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Problem Set 9 Solutions


σ

Problem 8.3 (revised) (BCJR (sum-product) decoding of SPC codes) 

As shown in Problem 6.4 or Figure 1 of Chapter 10, any (n, n − 1, 2) single-parity-check 
code has a two-state trellis diagram. Consider the (8, 7, 2) code, and let the received 
sequence from a discrete-time AWGN channel with input alphabet {±1} and noise variance 

2 = 1  be given by r = (0.1,−1.0,−0.7, 0.8, 1.1, 0.3,−0.9, 0.5). Perform BCJR (sum-
product) decoding of this sequence to determine the APP vector for each symbol Yk. [Hint: 
the special algorithm given in Section 13.5.2 (see Problem 9.5) to implement the sum-
product update rule for zero-sum nodes may be helpful here.] 

First, let us draw the normal graph of a minimal trellis realization of the (8, 7, 2) code. 
This graph is shown abstractly below: 

Σ

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7B0 B1 B2 B3 B4 B5 B6 B7 

(2, 1) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (3, 2) 1 (2, 1) 

Moreover, it is easy to see that the (3, 2) branch constraint codes are all (3, 2, 2) zero-sum 
codes, and the (2, 1) codes are simple repetition codes that need not actually be shown. 
Therefore the trellis realization may be drawn simply as follows: 

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

+ + + + + + 

Note that this trellis realization of the (8, 7, 2) code is another cycle-free realization that 
uses 6 (3, 2, 2) zero-sum constraints, as in the reduced HT realization of Problem 8.1; 
however, the diameter of this realization is 5 (which is as large as it could possibly be). 

For a binary-input Gaussian-noise channel with inputs {±1} and Gaussian conditional 
probability density p(r | y) = (2πσ)−1/2 exp −(r − y)2/2σ2 , the a posteriori probability 
(APP) of y ∈ {±1} given a received value r is, by Bayes’ rule, 

p(r | y) ery/σ2 

= 
er/σ2 −r/σ2 .p(y | r) =  

p(r | 1) + p(r | −1) + e

Here σ2 = 1 (so SNR = 1 (0 dB); i.e., the channel is very noisy). 

The two values p(±1 | rk) form the “intrinsic information” message ιk = {p0k, p1k} derived 
from each received symbol rk , 0 ≤ k ≤ 7. These values are computed from the received 
vector r = (0.1,−1.0,−0.7, 0.8, 1.1, 0.3,−0.9, 0.5) in the following table. (Note that it 
would have sufficed to use the unnormalized pair {erk /σ2 

, e−rk /σ2 }.) We also compute the 
Hadamard transform {p0k + p1k = 1, p0k − p1k = Ik } of each pair of values for later use. 
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rk p0k p1k Ik 

r0 = +0.1 0.55 0.45 1 +0.10 
r1 = −1.0 0.12 0.88 1 −0.76 
r2 = −0.7 0.20 0.80 1 −0.60 
r3 = +0.8 0.83 0.17 1 +0.66 
r4 = +1.1 0.90 0.10 1 +0.80 
r5 = +0.3 0.65 0.35 1 +0.30 
r6 = −0.9 0.14 0.86 1 −0.72 
r7 = +0.5 0.73 0.37 1 +0.46 

Note that Ik = tanh  rk /σ
2, so  Ik ≈ rk/σ

2 for small rk . The sign of Ik represents a “hard 

ε

decision,” whereas the magnitude 0 ≤ |Ik | ≤ 1 represents the reliability of that decision. 

We then propagate the APP messages through the graph below, using the BCJR (sum-
product) algorithm. Note that in the forward direction α1 = ι0, αk is the sum-product 
update of αk−1 and ιk−1 for 2 ≤ k ≤ 7, and finally ε7 = α7. Similarly, in the backward 
direction, β7 = ι7, βk is the sum-product update of βk+1 and ιk for 6 ≥ k ≥ 1, and finally 
0 = β1. Then  εk is the sum-product update of αk and βk+1 for 1 ≤ k ≤ 6. 

