Final Exam

You have 3 hours to complete the exam.
This is a closed-book exam, except that five 8.5"” x 11" sheets of notes are allowed.
Calculators are allowed (provided that erasable memory is cleared).

There are three problems on the exam. They are not necessarily in order of difficulty.
The first two problems are multipart problems worth 60 and 40 points, respectively.
The third problem consists of five unrelated true-false questions worth 10 points each.

Even if you can’t do one part of a multipart problem, try to do succeeding parts.

A correct answer does not guarantee full credit and a wrong answer does not guarantee
loss of credit. You should concisely indicate your reasoning and show all relevant work.
The grade on each problem is based on our judgment of your level of understanding
as reflected by what you have written.

If we can’t read it, we can’t grade it.

If you don’t understand a problem, please ask.



Figure 1. P,(E) vs. Ej/Ny for uncoded binary PAM.

Figure 2. Py(E) vs. SNRyorm for uncoded (M x M)-QAM.

« dB (approx.) dB (exact)

1 0 0.00
1.25 1 0.97
2 3 3.01
2.5 4 3.98
e 4.3 4.34
3 4.8 4.77
™ 5 4.97
4 6 6.02
5 7 6.99
8 9 9.03
10 10 10.00

Table A. Values of certain small factors « in dB.

RM code p Ye (dB) Ny Ky e (dB)
(8,7,2) 1.75  7/4 2.43 28 4 2.0
(8,4,4) 1.00 2 3.01 14 4 2.6

( ) 1.88 15/8 2.73 120 8 2.1

(16,11,4) 1.38 11/4 4.39 140 13 3.7

(16, 58) 0.63 5/2 3.98 30 6 3.5

( ,2) 194 31/16 287 496 16 2.1

( ,4) 1.63 13/4 512 1240 48 4.0

( ,8) 1.00 4 6.02 620 39 4.9

( ) 0.37 3 4.77 62 10 4.2

(64 63 2) 197 63/32 294 2016 32 1.9

( ,4) 1.78 57/16 552 10416 183 4.0

( ) 131 21/4 7.20 11160 266 0.6

( ) 0.69 11/2 740 2604 118 6.0

( ) 022 7/2 5.44 126 18 4.6
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Table B. Parameters of certain Reed-Muller (RM) codes.
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Table 1: Rate-1/2 binary linear convolutional codes

4 dfree Ve dB Kb /Yeff(dB)
1 3 15 18 1 1.8
2 5 25 40 1 4.0
3 6 3 48 2 4.6
4 7 35 52 4 4.8
5 8 4 60 5 5.6
6 10 5 7.0 46 2.9
6 9 45 65 4 6.1
7 10 5 70 6 6.7
8§ 12 6 7.8 10 7.1

Table 2: Rate-1/3 binary linear convolutional codes

dfree Ye dB Kb fVeff(dB)

5> 167 22 1 2.2

8§ 267 43 3 4.0
10 333 52 6 4.7
12 4 6.0 12 2.3
13 433 64 1 6.4
15 5 7.0 11 6.3
16 533 73 1 7.3
18 6 78 5 7.4
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Table 3: Rate-1/4 binary linear convolutional codes

v dfree Ve dB Kb ’Veff(dB)
17 1.7 24 1 2.4
2 10 25 40 2 3.8
3 13 325 51 4 4.7
4 16 4 60 8 2.6
5> 18 45 65 6 6.0
6 20 5> 7.0 37 6.0
7T 22 35 74 2 7.2
8 24 6 78 2 7.6



Problem F.1 (60 points)

In this problem we consider a convolutional code C' over the quaternary field F,. The ele-
ments of Fy may be denoted as {00, 01, 10,11} (additive representation) or as {0, 1, a, a*}
(multiplicative representation), where o is a primitive element of F; and a root of z?+x+1.
You might wish to jot down the addition and multiplication tables of Fy.

The convolutional code C' is generated by the encoder shown below.
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The input uy at time k is an element of Fy, and the delay element (denoted by D) stores
the previous input u;_;. There are two [F, outputs at each time k, whose equations are

Yik = Up + Ug_1;

2
Yok = QU+ Q Ug_.

(a) Show that the convolutional code C'is linear over Fy.

(b) Let u(D),y:1(D) and yo(D) be the D-transforms of the sequences {ui}, {y1x} and
{yar }, respectively. Give expressions for y; (D) and y5(D) in terms of u(D).

