4, 4) (8, 7, 2) (8, 8, 1) 
(8,8,1) (64, 8, 8) (64, 32, 4) (64, 56, 2) (64, 64, 1) 
(8,7,2) (64, 7, 16) (64, 28, 8) (64, 49, 4) (64, 56, 2) 
(8,4,4) (64, 4, 32) (64, 16, 16) (64, 28, 8) (64, 32, 4) 
(8,1,8) (64, 1, 64) (64, 4, 32) (64, 7, 16) (64, 8, 8) 

We see that the best results are 

(32, 32, 1) × (2, 2, 1) = (64, 64, 1) = (64, 64, 1); 

(32, 31, 2) × (2, 2, 1) = (64, 62, 2) < (64, 63, 2); 

(32, 26, 4) × (2, 2, 1) = (64, 52, 4) < (64, 57, 4); 

(16, 11, 4) × (4, 3, 2) = (64, 33, 8) < (64, 42, 8); 

(32, 16, 8) × (2, 1, 2) = (64, 16, 16) < (64, 22, 16); 

(32, 6, 16) × (2, 1, 2) = (64, 6, 32) < (64, 7, 32); 

(32, 1, 32) × (2, 1, 2) = (64, 1, 64) = (64, 1, 64), 

which never improve on the corresponding (equal-d) RM codes of length 64, and in fact 
are worse in all nontrivial cases. 
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The following neat inductive proof was suggested by Sheng Jing. The product code 
RM(r1, m1)×RM(r2, m2) has length n = 2m1 +m2 and minimum distance d = 2m1+m2−r1−r2 , 
so it should be compared with the Reed-Muller code RM(r1 + r2, m1 + m2); i.e., 
k(r1, m1) × k(r2, m2) should be compared with k(r1 + r2, m1 + m2). Suppose that 
k(r1, m1) × k(r2, m2) ≤ k(r1 + r2, m1 + m2) for all lesser (m1, m2) and all compatible 
(r1, r2). Then, using k(r, m) =  k(r− 1, m− 1) + k(r, m− 1), we can show inductively that 

k(r1, m1) × k(r2, m2) = (k(r1 − 1, m1 − 1) + k(r1, m1 − 1)) × k(r2, m2) 

≤ k(r1 + r2 − 1, m1 + m2 − 1) + k(r1 + r2, m1 + m2 − 1) 

= k(r1 + r2, m1 + m2). 

(f ) Starting with Reed-Muller codes of lengths less than 64, is it possible to obtain a se-
quence of product codes whose nominal coding gains increase without limit by iterating the 
product code construction— i.e., by extending the above construction to an m-dimensional 
product code that maps an array of k1 ×k2 ×· · ·×km information bits into n1 ×n2 ×· · ·×nm 

binary symbols using binary linear block codes C1, C2, . . .  , Cm? Is it possible to do this while 
keeping the nominal spectral efficiency above some nonzero value? 

Apart from the trivial, universe and repetition codes, the RM codes of lengths less than 
64 have nominal coding gains γc greater than 1 and rates k/n bounded by 31/32 < 1. 
It is therefore possible to iterate the product construction, using any of these codes as 
components, to obtain a sequence of increasingly long product codes whose nominal coding 
gains increase without limit. 

However, any such sequence must be based on an infinite number of components with 
rates k/n ≤ 31/32, and thus the rate k/n and the nominal spectral efficiency ρ = 2k/n 
of the product code must tend to zero as its coding gain tends to infinity. 

(g) The construction of C suggests the following two-step decoding method. First decode 
each row, using an optimum (minimum Euclidean distance) decoding method for C1. This 
first decoding step yields an array of noisy received bits. Then decode each column, using 
an optimum (minimum Hamming distance) decoding method for C2. 

Compare the performance and complexity of this two-step decoding method with that of 
the optimum decoding method on a binary-input AWGN channel. If you like, you may let 
both C1 and C2 be the (8, 4, 4) RM code. As a figure of merit for performance, you may 
use the minimum squared norm of any error sequence that can cause a decoding error. 

