
′ ′ ′ 

Final Exam Solutions


Problem F.1 (60 points) 

In this problem we consider a convolutional code C over the quaternary field F4. The ele­
ments of F4 may be denoted as {00, 01, 10, 11} (additive representation) or as {0, 1, α, α2}
(multiplicative representation), where α is a primitive element of F4 and a root of x2+x+1. 
You might wish to jot down the addition and multiplication tables of F4. 

The convolutional code C is generated by the encoder shown below. 

y1k 

uk uk−1� D 

� 

� 

��α ×� 

� � 

� 

� 
�α2 ×� 

� �� 
y2k 

� � 

The input uk at time k is an element of F4, and the delay element (denoted by D) stores 
the previous input uk−1. There are two F4 outputs at each time k, whose equations are 

y1k = uk + uk−1; 

y2k = αuk + α2 uk−1. 

(a) Show that the convolutional code C is linear over F4.


If {(y1k, y2k)} ∈  C and {(y1
′ 
k, y

′ )} ∈  C are the output sequences corresponding to the
2k

input sequences {uk} and {u′ }, respectively, then the input sequence {uk + u′ } generatesk k

the output sequence {(y1k + y1
′ 
k, y2k + y′ }, since 2k

y1k + y1k = uk + uk + uk−1 + uk−1; 

y2k + y2
′ 
k = α(uk + u ′ k) +  α2(uk−1 + u ′ k−1). 

Thus if {(y1k, y2k)} and {(y1
′ 
k, y

′ )} are in C, then  {(y1k + y1
′ 
k, y2k + y′ } is in C. Also, for 2k 2k

any β ∈ F4, the input sequence {βuk} generates the output sequence {β(y1k, y2k)}, since 

βy1k = βuk + βuk−1; 

βy2k = α(βuk) +  α2(βuk−1). 

Thus if {(y1k, y2k)} ∈ C, then  {β(y1k, y2k)} ∈ C. So  C is a vector space over F4. 

Alternatively, after doing part (b), we can verify that if y(D) =  u(D)g(D) and  y′(D) =  
u′(D)g(D) are  in  C, then  y(D)+  y′(D) = (u(D)+  u′(D))g(D) is in  C, and so is βy(D) =  
βu(D)g(D). 

1 



�� �� 

��������� 

� � � � 

���� 
������� ������� 

(b) Let u(D), y1(D) and y2(D) be the D-transforms of the sequences {uk}, {y1k} and {y2k}, 
respectively. Give expressions for y1(D) and y2(D) in terms of u(D). 

It is straightforward to verify that y1(D) = (1+D)u(D) and  y2(D) = (α+α2D)u(D), since 
{y1k} and {y2k} are the convolution of {uk} with the finite sequences (g10 = 1, g11 = 1)  
and (g10 = α, g11 = α2), respectively. 

In other words, y(D) =  u(D)g(D), where 

g(D) = (1 +  D, α + α2D). 

(c) Specify the number of states in this encoder. Draw a single section of a trellis diagram 
for C, labelling each branch with a quaternary 2-tuple (y1k, y2k) ∈ (F4)

2 . 

The encoder has 4 states, corresponding to the 4 possible values of uk−1. 

Every state transition is possible, so there are 16 branches. The equations of the encoder 
determine the output 2-tuple associated with each branch. A trellis section for this encoder 
is therefore as follows: 

00 
1α 
αα2 �� �� 

α21 0 �� ��� 0�� 

������� 
1α2 �� �� 
01 ����� � �� 
α20 ��� �� � 
αα 1 ���

��� ��� 1��� ���� ��� 

α1 �� �� �� 
����� �� � ��α2α2 � 

0α α �� ���� �� α 
10 ��� �� � �� 

α2α �� �� 
α0 α2 ��� ���� α2 
11 �� �� 
0α2 

(d) Show that this encoder for C is noncatastrophic. 

The simplest way to show that no infinite input sequence can lead to a finite output 
sequence is to observe that there is only one branch labeled with 00, namely the branch 
from the zero state to the zero state, so any nonzero input uk must give a nonzero output. 

Noncatastrophicity also follows algebraically from the fact that 1 + D and α + α2D have 
no common factors. 

(e) Find the minimum Hamming distance dfree(C), and the average number of nearest 
neighbors Kmin(C) per unit time. 