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 
ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7ι0 ?6 α1 

ι1 ?6 α2 
ι2 ?6 α3 

ι3 ?6 α4 
ι4 ?6 α5 

ι5 ?6 α6 
ι6 ?6 α7 

ι7 ?6- - - - - - -
+ + + + + +� � � � � � � 

β1 β2 β3 β4 β5 β6 β7 

For a (3, 2, 2) constraint code Ck, the set of past 2-tuples consistent with a 0 value for 
any incident variable is Ck (0) = {00, 11}, and similarly Ck (1) = {01, 10}. Therefore the 
sum-product update rule is 

p(0 | r|P ) =  p(0 | r|Pj� )p(0 | r|Pj�� ) +  p(1 | r|Pj� )p(1 | r|Pj�� ); 

β

p(1 | r|P ) =  p(0 | r|Pj� )p(1 | r|Pj�� ) +  p(0 | r|Pj� )p(1 | r|Pj�� ),


where Pj� and Pj�� are the two “pasts” upstream of P .


Alternatively, following the hint, we may use the special rule for zero-sum nodes to obtain

the Hadamard transform of (p(0 | r|P ), p(1 | r|P )) simply by componentwise multiplication

of the Hadamard transforms of (p(0 | r|Pj� ), p(1 | r|Pj� )) and (p(0 | r|Pj�� ), p(1 | r|Pj�� )).


By either method, we obtain the following values for the forward messages αk = {α0k , α1k }

and their Hadamard transforms {α0k + α1k = 1, α0k − α1k = Ak }, the backward messages


k = {β0k , β1k} and their Hadamard transforms {1, Bk }, and the extrinsic information

messages εk = {ε0k , ε1k} and their Hadamard transforms {1, Ek}.


αk 

α
Ak 

1 = ι0 

α0k α1k 

0.55 0.45 
α

1 +0.10 
2 0.46 0.54 

α
1 −0.08 

3 0.525 0.475 
α

1 +0.05 
4 0.515 0.485 

α
1 +0.03 

5 0.51 0.49 
α

1 +0.02 
6 0.5035 0.4965 

α
1 +0.007 

7 0.4975 0.5025 1 −0.005 
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βk β0k β1k Bk 

β7 = ι7 0.73 0.27 1 +0.46 
β6 0.335 0.665 1 −0.33 
β5 0.45 0.55 1 −0.10 
β4 0.46 0.54 1 −0.08 
β3 0.475 0.525 1 −0.05 
β2 0.515 0.485 1 +0.03 
β1 0.49 0.51 1 −0.02 

εk ε0k ε1k Ek 

ε0 = β1 0.49 0.51 1 −0.02 
ε1 0.5015 0.4985 1 +0.003 
ε2 0.5015 0.4985 1 +0.003 
ε3 0.498 0.502 1 −0.004 
ε4 0.4985 0.5015 1 −0.003 
ε5 0.4965 0.5035 1 −0.007 
ε6 0.5015 0.4985 1 +0.003 
ε7 = α7 0.4975 0.5025 1 −0.005 

Notice how the reliability of the forward and backward APP messages αk and βk degen-
erates as more and more intrinsic information messages ιk are incorporated into them. 

The APP vectors {p(Yk = 0  | r), p(Yk = 1  | r)} for the symbol variables Yk are ultimately 
obtained by componentwise multiplication of ιk and εk , normalized. We note that for 
all k, since ε0k ≈ ε1k ≈ 1 

2 , we  have  {p(Yk = 0  | r), p(Yk = 1  | r)} ≈ {ι0k , ι1k }; i.e., the 
intrinsic information ιk dominates. Thus if hard decisions are made on each symbol, the 
result is the same as if hard decisions had been made symbol-by-symbol based solely on 
the channel outputs rk , and the resulting sequence of hard decisions is not a code sequence 
in the (8, 7, 2) code. 

In contrast, suppose that we perform the max-product (equivalent to the min-sum) algo-
rithm with this received sequence. We obtain the following values: 

αk α0k α1k 

α1 = ι0 0.55 0.45 
α2 0.45 0.55 
α3 0.55 0.45 
α4 0.55 0.45 
α5 0.55 0.45 
α6 0.55 0.45 
α7 0.45 0.55 
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βk β0k β1k 

β7 = ι7 0.73 0.27 
β6 0.27 0.73 
β5 0.35 0.65 
β4 0.35 0.65 
β3 0.35 0.65 
β2 0.65 0.35 
β1 0.35 0.65 

εk ε0k ε1k 

ε0 = β1 0.35 0.65 
ε1 0.55 0.45 
ε2 0.55 0.45 
ε3 0.45 0.55 
ε4 0.45 0.55 
ε5 0.45 0.55 
ε6 0.55 0.45 
ε7 = α7 0.45 0.55 

In this case, the reliability of a forward or backward message is the minimum reliability 
of any intrinsic information that is incorporated into it. Eventually, this means that the 
extrinsic information ε0 dominates the intrinsic information ι0 for the least reliable symbol 
Y0, so the original “hard decision” is “corrected” in this case. The same “correction” would 
be performed by the Viterbi algorithm or by Wagner decoding. 