On a binary-input AWGN channel, an (n, k, d) binary linear block code C maps under the 
standard 2-PAM map s : {0, 1} → {±α} to a subset of 2k vertices of an n-cube of side 
2α. The minimum squared distance between two n-vectors in the Euclidean image s(C) is  √ 
d2 = 4α2d. An optimum decoder is a minimum-distance decoder. Since dmin = 2α d,min √ 
the minimum norm of any error vector that can cause a decoding error is dmin/2 =  α d, so  
the minimum squared norm of any error-causing vector is α2d. The decoding complexity 
of a minimum-distance decoder is of the order of 2k , since an MD decoder must compute 
the distance between the received vector and each of the 2k codewords. 
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The optimum decoder for an (n1n2, k1k2, d1d2) product code C is therefore a minimum-
distance decoder. The minimum squared norm of any error-causing vector is α2d1d2, and  
the decoding complexity is of the order of 2k1k2 . For the (64, 16, 16) product code, the 
performance figure of merit is 16α2, and the decoding complexity is of the order of 216 . 

The first step of the suggested suboptimum two-step decoding method consists of decoding 
each of the n2 rows using an optimum decoder for C1. In each row, the performance figure 
of merit is d1α

2, or  4α2 in our example, and the decoding complexity is of the order of 
2k1 , or 16 in our example. 

The second step of the suggested suboptimum two-step decoding method is to decode 
each of the n1 columns, using the results of the first decoding step as noisy binary inputs. 
We may take the decoding complexity as of the order of 2k2 for each column (although 
there are usually more efficient near-optimum decoding methods). In each column, an 
decoding error can be made if there are d2/2 binary errors (assuming d2 is even). 

Therefore an overall product code decoding error can be made if d2/2 rows are in error. By 
considering the weight-d1d2 tensor product of two minimum-weight component codewords 
as in the proof of minimum distance in part (c), we can see that an error will be made 
in certain such cases. The minimum error squared norm for this to happen is (d2/2)d1α

2 , 
which is a factor of 2 (3 dB) worse than the optimum decoding method. 

The overall decoding complexity is of the order of n22
k1 + n12

k2 . For our example, this 
yields 2(8 × 16) = 28, an improvement of the order of a factor of 28 over the complexity of 
the optimum decoder. For long codes, there will be an exponential improvement, of the 
order of a factor of 2k1k2−max{k1,k2}. 

(h) [Optional; extra credit] Propose a two-step decoding method that has same figure of 
merit for performance as optimal decoding, but has decoding complexity similar to that of 
the suboptimal two-step method proposed in part (g). 

The 3 dB performance loss in the suboptimal two-step method of part (g) is at least partly 
due to making hard decisions in the first decoding step. It would be better to attach some 
sort of reliability metric to each decoded codeword. 

An excellent reliability metric for the decoded bit bij in the ith row and jth column 
resulting from the first step of row-wise decodings is the difference d2 = ||eij1||2 − ||eij0||2 

d

ij 

between the squared norms of the apparent errors eij0 = ri − s(cij0) and  eij1 = ri − s(cij1), 
where ri is the received vector in the ith row, and cij0 (resp. cij1) is the codeword in C1 

such that s(cij0) (resp. s(cij1)) is the closest codeword image to ri such that cij0 has a 0 
(resp. 1) in the jth column. Note that cij0 and cij1 must differ in at least d1 positions. 
Note also that 

2 = ||eij1||2 − ||eij0||2 = 2〈r, s(cij0) − s(cij1)〉,ij 

since ||s(c)||2 = n1α
2 for all c ∈ C1. Thus if the hard decision bit is bij = 0,  i.e., the 

closest codeword to ri has a 0 in the jth column, then d2 ≥ 0; if bij = 1,  then  d2 ≤ 0.ij ij 

Such a reliability metric may be used in column decoding as follows. To decode the jth 
column, we look for the column codeword cj ∈ C2 that maximizes the following sum of 
sign-weighted reliability metrics: n2 (−1)cij d2 

ij . In other words, we add the reliability i 
metrics of the hard decision bits bij in that column, multiplied by a sign term (−1)cij 
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such that (−1)cij d2 ≥ 0 if the codeword bit cij matches the hard decision bit bij , and  ij 

(−1)cij d2 

c
c

ij ≤ 0 if they do not match, and choose the cj ∈ C2 that maximizes this sum.