Since C is linear, it suffices to find the minimum-weight nonzero code sequences. Since 
it is noncatastrophic, the finite-weight code sequences are those generated by finite input 
sequences. 

The impulse response g(D) = (1+D, α+α2D) is a code sequence with Hamming weight 4, 
and so are αg(D) and  α2g(D). All finite code sequences start with a weight-2 2-tuple and 
end with a weight-2 2-tuple, and have 2-tuples of weight at least 1 in between. Therefore 
the nonzero scalar multiples of g(D) are the only nonzero minimum-weight sequences, the 
free distance is dfree(C) = 4,  and  Kmin(C) = 3.  

2 



[ ] 

Now define the binary image of C as the binary convolutional code C ′ obtained by map­
ping the outputs yjk ∈ F4 into the additive representation {00, 01, 10, 11}, where each 
representative is a pair of elements of F2. 

(f) Repeat parts (a)-(e) for C ′, replacing F4 by F2 where appropriate. (For part (b), map 
uk ∈ F4 to its binary image.)


It is easy to verify that the binary image map f : F4 → (F2)
2 is linear; i.e., f(β + γ) = 


f(β) +  f(γ). Therefore if f(y(D)) and f(y′(D)) are code sequences in C ′, then  so  is 

f(y(D)) + f(y′(D)) = f(y(D) +  y′(D)), since y(D) +  y′(D) ∈ C. So  C ′ is a vector space

over F2.


The trellis for C ′ is  the same as that for  C with quaternary labels mapped to binary 
labels. In other words, C ′ is a rate-2/4, 4-state binary linear convolutional code. The 
encoder is still noncatastrophic because there are no branches other than the zero branch 
that have the all-zero label 0000. 

If the input sequence is zero except for 10 (α) at time zero, then the output sequence is 
(αα2, α1) = (1011, 1001); i.e., the impulse response is (1 + D, 0, 1, 1 +  D). Similarly the 
impulse response to an input 01 at time zero is (0110, 0111) = (0, 1 +  D, 1 +  D, D). Thus 
the generator matrix of this binary rate-2/4 code is 

G′(D) =  
1 +  D 0  1 1 +  D 

0  1 +  D 1 +  D D 

Each of the two generator sequences has Hamming weight 5, and their sum has weight 
6. By noting that every finite sequence starts and ends with a 4-tuple of weight at least 
2 and examining the low-weight continuations through the trellis, we can quickly verify 
that these are the only weight-5 sequences in the code. Therefore dfree(C

′) = 5 and  
Kmin(C) = 2.  

(g) Compute the nominal spectral efficiency ρ(C ′) and the nominal coding gain γc(C
′), 

and estimate the effective coding gain γeff (C
′) using our usual rule of thumb. Compare 

the performance of C ′ to that of the best rate-1/n binary linear convolutional code with 
the same spectral efficiency and number of states (see tables above). 

The nominal spectral efficiency is ρ(C ′) = 2k/n = 1 b/2D. The nominal coding gain is 
γc(C

′) =  dfreek/n = 5/2 (3.98 dB). The number of nearest neighbors per information bit is 
Kb(C

′) =  Kmin(C
′)/k = 1. Therefore the effective coding gain is the same as the nominal 

coding gain. 

In fact, these parameters are precisely the same as those of the best rate-1/2 4-state 
binary linear convolutional code, namely our standard example code. Therefore the two 
codes will have the same performance, to the accuracy of the union bound estimate. 

3




[ ] 

Now define another binary convolutional code C ′′ as the code obtained by mapping the 
outputs yjk ∈ F4 into the codewords {000, 011, 101, 110} in the (3, 2, 2) binary SPC code, 
where each representative is now a 3-tuple of elements of F2. 

(h) Repeat parts (a)-(e) for C ′′, replacing F4 by F2 where appropriate. (For part (b), map 
uk ∈ F4 to its binary image.)


Again, it is easy to verify that this map g : F4 → (F2)
3 is linear, and thereby to prove


that C ′′ is linear.


The trellis for C ′′ is  the same as that for  C with quaternary 2-tuples mapped to binary 
6-tuples. In other words, C ′′ is a rate-2/6, 4-state binary linear convolutional code. The 
encoder is still noncatastrophic because there are no branches other than the zero branch 
that have the all-zero label 000000. 