The max-product (min-sum) algorithm finds the maximum-likelihood code sequence, 
whereas the BCJR (sum-product) algorithm computes the APP vector of each bit. A 
bit decision based on the maximum APP minimizes the bit error probability, so the bit 
error probability could be (slightly) lower with the BCJR algorithm. ML sequence de-
tection minimizes the probability of decoding to the wrong codeword. The sequence of 
maximum-APP bits from the BCJR algorithm may not be a codeword, as we have just 
seen. 

Compare the complexity of BCJR decoding to Viterbi algorithm decoding (Problem 6.6). 

The BCJR algorithm is considerably more complex. For each trellis segment, it has to 
compute the sum-product update rule three times. The straightforward sum-product 
update rule involves four multiplications and two additions; the simplified rule requires a 
single multiplication. By contrast, the VA requires four additions and two comparisons 
per trellis segment. Computation of the intrinsic APP vector is also more complex, and 
requires estimation of the noise variance σ2, which could be a problem. Finally, the logic 
of the BCJR algorithm is more complex, since it is two-way rather than one-way. 

In short, the VA is significantly simpler than the BCJR algorithm. For this reason, the VA 
was preferred for trellis decoding for many years. The BCJR algorithm was resurrected 
with the advent of turbo codes, where the fact that it produces “soft” (APP) outputs is 
essential to its role as a part of iterative decoding algorithms. 

(For this scenario, Wagner decoding is even simpler; see the solution to Problem 6.6.) 
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Problem 9.1 (Iterative decoding on the BEC) 

(a) Using a graph of the (8, 4, 4) code like that of Figure 1 of Chapter 13 for iterative 
decoding, decode the received sequence (1, 0, 0, ?, 0, ?, ?, ?). 

We may use the equivalent normal graph of Figure 3(b) of Chapter 11, which may be 
converted to a directed normal graph (encoder) as shown in Figure 15 of Chapter 11, 
repeated below. 

1-y0 = 

0 y1 - = 

HHHHHHHHHH

XXXXXXXXXX0 jz-

����������y2 - = 

HHHHHHHHHH

+ 

91 y3 � j-= 

HHHHHHHHHH

: +�XXXXXXXXXXXXXXXXXXXX��������������������
�0- � z-y4 = � j +XXXXXXXXXXXXXXXXXXXX

�
����������

�y5 � = 9
1 

� z-: +
� ��

����������
�1� �y6 � = �= � ��

0��
y7 � �= �

The directed input edges show that (y0, y1, y2, y4) is an information set for this code. Given 
(y0, y1, y2, y4) = (1, 0, 0, 0), the sum-product algorithm fills in the erasures by following the 
directed state edges as shown above. On the first iteration, the first check yields y3 = 1;  
on the second iteration, the second and third checks yield y5 = y6 = 1; and on the third 
and last iteration, the last check yields y7 = 0.  

Then try to decode the received sequence (1, 1, 1, 1, ?, ?, ?, ?). Why does decoding fail in the 
latter case? Give both a local answer (based on the graph) and a global answer (based on 
the code). 

As shown in the graph below, iterative decoding stalls because at the initial iteration, 
the first check checks, and each of the last three checks has two or more erased inputs, so 
none of the checks yields any new symbol values. The symbols (y4, y5, y6, y7) and  the last  
three checks are called a stopping set, because at least two of the symbols are involved in 
each of the three checks; therefore if all are erased, no progress can be made. 
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1-y0 = 

1 y1 - = 

HHHHHHHHHH

XXXXXXXXXX1 jz-

����������y2 - = 

HHHHHHHHHH

+ 

1y3 � 9 j-:= 

HHHHHHHHHH

+�XXXXXXXXXXXXXXXXXXXX��������������������
�

- � z-y4 = � j +XXXXXXXXXXXXXXXXXXXXy
�

5 � ����������

= 9 �
� z-: +

� ��

����������
�� �y6 � = �= � ����y7 � �= �

In this case, however, even a global (ML) decoder must fail, because there are two code-
words with (y0, y1, y2, y3) = (1, 1, 1, 1), namely 11110000 and 11111111. 