(c) Specify the number of states in this encoder. Draw a single section of a trellis diagram
for C, labelling each branch with a quaternary 2-tuple (yix, yor) € (Fy)%.

(d) Show that this encoder for C' is noncatastrophic.

(e) Find the minimum Hamming distance dgeo(C'), and the average number of nearest
neighbors Kp,;n(C) per unit time.

Now define the binary image of C' as the binary convolutional code C’ obtained by map-
ping the outputs y;; € Fy into the additive representation {00,01,10,11}, where each
representative is a pair of elements of [F,.

(f) Repeat parts (a)-(e) for C’, replacing Fy by F, where appropriate. (For part (b), map
uy, € Fy to its binary image.)

(g) Compute the nominal spectral efficiency p(C’) and the nominal coding gain ~.(C"),
and estimate the effective coding gain v;(C") using our usual rule of thumb. Compare
the performance of C' to that of the best rate-1/n binary linear convolutional code with
the same spectral efficiency and number of states (see tables above).



Now define another binary convolutional code C" as the code obtained by mapping the
outputs y;; € Fy into the codewords {000, 011,101,110} in the (3,2, 2) binary SPC code,
where each representative is now a 3-tuple of elements of FF,.

(h) Repeat parts (a)-(e) for C", replacing Fy by Fy where appropriate. (For part (b), map
uy, € Fy to its binary image.)
(i) Compute p(C") and v.(C"), and estimate vz (C"). Compare the performance of C” to

that of the best rate-1/n binary linear convolutional code with the same spectral efficiency
and number of states (see tables above).

Problem F.2 (40 points)

In this problem we consider graphical representations and decoding of the (32, 16, 8) binary
Reed-Muller code RM(2, 5).

(a) Show that there is a partition of the 32 symbols of this code into four 8-tuples such
that the projection of RM(2,5) onto any 8-tuple is the (8,7,2) binary SPC code, and the
subcode corresponding to each 8-tuple is the (8,1,8) binary repetition code; moreover,
the 8-tuples may be paired such that the projection onto each resulting 16-tuple is the
(16,11, 4) extended Hamming code, and the subcode corresponding to each resulting 16-
tuple is the (16,5, 8) biorthogonal code.

(b) Using part (a), show that there is a normal realization of RM(2,5) whose graph is as
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[Tip: to find the constraint code dimensions, you may use the fact (not proved in 6.451)
that the constraint codes in a cycle-free representation of a self-dual code are self-dual.

(c) Using part (b), give a high-level description of an efficient algorithm for maximum-
likelihood decoding of RM(2,5) on an arbitrary memoryless channel.

(d) Compare the performance (probability of error) and complexity (number of arithmetic
operations, roughly) of the algorithm of part (c) to that of the Viterbi algorithm applied
to an efficient trellis realization of RM(2,5). [Hint: start by finding a trellis-oriented
generator matrix for RM(2,5), and then find an efficient sectionalization.]



Problem F.3 (50 points)

For each of the propositions below, state whether the proposition is true or false, and give
a brief proof. If a proposition is false, the proof will usually be a counterexample. Full
credit will not be given for correct answers without an adequate explanation.

(a) The Euclidean image of an (n, k,d) binary linear block code is an orthogonal signal
set if and only if k¥ = log, n and d = n/2.

(b) Every element 3 € Fs, is the root of a binary polynomial f(z) € Fy[z] of degree less
than or equal to 5.

(c) If codewords in an (n,k,d) binary linear block code with d even are transmitted
equiprobably over an AWGN channel using a standard 2-PAM map and are optimally
detected, then the minimum squared distance to any decision boundary is twice the
minimum squared distance that is achieved if binary hard decisions are made first on
each symbol and then the resulting binary received word is optimally decoded.

(d) Capacity-approaching codes must have trellis complexity parameters that become
arbitrarily large as the Shannon limit is approached arbitrarily closely.

(e) If the points x in a lattice A are transmitted with unequal probabilities {p(x),x € A}
over an AWGN channel and optimally detected, then Pr(F) ~ Knin(A)QV(d?,,(A)/40?),
where d2, (A) is the minimum squared distance between points in A, and K, (A) is the

average number of nearest neighbors to each transmitted point.