The impulse response to an input 10 at time zero is now (101110, 101011). Similarly, the 
impulse response to an input 01 at time zero is now (011101, 011110). Thus the generator 
matrix of this binary rate-2/6 code is 

G′′(D) =  
1 +  D 0  1 +  D 1  1 +  D D  

0  1 +  D 1 +  D 1 +  D D 1 

Note that the map g : F4 → (F2)
3 maps every nonzero element of F4 into a binary 3-tuple 

of Hamming weight 2. Therefore the weight of any binary image sequence is just twice the 
weight of the corresponding quaternary sequence. Therefore, using our previous results 
for C in part (e), we have dfree(C

′′) = 8  and  Kmin(C
′′) = 3.  

(i) Compute ρ(C ′′) and γc(C
′′), and estimate γeff (C

′′). Compare the performance of C ′′ to 
that of the best rate-1/n binary linear convolutional code with the same spectral efficiency 
and number of states (see tables above). 

The nominal spectral efficiency is ρ(C ′′) = 2k/n = 2/3 b/2D. The nominal coding gain is 
γc(C

′′) =  dfreek/n = 8/3 (4.26 dB). The number of nearest neighbors per information bit 
is Kb(C

′′) =  Kmin(C
′′)/k = 3/2. Therefore the effective coding gain is about 0.1 dB less 

than the nominal coding gain; i.e., γeff (C
′′) ≈ 4.15 dB. 

By comparing with Table 2, we see that the nominal coding gain is precisely the same 
as that of the best rate-1/3 4-state binary linear convolutional code. Moreover, Kb is 
actually a factor of 2 better, so the effective coding gain of C ′′ is about 0.2 dB better. 

4




Problem F.2 (40 points) 

In this problem we consider graphical realizations and decoding of the (32, 16, 8) binary 
Reed-Muller code RM(2, 5). 

(a) Show that there is a partition of the 32 symbols of this code into four 8-tuples such 
that the projection of RM(2, 5) onto any 8-tuple is the (8, 7, 2) binary SPC code, and the 
subcode corresponding to each 8-tuple is the (8, 1, 8) binary repetition code; moreover, the 
8-tuples may be paired such that the projection onto each resulting 16-tuple is the (16, 11, 4) 
extended Hamming code, and the subcode corresponding to each resulting 16-tuple is the 
(16, 5, 8) biorthogonal code. 

The (32, 16, 8) code RM(2, 5) may be constructed by the |u|u + v| construction from the 
(16, 11, 4) code RM(2, 4) and the (16, 5, 8) code RM(1, 4) as follows: 

RM(2, 5) = {(u, u + v) | u ∈ RM(2, 4), v ∈ RM(1, 4)}. 

Thus the projection onto either 16-tuple is RM(2, 4) (since RM(1, 4) is a subcode of 
RM(2, 4)). A codeword has the form (u, 0) if and only if u = v ∈ RM(1, 4), so the 
subcode of codewords equal to zero on the second 16-tuple is equal to RM(1, 4) on the 
first 16-tuple. Similarly, a codeword has the form (0, u + v) if and only if u = 0, which 
implies that the second 16-tuple is a codeword v ∈ RM(1, 4). 

Similarly, the (16, 11, 4) code RM(2, 4) may be constructed by the |u|u + v| construction 
from the (8, 7, 2) code RM(2, 3) and the (8, 4, 4) code RM(1, 3); by an argument similar 
to that above, this shows that the projection onto any corresponding 8-tuple is RM(2, 3). 
Also, the (16, 5, 8) code RM(1, 4) may be constructed by the |u|u + v| construction from 
the (8, 4, 4) code RM(1, 3) and the (8, 1, 8) code RM(0, 3); by an argument similar to that 
above, this shows that the subcode corresponding to any 8-tuple is RM(0, 3). 

(b) Using part (a), show that there is a normal realization of RM(2, 5) whose graph is as 
follows: 

(14, 7) 

/ 8  

/ 6  

(18, 9) (18, 9) 

(14, 7) 

/ 8  

/ 6  

/ 
6 

(14, 7) 

/ 8  

/ 6/ 6  

(14, 7) 

/ 8  

[Tip: to find the constraint code dimensions, you may use the fact (not proved in 6.451) 
that the constraint codes in a cycle-free realization of a self-dual code are self-dual.] 