(b) For the received sequence (1, 1, 1, 1, ?, ?, ?, 0), show that iterative decoding fails but that 
global (i.e., ML) decoding succeeds. 

In this case, there is only one codeword with (y0, y1, y2, y3, y7) = (1, 1, 1, 1, 0), namely 
11110000, so global (ML) decoding will succeed. 

On the other hand, iterative decoding will fail, because the symbols (y4, y5, y6) and  the  
last three checks form a stopping set of this graph: 

: +�

��������������������

�
�

- -y4 = +�

y
�

5 � 

XXXXXXXXXXXXXXXXXXXX����������

= 9 �
� z-: +

�

����������

�
y6 � = = �

Problem 9.2 (Simulation of LDPC decoding on a BEC) 

(a) Perform a simulation of iterative decoding of a regular (dλ = 3, dρ = 6)  LDPC code 
on a BEC with p = 0.45 (i.e., on Figure 9 of Chapter 13), and show how decoding gets 
stuck at the first fixed point (q�→r ≈ 0.35, qr→� ≈ 0.89). About how many iterations does 
it take to get stuck? 

We start with qr→� = 1 and use the sum-product update relationships developed for this 
case in Chapter 13: 

q�→r = (0.45)(qr→�)
2; qr→� = 1  − (1 − q�→r )

5 . 
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We obtain the following sequence: 

qr→� q�→r 

1 0.45 
0.949672 0.405844 
0.925954 0.385826 
0.912611 0.374786 
0.904469 0.368129 
0.899274 0.363912 
0.895868 0.361161 
0.893596 0.359331 
0.892064 0.358100 
0.891022 0.357264 
0.890311 0.356694 
0.889824 0.356304 
0.889490 0.356036 
0.889259 0.355852 
0.889101 0.355725 
0.888992 0.355638 
0.888916 0.355577 
0.888864 0.355536 
0.888828 0.355507 
0.888804 0.355487 
0.888787 0.355474 
0.888775 0.355464 
0.888767 0.355458 
0.888761 0.355453 
0.888757 0.355450 
0.888755 0.355448 
0.888753 0.355447 
0.888751 0.355446 
0.888751 0.355445 
0.888750 0.355444 
0.888750 0.355444 
0.888749 0.355444 
0.888749 0.355444 
. . .  . . .  

The point is that it takes a very finite number of iterations to get stuck, about 15–30 full 
iterations, depending on how we define “stuck.” 

(b) By simulation of iterative decoding, compute the coordinates of the fixed point to six 
significant digits. 

By the above simulation, the fixed point to six significant digits is at (qr→�, q�→r ) =  
(0.888749, 0.355444). 
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Problem 9.3 (Iterative decoding threshold) 

By analysis or simulation, show that the smallest p such that the equation x = 1−(1−px2)5 

∗has a solution in the interval 0 < x <  1 is p = 0.429.... Explain the significance of this 
calculation for iterative decoding of LDPC codes on a BEC. 

A simulation such as that in Problem 9.2 will succeed for p = 0.429 and get stuck for 
∗ p = 0.430. Therefore p is somewhere between these two values. 

The significance of this calculation is that a rate-1/2 regular (dλ = 3, dρ = 6) LDPC code 
∗with iterative decoding can be used on any BEC with p < p  = 0.429.... This is not as 

good as a random linear rate-1/2 code with an ML decoder, which should be able to be 
used on any BEC with p <  0.5, but it is pretty good. 

It has now been shown that there exist irregular rate-1/2 LDPC codes that can be used 
with iterative decoding on any BEC with p <  0.5. 

Problem 9.4 (Stability condition) 

(a) Show that if the minimum left degree of an irregular LDPC code is 3, then the stability 
condition necessarily holds. 

λdx
d−1 = λ3x

2If λ(x) =  +· · · , then  λ′(0) = 0, so the stability condition pλ′(0)ρ′(1) < 1d 
necessarily holds. 