It is easy to see that this decoding algorithm is equivalent to the following one. For each

j ∈ C2, construct an n2 ×n1 array by extending each bit cij in cj to the codeword cij0 or

ij1 in C1 according to whether cij = 0  or  cij = 1. Then compute the Euclidean distance


between the Euclidean image of this array and the array of n2 received rows ri, and  choose 

the closest as the winner.


In order for a column-j decoding error to occur, the noise must be such that r is closer

to one of these constructed arrays than to the transmitted array. But each of these con
-
structed arrays differs from the transmitted jth column in at least d2 rows, and in each

of those rows differs from the transmitted row in at least d1 bits. Therefore the mini
-
mum squared norm of any error-causing vector is α2d1d2; i.e., the same as for optimum

minimum-distance decoding of the whole product code.


Meanwhile, the decoding complexity of this two-step algorithm is of the order of 2k1 per 
row and 2k2 per column, or n22

k1 + n12
k2 ≈ 2max{k1,k2} in all. 

We conclude that while product codes do not have the best possible parameters (n, k, d), 
they permit long high-performance codes to be built from short low-complexity component 
codes, and they admit low-complexity near-optimum decoding algorithms. So product 
codes might give some hint as to how to construct high-performance codes that can be 
decoded nearly optimally with reasonable complexity. 

Grade distribution on Problem 1 (N = 16):  
{23, 31, 38, 38, 44, 46, 49, 49, 52, 53, 53, 53, 54, 55, 57, 57}. 

Problem M.2 (30 points) 

For each of the propositions below, state whether the proposition is true or false, and give 
a proof of not more than a few sentences, or a counterexample. No credit will be given 
for a correct answer without an adequate explanation. 

(a) A signal constellation A consisting of a subset of 2k points of the 2n vertices of the 
n-cube, k <  n, has a nominal spectral efficiency ρ(A) < 2 b/2D and a nominal coding 
gain γc(A) ≥ 1. 

False. In general, the nominal coding gain may be less than 1. As a counterexample, 
consider the Euclidean image A = s(C) of the  (2, 1, 1) binary linear block code C = 
{00, 10}. The nominal coding gain of s(C) is  γc(s(C)) = kd/n = 1 (-3 dB). 
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(b) Let S = {a, b, c, d, e, f} be a set of six elements, and let a binary operation ⊕ be defined 
on S by the following “addition table:” 

⊕ a b c d e f 

a a b c d e f 
b b c a f d e 
c c a b e f d 
d d e f a b c 
e e f d c a b 
f f d e b c a 

Then S forms a group under the binary operation ⊕. (You need not check the associative 
law.) 

True. Using the alternative group axioms (Theorem 7.1), we need merely check that: 

(a) there is an identity element, namely a, since a ⊕ s = s ⊕ a = s for all s ∈ S;


(b) every row and column is a permutation of the group elements.


Note that this group is nonabelian. In fact, this is the smallest nonabelian group.


(c) Considering the weight distribution of a (6, 3, 4) code over F4, it is possible that such 
a code exists. 

True. A  (6, 3, 4) code over any field is MDS, since k + d = n+ 1. Therefore, over F4, the  
number of words of weight 4 must be 

6 
N4 = (q − 1) = 15 × 3 = 45,

4 

and the number of words of weight 5 must be 

6 5 
N5 = ((q 2 − 1) − (q − 1)) = 6 × (15 − 15) = 0. 

5 4 

Therefore the number of words of weight 6 must be N6 = 63  − 45 = 18. Since all of these

numbers are nonnegative, such a code could exist.


In fact, such a code does exist, the so-called “hexacode.” A systematic generator matrix

for one version of the hexacode is 

1 0 0 1  α α  
0 1 0  α 1 α 
0 0 1  α α  1 

It is easy to verify that this (6, 3) code over F4 has minimum nonzero weight 4 and thus 
weight distribution {1, 0, 0, 0, 45, 0, 18}, simply by listing all of its codewords. 

Grade distribution on Problem 2 (N = 16):  
{0, 6, 13, 15, 15, 15, 16, 18, 20, 21, 23, 23, 23, 24, 26, 27}. 
Grade distribution on midterm exam (N = 16):  
{38, 49, 54, 57, 59, 61, 61, 64, 67, 70, 71, 73, 73, 76, 81, 83}. 
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