If the 32 symbols are partitioned into 8-tuples as in part (a), then the projection and 
subcode corresponding to each such 8-tuple are the (8, 7, 2) and (8, 1, 8) code, respectively. 
By the state space theorem, the dimension of the state space corresponding to a partition 
of the time axis into one of these 8-tuples and the remaining 24-tuple is equal to the 

5




difference of the dimensions between this projection and subcode, which is 6. Similarly, 
the dimension of the state space corresponding to the partition of the time axis into two 
16-tuples is the difference of the dimensions of the projection (16, 11, 4) and the subcode 
(16, 5, 8), which is also 6. This accounts for the dimensions of all state spaces shown in 
the normal graph above. 

The lengths of the constraint codes are simply the sums of the dimensions of the incident 
variables, which are 8 + 6 = 14 for the top constraint codes, and 6 + 6 + 6 = 18 for the 
bottom constraint codes. Using the tip and the fact that the (32, 16, 8) RM code is a 
self-dual code, the constraint codes are self-dual and therefore must have dimension equal 
to half their length. 

(c) Using part (b), give a high-level description of an efficient algorithm for maximum-
likelihood decoding of RM(2, 5) on an arbitrary memoryless channel. 

Maximum-likelihood decoding of a code defined on a cycle-free graph over any memoryless 
channel may be performed by the max-product algorithm using likelihood weights, or 
equivalently by the min-sum algorithm using negative log likelihood weights. 

A high-level description of how the max-product algorithm would work on the above 
graph is as follows. The inputs are the received likelihood vectors (2-tuples) for each 
of the 32 received symbols. For the top constraint codes, the max-product update rule 
amounts to taking the maximum of each pair of 8-tuple “intrinsic” likelihoods (which are 
each the product of the appropriate 8 received likelihoods) corresponding to each of the 
64 states (cosets of the (8, 1, 8) code in the (8, 7, 2) code). Next, for the bottom constraint 
codes, the max-product update rule amounts to taking the products of two incoming 
state likelihoods corresponding to 12 of the 18 bits in each of the 512 codewords of the 
(18, 9) constraint code, and then taking the maximum of each of the 8 such products that 
correspond to each of the 64 states specified by the third 6-tuple in each codeword. The 
result is a vector of 64 likelihoods, one for each state in the central state space. 

In a generalized Viterbi algorithm, the “past” and “future” likelihoods of each central 
state could then be combined (multiplied), and the maximum selected. The result will 
be the maximum likelihood of any codeword. If the sequence of decisions leading to this 
maximum have been remembered, or are retraced, then the entire maximum-likelihood 
codeword can be reconstructed. 

However, you could continue to straightforwardly apply the max-product algorithm. The 
max-product update rule can now be applied twice more to each bottom constraint code, 
resulting in “extrinsic” likelihood vectors for all 4 upper-level state spaces. At each of the 
top-level constraint codes, the max-product update rule amounts to fanning out each of 
these 64 “extrinsic” likelihoods, 2 at a time, to the 128 possible input 8-tuples. These 
likelihoods may then be combined (multiplied) with each of the corresponding “intrinsic” 
likelihoods, and the maximum of these 128 products chosen; this maximum corresponds 
to the ML-decoded 8-tuple. The four ML-decoded 8-tuples then form the ML-decoded 
codeword. 

(d) Compare the performance (probability of error) and complexity (number of arithmetic 
operations, roughly) of the algorithm of part (c) to that of the Viterbi algorithm applied 
to an efficient trellis realization of RM(2, 5). [Hint: start by finding a trellis-oriented 

6




generator matrix for RM(2, 5), and then find an efficient sectionalization.] 

The max-product decoder and the Viterbi algorithm applied to a trellis are both exact 
ML decoding algorithms, so both will have the same performance (probability of error). 