(b) Argue that such a left degree distribution λ(x) cannot be capacity-approaching, in view 
of Theorem 13.2. 

If λ(x) =  λ3x
2 + · · · , then in the neighborhood of the top right point (0, 0) of the EXIT 

chart, the curve q�→r = pλ(qr→�) is approximately quadratic, q�→r ≈ pλ3(qr→�)
2, whereas  

the curve qr→� = 1−ρ(1 −q�→r ) is approximately linear, qr→� ≈ ρ′(1)q�→r. Therefore there 
must be a gap of nonnegligible area between these two curves in the neighborhood of the 
(0, 0) point. By the area theorem, if the gap between the two curves has a nonnegligible 
area, then capacity cannot be approached arbitrarily closely. 

Problem 9.5 (Sum-product update rule for zero-sum nodes) 

(a) Prove that the algorithm of Section 13.5.2 implements the sum-product update rule 
in,j in,jfor a zero-sum node, up to scale. [Hint: observe that in the product j (w0 − w1 ), 

the terms with positive signs sum to wout, whereas the terms with negative signs sum to 0 
out.]w1 

Following the hint, we have 

W out = W in,j = (w in,j in,j (w in,j in,j+ w1 ); W out = W in,j = − w1 ).0 0 0 1 1 0 
j j j j 

In the latter equation, we observe that the terms with positive signs sum to wout, whereas  0 
outthe terms with negative signs sum to wout , so the second product equals wout − w1 .1 0 

The same terms occur in the former equation, but all with positive signs, so the first 
, W outproduct equals wout + w1

out . Therefore the pair (W out ) is the Hadamard transform 0 0 1 
out) from (W out, W outof (wout, wout), so we may obtain (wout, w ) by taking  the inverse  0 1 0 1 0 1 

out = W out + W out; wout = W out − W outHadamard transform (up to scale): w 1 .0 0 1 1 0 
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in,j(b) Show that if	 we interchange w0 and w1
in,j in an even number of incoming APP 

outvectors, then the outgoing APP vector {wout, w } is unchanged. On the other hand, 0 1 
in,jshow that if we interchange w in,j and w1 in an odd number of incoming APP vectors, 0 

then the components wout and w1
out of the outgoing APP vector are interchanged. 0


in,j
Interchanging w in,j and w1 changes the sign of W in,j , while leaving W in,j unchanged. 0 1 0 

Therefore if there an even number of such interchanges, W out and W out are unchanged, 0 1 

and so therefore are w0
out and w1 

out . If there an odd number of such interchanges, then the 
out and w1

out .sign of W out is changed, which results in an interchange between w1	 0 

(c) Show that if we replace APP weight vectors {w0, w1} by log likelihood ratios Λ =  
ln w0/w1, then the zero-sum sum-product update rule reduces to the “tanh rule” 

Λ
1 +  tanh Λin,j /2 

out = ln  � j 

1 − tanh Λin,j /2 
, 

j 

where the hyperbolic tangent is defined by tanh x = (ex − e−x)/(ex + e−x). 
in,j /win,jSince Λin,j /2 = ln(w )1/2, we have  0 1 

(w in,j /win,j in,j /win,j )−1/2 in,j − w1
in,j W in,j 

1 = = .
in,j /win,j )−1/2 

tanh Λin,j /2 =  
(w 

0
in,j /w

1
in,j 

)1/2 − (w0 1 w0
in,j + w1

in,j W in,j 
0 1 )1/2 + (w0 1 w0 0 

in,j	 in,j in,j = W in,j(Note that if (w in,j , w  ) are normalized so that w0 + w1 = 1,  then  0 1 0 

tanh Λin,j /2 =  W in,j .) Consequently 1 

W in,j W out 
1 1tanh Λin,j /2 =  

W in,j = 
W out . 

j	 j 0 0 

It follows that 

tanh Λin,j /2 W out + W out out 
1ln 

1 +  � j	
= ln  0 = ln  

w0 = Λout . 
W out − W out out1 − j tanh Λin,j /2 0 1 w1 

(d) Show that the “tanh rule” may alternatively be written as 

tanh Λout/2 =  tanh Λin,j /2. 
j 

As with the expression for tanh Λin,j /2 above, we have  

W out 
1tanh Λout/2 =  

W out , 
0 

which we have shown  above to be equal  to  j tanh Λin,j /2. 
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