To compare complexity, we first need to find an efficient trellis realization for RM(2, 5). 
The standard coordinate ordering for RM codes yields an efficient trellis realization. A 
standard generator matrix corresponding to the standard coordinate ordering is obtained 
by taking the 16 rows of weight 8 or more from the “universal” 32 × 32 generator matrix 
U32 = U⊗5 

2 , namely 

⎡ ⎤ 
11111111 00000000 00000000 00000000 ⎢ 11110000 11110000 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 11001100 11001100 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 10101010 10101010 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 11111111 11111111 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 11110000 00000000 11110000 00000000 ⎥ ⎢ ⎥ ⎢ 11001100 00000000 11001100 00000000 ⎥ ⎢ ⎥ 

G = 
⎢ ⎢ ⎢ 

10101010 
11111111 

00000000 
00000000 

10101010 
11111111 

00000000 
00000000 

⎥ ⎥ ⎥ . ⎢ ⎥ ⎢ 11000000 11000000 11000000 11000000 ⎥ ⎢ ⎥ ⎢ 10100000 10100000 10100000 10100000 ⎥ ⎢ ⎥ ⎢ 11110000 11110000 11110000 11110000 ⎥ ⎢ ⎥ ⎢ 10001000 10001000 10001000 10001000 ⎥ ⎢ ⎥ ⎢ 11001100 11001100 11001100 11001100 ⎥ ⎢ ⎥ ⎣ 10101010 10101010 10101010 10101010 ⎦ 

11111111 11111111 11111111 11111111 

These generators already have distinct stopping times. Reducing G to trellis-oriented 
form, we obtain symmetrical starting times: 

⎡ ⎤ 
11111111 00000000 00000000 00000000 ⎢ 00001111 11110000 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 00110011 11001100 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 01010101 10101010 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 00000000 11111111 00000000 00000000 ⎥ ⎢ ⎥ ⎢ 00000000 00001111 11110000 00000000 ⎥ ⎢ ⎥ ⎢ 00000000 00110011 11001100 00000000 ⎥ ⎢ ⎥ 

G′ = 
⎢ 00000000 01010101 10101010 00000000 ⎥ 

.⎢ ⎥ ⎢ 00000000 00000000 11111111 00000000 ⎥ ⎢ ⎥ ⎢ 00000011 00000011 11000000 11000000 ⎥ ⎢ ⎥ ⎢ 00000101 00000101 10100000 10100000 ⎥ ⎢ ⎥ ⎢ 00000000 00000000 00001111 11110000 ⎥ ⎢ ⎥ ⎢ 00010001 00010001 10001000 10001000 ⎥ ⎢ ⎥ ⎢ 00000000 00000000 00110011 11001100 ⎥ ⎢ ⎥ ⎣ 00000000 00000000 01010101 10101010 ⎦ 

00000000 00000000 00000000 11111111 

7




From this trellis-oriented generator matrix, we can read off the dimensions sk and bk of the 
state and branch spaces of an unsectionalized trellis, namely (first half only; the second 
half is symmetric): 

k 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  
sk 0 1 2 3 4 5 6 7 6 7 8 9 8 9 8 7 6 
bk 1 2 3 4 5 6 7 7 7 8 9 9 9 9 8 7 

< < < < < < < > < < < > < > > > 

The last row of the table above shows starting times (<) and stopping times (>). From 
these times and either our heuristic clustering rule or the LV optimal clustering rule, 
we obtain section boundaries at k = {0, 8, 12, 16, 20, 24, 32}, state complexity profile 
{0, 64, 256, 64, 256, 64, 0} and branch complexity profile {128, 512, 512, 512, 512, 128} (very 
similar to the optimal sectionalization and profiles of the Golay code). 

A normal graph of the resulting sectionalized trellis is as follows: 

(14, 7) 

/ 8  

/ 
6 

(18, 9) 

/ 4  

/ 
6 

(18, 9) 

/ 4  

/ 
8 

(18, 9) 

/ 4  

/ 
8 

(14, 7) 

/ 8  

(18, 9) 

/ 4  

/ 
6 

Comparing this graph to the earlier graph, we see that they differ only in the second and 
third sections (8-tuples), where the trellis realization has two (18, 9) sections (constraint 
codes) in series, whereas the earlier realization has one (14, 7) constraint code and one 
(18, 9) constraint code. 

Since the complexity of the max-product update rule or Viterbi algorithm update is 
roughly proportional to the constraint code (branch space) size, the total complexity 
of the Viterbi algorithm is roughly proportional to 2 · 128 + 4 · 512 = 2304, whereas 
the complexity of the max-product algorithm with survivor memory (generalized Viterbi 
algorithm) on the earlier graph is roughly proportional to 4 · 128 + 2 · 512 = 1536. (This 
assumes either that we use survivor memory in both algorithms to avoid decoding the same 
sections twice, or equivalently that we do not use survivor memory in either algorithm.) 
Thus decoding the earlier graph is roughly 2/3 as complex as decoding the optimum 
sectionalized trellis. Again, we see that optimal cycle-free graphs can be more efficient 
than optimal sectionalized trellises, but not by very much. 

8




Problem F.3 (50 points) 

For each of the propositions below, state whether the proposition is true or false, and give 
a brief proof. If a proposition is false, the proof will usually be a counterexample. Full 
credit will not be given for correct answers without an adequate explanation. 

(a) The Euclidean image of an (n, k, d) binary linear block code is an orthogonal signal 
set if and only if k = log2 n and d = n/2.


False. The Euclidean images of two binary words are orthogonal if and only if d = n/2,

so all codewords must be at distance d = n/2 from each other. In a linear code, this

happens if and only if all nonzero codewords have weight d = n/2. However, all that is

specified is that the minimum distance is d = n/2, which is necessary but not sufficient.

The smallest counterexample is a (4, 2, 2) code; e.g., {0000, 1100, 0011, 1111}.

(b) Every element β ∈ F32 is the root of a binary polynomial f(x) ∈ F2[x] of degree less 
than or equal to 5. 

True. Every element β ∈ F32 is a root of x32 + x, which factors into the product of all 
binary irreducible polynomials whose degrees divide 5; i.e., of degree 1 or 5. So β must 
be a root of a binary irreducible polynomial of degree 1 or 5. 

(In fact, 0 and 1 are the roots of the two binary irreducible polynomials of degree 1, 
namely x and x + 1, so the remaining 30 elements of F32 must be roots of irreducible 
polynomials of degree 5, and there must be 6 such polynomials.) 

(c) If codewords in an (n, k, d) binary linear block code with d even are transmitted 
equiprobably over an AWGN channel using a standard 2-PAM map and are optimally 
detected, then the minimum squared distance to any decision boundary is twice the min­
imum squared distance that is achieved if binary hard decisions are made first on each 
symbol and then the resulting binary received word is optimally decoded. 

True. With a standard 2-PAM map {0, 1} → {±α}, the minimum squared distance 
between codewords is d2 = 4α2d, so with optimum (minimum-distance) detection the min 

minimum squared distance to any decision boundary is (dmin/2)2 = α2d. On the other 
hand, if hard decisions are made first and there are d/2 noise components of magnitude α 
in coordinates where the transmitted codeword differs from another codeword at Hamming 
distance d (and 0 in all other coordinates), then a decoding error may be made, so such a 
vector reaches the decision boundary. The squared norm of such a noise vector is (d/2)α2 . 

(d) Capacity-approaching codes must have trellis complexity parameters that become arbi­
trarily large as the Shannon limit is approached arbitrarily closely. 

Most likely true. The average dimension bound shows that the sizes of the maxi­
mal branch and state spaces are essentially lowerbounded by 2γc , which goes to infinity 
exponentially with n for any “good” sequence of codes. However, the effective coding 
gain needed to get to the Shannon limit is finite, so the question of whether the nominal 
coding gain γc has to become arbitrarily large to get arbitrarily close to the Shannon limit 
remains open. However, all empirical evidence indicates that it does. (Credit based on 
the quality of your discussion.) 

9 



(e) If the points x in a lattice Λ are transmitted with unequal probabilities {p(x),x ∈ Λ}√ 
over an AWGN channel and optimally detected, then Pr(E) ≈ Kmin(Λ)Q (dmin

2 (Λ)/4σ2), 
where dmin

2 (Λ) is the minimum squared distance between points in Λ, and Kmin(Λ) is the 
average number of nearest neighbors to each transmitted point. 

False. The non-equiprobable condition does not exclude using only a subset A of the 
lattice points with minimum distance d2 

min
2 (Λ); e.g., a sublattice Λ′ ⊂ Λ. Inmin(A) > d√ 

this case the argument of the Q (·) function in the UBE will be at least d2 (A)/4σ2 .min

Also, with non-equiprobable signals, minimum-distance (Voronoi) decision regions are in 
general not optimum, so the argument that justifies the UBE no longer holds. 

10




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


